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ABSTRACT

We discuss the design and implementation of a compiler that
translates formulas representing signal processing transforms
into efficient C or Fortran programs. The formulas are rep-
resented in a language that we call SPL, an acronym from
Signal Processing Language. The compiler is a component
of the SPIRAL system which makes use of formula trans-
formations and intelligent search strategies to automatically
generate optimized digital signal processing (DSP) libraries.
After a discussion of the translation and optimization tech-
niques implemented in the compiler, we use SPL formula-
tions of the fast Fourier transform (FFT) to evaluate the
compiler. Our results show that SPIRAL, which can be used
to implement many classes of algorithms, produces programs
that perform as well as “hard-wired” systems like FFTW.

1. INTRODUCTION

Since the advent of digital signal processing, there has
been an enormous effort to obtain high-performance imple-
mentations of signal processing algorithms such as the fast
Fourier transform (FFT). This effort has produced thou-
sands of variants of fundamental algorithms and an equally
large number of implementation techniques. There have
been more than 4000 papers written on the FFT alone [7]
and undoubtedly an even greater number of implementa-
tions of this algorithm, many of which have been carefully
hand-optimized. The cost of these hand optimizations and
their long implementation times are a strong motivation
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to automate the implementation and optimization of sig-
nal processing algorithms [9]. To this end, we have designed
SPL [8], a domain-specific language for describing and im-
plementing fast signal transforms and related computations,
and implemented a compiler that translates formulas writ-
ten in this language into C or Fortran programs. SPL stands
for Signal Processing Language.

The SPL compiler is a component of the SPIRAL system
[13], that systematically searches through algorithm and im-
plementation choices to find an optimal implementation for
a given computing platform. Figure 1 shows the structure of
the SPIRAL system. The algorithmic choices are expressed
by mathematical formulas expressed in SPL, and the im-
plementation choices are explored using the SPL compiler.
The mathematical nature of SPL programs aids in the au-
tomatic generation of potential algorithms using a process
called formula generation. The resulting implementations
are compared using the performance evaluation component,
which returns run times and other performance metrics ob-
tained by executing the code in the target machine or esti-
mated using models. The search engine looks for the fastest
implementation out of the set of choices produced by the
formula generator and SPL compiler. Due to the exponen-
tial size of the search space, intelligent search strategies are
required to make this process feasible.

SPL is a descendent of the TPL (Tensor Product Lan-
guage) [1] that was developed for the automatic generation
of FFT algorithms. SPL programs are essentially mathe-
matical formulas describing matrix factorizations. As such,
they are built using operators from linear algebra and fam-
ilies of parameterized matrices. Such formulas naturally
arise when describing fast signal transforms, where the sig-
nal transform corresponds to a matrix-vector product and
fast algorithms can be represented by a factorization of the
matrix into a product of sparse structured matrices [14, 15,
16].

The SPL compiler translates an SPL expression into a
program to compute the matrix-vector product of the ma-
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Figure 1: The SPIRAL framework

trix given by the SPL expression following a method first
outlined in [10]. The semantics of the components of a SPL
expression are defined using a template mechanism. This
template mechanism allows the user to include additional
operators and matrices in the SPL language. It also provides
a mechanism to control the optimization and code genera-
tion strategies used by the compiler.

In this paper, we describe the translation process and opti-
mization techniques used by the SPL compiler and present
performance data for the code it generates. We use the
FFT as a benchmark due to the availability of very high-
performance implementations that can be used to measure
the quality of the code produced by the SPL compiler. In
particular, we show that the code produced is competitive
with the best available software packages (FFTW [6] was
used in our comparison) for performing similar computa-
tions.

Our system is more general than earlier systems, discussed
in Section 5, that were hard-wired to generate only one class
of signal processing programs. The use of SPL enables our
system to generate any class of algorithm that can be repre-
sented as matrix expressions. Knowledge of particular ma-
trix expressions is not included in the compiler, instead this
knowledge is used by the formula generator when SPL pro-
grams are created and manipulated. As long as the algo-
rithms can be described in SPL, all the steps needed to get
a good implementation are automatic.

The rest of this paper is organized as follows. First,
some background information about matrix factorizations
and SPL are presented in Section 2. The organization and
algorithms used by the compiler are presented in Section 3.
Section 4 presents performance results. Finally, conclusions
and future work are discussed in Section 5.

2. SPL, MATRIX FACTORIZATIONS, AND
FAST SIGNAL TRANSFORMS

In this section we review the relationship between fast sig-
nal transforms and matrix factorizations, and we summarize
how SPL can be used to represent matrix factorizations.

2.1 Matrix Factorizationsand Fast Signal Trans-

forms

A signal transform can be represented by the matrix-
vector product, y = Mz, where the vector x denotes the
input signal, the matrix M the transform, and y the trans-

formed signal. Fast algorithms for computing y = Mz can
be obtained by factoring the matrix M into a product of
sparse structured matrices. For example, a one-dimensional
discrete Fourier transform (DFT) is defined as y = Fiz,
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where the (p,q) element of F, is wB? with w, = e~ n . The
4-point DFT
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the previous factorization can be written as
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In general, we have
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and y = F,x can be computed in 4 steps:

step(1): &1 = L3z

tep(2): 1t = | 1% t

step (2) 1 t2 = F% 1

tep (3): ts = Iy t

step (3): t3 = W% 2
In In

step (4): y = { I; _Ig ] t3

This four-step computation, applied recursively, is the well-
known Cooley-Tukey FFT algorithm. Step (1) is a stride
permutation that can be performed in n operations. Step
(2) computes two FFTs of size . Step (3) is the product
of a diagonal matrix with a vector and therefore requires n
operations. Step (4) requires 2 operations per row. The total
number of operations, f(n), is then n +2f(%) +n+2n =
f(%) + O(n), and, therefore, f(n) = O(nlogn).



The previous factorizations can be represented more con-
cisely using the tensor product. Let A be an m X m matrix
and B be an n X n matrix. The tensor product of A and B,
denoted as A ® B, is the following mn x mn matrix:

auB almB
A®B = : : . (2)
am1B -+ GmmB

The tensor product has interesting interpretations when one
of the operands is the identity matrix. Thus,

A
A

represents an identical transformation applied to successive
sub-vectors of the input vector, and

alm -+ ainlm
AR I, = : :
an1ln - annln
represents the same transformation applied to strided sub-
vectors of the input vector with stride m.

The FFT factorization expressed in Equation 1 can be
represented using the tensor product notation as follows:

Fo=(Fa®Ig)T3(L® Fy)L3, (3)
In . . .
where Tg = { 2 Wa |28 known as the twiddle matriz.
The general definition ?)f twiddle matrix is:
I,
mn = Wi : (4)

wn-t

A more general form of the previous factorization, that
does not require n to be even, is:

Frs: (FT@IS)T\:S(IT@FS)L:S (5)

This is also called decimation in time FFT.
Other factorizations are possible by using the identity:

Amxm®ann :LG(Ban(@Ame)L;n" (6)

Examples of such factorizations include, decimation in fre-
quency FFT:

Fro = L* (I, ® F)TT(Fr @ 1L), (7)

a parallel form of the FFT (I, ® A can be trivially imple-
mented as a parallel loop):

Fro = LP*(L 0 B)LUTP (L @ LY, ()
and a vector form:
F'rs = (FT®IS)T:SL:S(FS®IT) (9)

Finally, the following identity further generalizes the pre-
vious factorizations of Fi,:

F, = szl [(I"—Lf @ Fn; ® I”iJr)(I"i— ®T:iifi+)] :

[l (I, ® L"),

1=t

(10)

wheren =ni---ng, ni— =n1---ni—1, and Niy = Nip1 - Ny
Proof of the above factorization equations can be found in
[10].

Applying this last factorization recursively to each Fj,
until the base case is equal to F» leads to an algorithm for
computing F,. The special case when t = 2, n; = 2, and
ng = % leads to the standard recursive FFT. Other recursive
breakdown strategies are obtained by choosing different val-
ues for n; and n2 or by choosing other factorizations such as
those shown above. The special case when ny = -+ ny =2
leads to the standard iterative, radix-two, FFT. Equation
10 allows us to explore various amounts of recursion and
iteration along with different breakdown strategies.

Other transforms can be factored in a similar manner.
These include the Walsh-Hadamard transform (WHT)

WHT, = F,

WHTon = [['Z,Iony.onics @ WHTon; @ Iynigr .. gmy),
and the discrete cosine transform (DCT)

DCTII, = diag(1,1/V/?2)- Fy,

DCTIL, = P-(DCTIIy & DCTIVy)- (I © F3)9,

bcriv, = S-DCTIIL,-D.

In this last set of equations, P,Q) are permutation matrices,
D, S are diagonal matrices, ¢ is the direct sum, and A
means the conjugation Q ' AQ.

2.2 The SPL Language

SPL is a convenient language for describing matrix factor-
izations, and hence fast algorithms for computing matrix-
vector products. In particular, it can be used for describing
fast signal transforms such as the FFT. SPL expressions are
matrix expressions involving general matrices and parame-
terized matrices such as Fs and L32. An SPL expression may
involve a variety of operations including composition, direct
sum, and tensor product. SPL represents matrix operations
in Cambridge Polish notation. For example, (compose A
B) represents the matrix product A - B. A matrix can be
specified by giving the value of all its elements, or it can
be represented by a parameterized matrix. For example, a
2 x 2 identity matrix can be represented as (matrix (1 0)
(0 1)), (diagonal (1 1)) or (I 2).

An SPL program contains one or more SPL expressions
(or formulas). Each expression can be optionally preceded
by definitions and compiler directives. An SPL formula can
be interpreted as a matrix or, more importantly for our pur-
poses, as a subroutine that accepts a vector as the input and
output the result of the corresponding matrix-vector prod-
uct. In this section, we briefly review the syntax used by
SPL. Further details are available in [8].

Typical components of SPL expressions are:

(1) General matrices, for example:

(matrix ((all ... aln) ... (aml ... amn))
(diagonal (aill ... ann))
(permutation (k1 ... kn))

(2) Parameterized matrices, for example:

(I n) ; identity matrix

(F n) ; Fourier transform by definition
(L mn n) ; stride permutation matrix

(T mn n) ; twiddle matrix



(3) Matrix operations, for example:

(compose Al ... An) ; matrix product
(tensor Al ... An) ; temnsor product
(direct-sum Al ... An) ; direct sum

The elements of a matrix can be real or complex num-
bers. In SPL, these numbers can be specified as constant
scalar expressions, which may contain function invocations
and symbolic constants like pi. Thus, expressions like 12,
1.23, sqrt(2), and (cos(2*pi/3.0),sin(2*pi/3.0)) are
valid scalar SPL expressions. All constant scalar expressions
are evaluated at compile-time.

An SPL program may contain templates, a mechanism to
add new parameterized matrices and matrix operations:

(4) Template definition
(template pattern condition i-code-list)

We’ll discuss templates in Section 3.
In SPL, a formula can be assigned a name so that it can
be reused elsewhere.

(6) Name assignment
(define name formula)

Lines starting with “#” are compiler directives, and the
contents between a “;” and the new line are comments.

Compiler directives control some of the compiler actions.
For example, an SPL formula can be preceded by a #subname
directive to specify the name of the subroutine to be gener-
ated. Other directives include: #unroll, which controls the
loop unrolling; #datatype, which specifies the type (real or
complex) of the data to be manipulated; #language, that
specifies the target language; and #codetype, that specifies
whether the intrinsic type of the input vector and interme-
diate operands will be real or complex when the target lan-
guage is Fortran. When the #datatype is complex and the
#codetype is real, the complex values will be represented as
pairs of real numbers and, for each complex operation, the
compiler will generate the corresponding real operations.

To illustrate SPL, consider the formula:

Fio = (Fy ® L)T,{°(Is ® Fy)Lg°
where
Fy = (F® )15 (I ® F»)Ls
The SPL program corresponding to this formula is

(define F4
(compose
(tensor (F 2) (I 2)) (T 4 2)
(tensor (I 2)(F 2)) (L 4 2)))
#subname fftl16
(compose
(tensor F4 (I 4)) (T 16 4)
(tensor (I 4) F4) (L 16 4))

3. THECOMPILER

The SPL compiler generates a Fortran or C subroutine
for each SPL formula. The compiler proceeds in five phases:
parsing, intermediate code generation, intermediate code re-
structuring, optimization, and target code generation. Each
of these phases is described below in separate subsections.

3.1 Parsing

The parser translates each SPL formula into an abstract
syntax tree (AST) containing matrix operations and matri-
ces. The AST is binary. N-ary formulas such as (compose
A1 ... An) are associated right-to-left. Nested expressions
must be used in order to specify a different association order.

3.2 Intermediate Code Generation

All SPL operations have to be defined using templates.
Templates for pre-defined operations, such as those corre-
sponding to the parameterize matrices and matrix opera-
tions mentioned in Section 2.2, are placed in a start-up file
that is read by the compiler before reading the source SPL
program. Only when the formula matches a template does
the compiler know the meaning of the formula and can gen-
erate code for it. This approach provides great flexibility and
extensibility. New parameterized matrices and new matrix
operations can be easily added using templates.

A template consists of: a pattern, a condition, and an in-
termediate code (or i-code) sequence. If an SPL formula
matches the pattern and satisfies the condition, then the
SPL formula can be translated into the intermediate code
specified by the template. Matching is attempted in the
reverse order of definition so that new templates override
earlier ones and in particular override pre-defined templates
that are processed by the SPL compiler as if they were de-
fined at the beginning of the program.

The pattern is an SPL formula that can contain pattern
variables. All pattern variables end with an underscore (_).
Pattern variables that start with a lower-case letter can
match any integer constant and those that start with an
upper-case letter can only match SPL formulas. For exam-
ple, the pattern (I n.) matches (I 1) or (I 2); and the
pattern (compose X_ Y.) matches (compose (F 2)(I 3))
or (compose (compose A B) (tensor (I 2) C)), where A,
B and C are defined symbols representing formulas. Pattern
variables can not match undefined symbols. For example,
although the pattern (I n) can match (I 2), (I 4), and
so on, it can not match a generic (I m). This limitation
is consistent with the fact that SPL is designed to describe
fixed-size computations.

The condition of a template is a C-style boolean expres-
sion, enclosed by brackets. For instance, a pattern (L m_
n_) with condition [ m_==2*n_ ] will match the formula (L
4 2), but not (L 4 1). Here m_ and n_ matches 4 and 2,
respectively. The condition is optional.

I-code instructions are Fortran-style “do” loop headers,
“end do” statements, or four-tuples containing an operator
and up to three operands. Operators are mainly arithmetic
operations, such as +, -, * / and assignment. Operands
can be constants, pattern variables, scalar variables, vec-
tor variables, or intrinsic functions. If a pattern variable
matches an SPL formula, properties of the formula repre-
sented as “components” of the pattern variable can be used
as scalar values. For example, if A_ is a pattern variable,
then A_.in_size is the size of the input vector of the formula
represented by A_. Similarly, A_.out_size is the size of the
output vector. Scalar variables can be loop indices (named
$i0, $i1, ...), integer variables (named $r0, $ri1, ...), and
floating point or complex variables (named $£0, $£1, ...).
Vector variables can be the input vector $in, output vector
$out, or temporary vectors (named $t0, $t1, ...). The sub-
scripts of vector variables are always linear combinations of



loop indices with integer coefficients. Intrinsic functions are
parameterized scalar function. For example, W(n,k) is an
intrinsic function which returns the value w®. Here n and k
can be scalar constants or variables.

An example template is the following definition of the
semantics of (F n_):

(template (F n_) [n_>0]
(do $i0 = 0,n_-1
$out ($i0) = 0
do $i1 = 0,n_-1
$r0 = $i0 * $i1
$£0 = W(n_ $r0) * $in($il)
$out ($i0) = $out($i0) + $£0
end
end))

Each template has six implicit parameters: $in, $out,

$in_stride, $out_stride, $in_offset and $out_offset, which

represent the input vector, the output vector, and the strides
and offsets to access each of these vectors (these values were
assumed to be 1 in this example to make the code easier to
understand). Furthermore, the size of the input and output
vectors, $in_size and $out_size respectively, is inferred by
the SPL compiler from the template.

Templates can be applied recursively. For example, the
following template defines the compose operation.

(template (compose A_ B_))
[ A_.in_size == B_.out_size ]
( B_( $in, $t0, 0, 0, 1, 1)
A_( $t0, $out, 0, 0, 1, 1)))

Here, pattern variables A_ and B_ are followed by a list
of parameters to be used during expansion of the formula
represented by the pattern variable. The formula (compose
(I 2)(F 2)) will match this template with A_.=(I 2) and
B_=(F 2). The i-code sequence contains pattern variables,
so the compiler tries to find templates which match the sub-
formulas (I 2) and (F 2), replacing the two pattern vari-
ables and their parameters with the code generated from the
sub-formulas. The first parameter of the pattern variables,
$in in the first instruction and $t0 in the second, will be
used as the value of $in in the matching template. The sec-
ond parameter will be used as the value of $out. The other
four parameters correspond to the offsets and strides for the
input and output vectors. In this case, the offsets are always
zero, and the strides are always one.

The pattern can be as elaborate as any SPL formula.
Thus, code generation strategies can be defined for all for-
mula patterns regardless of their complexity. By using the
appropriate template, it is possible to reproduce the effect
of some compiler optimizations.

For example, the SPL formula (compose (tensor (I 8)
A) (temsor (I 8) B)) could be translated into two consec-
utive loops using a tensor template (twice) and a compose
template. To merge these two loops into one, we can de-
fine a template which recognizes the complete formula and
generates a single loop. The effect is the same as loop fusion.

Templates can be generated by a search engine. Thus, in
a system such as SPIRAL, the search can include different
formulas, different code generation strategies, and different
optimization parameters in a uniform way.

3.3 Intermediate Code Restructuring

We discuss next three transformations that can be applied
to the i-code after it is generated by the template mecha-
nism: loop unrolling, intrinsic function evaluation, and type
transformation.

3.3.1 Loop unrolling

The presence of pattern variables in the templates may
force the use of loops in the i-code sequence. Thus, although
a loop-free i-code sequence is possible when the pattern rep-
resent a constant-size parameterized matrix such as (F 2),
loops are needed for patterns containing a variable-size term
such as (F n_). A template for (F n_) was presented in Sec-
tion 3.2.

However, after matching the pattern with a specific SPL
formula, these loop bounds become constant values. The
compiler may be directed to unroll the loops, fully or par-
tially, to reduce loop overhead and increase the number of
choices in instruction scheduling. When the loops are fully
unrolled, not only is loop control overhead eliminated but it
also becomes possible to substitute scalar variables for ar-
ray elements. The use of scalar variables tends to improve
the quality of the code generated by Fortran and C com-
pilers which are usually unable to analyze codes containing
array subscripts even if the subscripts are constants. The
downside of unrolling is the increase in code size.

In SPL, the degree of unrolling can be specified for the
whole program or for a single formula. For example, with
the command-line option “~-B 32”, all the loops in those sub-
formulas whose input vector is smaller than or equal to 32
are fully unrolled. To see how to control loop unrolling for
individual formulas, consider the following SPL program:

#datatype real

#unroll on

(define I2F2 (temsor (I 2)(F 2)))
#unroll off

#subname I64F2

(tensor (I 32) I2F2)

It generates the following Fortran sequence where the un-
rolled version of I2F2 appears as the body of the loop:

subroutine I64F2(y,x)
implicit real*8(f)
implicit integer(r)
real*8 y(128),x(128)
do i0 = 0, 31

y(4%i0+1) = x(4*i0+1) + x(4¥i0+2)

y(4%1i0+2) = x(4%i0+1) - x(4%i0+2)

y(4%i0+3) = x(4xi0+3) + x(4*i0+4)

y(4%i0+4) = x(4%i0+3) - x(4%i0+4)
end do

In the generated code, the input and output vector is named
as x and y, respectively.

3.3.2 Intrinsic function evaluation

All intrinsic functions are evaluated at compile-time. If
all the parameters of an intrinsic function are constant, the
intrinsic function invocation is replaced by its value. If one
or more of the parameters are loop indices and the others are
constant, then the compiler evaluates the intrinsic function
for all possible values of the loop indices, places these values
in a table, and replaces the intrinsic function invocation with
a reference to the table accessed through the loop indices.



Model Ultrab Origin 200 PC

CPU 333MHz Ul- | 180MHz 400MHz
traSPARC MIPS Pentium II
IIi R10000

L1 cache | 16KB/16KB | 32KB/32KB | 16KB/16KB

L2 cache | 2MB 1MB 512KB

Memory | 128MB 384MB 256MB

OS Solaris 7 IRIX64 6.5 Linux kernel

2.2.18

Compiler | Sun  Work- | MIPSpro eges 1.1.2

shop 5.0 7.3.1.1m

Table 1: Experiment platforms

3.3.3 Typetransformation

The input and output vectors of the subroutine generated
by the SPL compiler could be either real or complex. If the
type is complex and the target language is Fortran, the com-
piler could generate either complex intrinsic types or a pair
of real numbers for each occurrence of a complex scalar. The
advantage of using complex type is that the resulting code is
shorter and clearer. However, of the popular imperative lan-
guages only Fortran supports complex data type. Further-
more, in our experiments we decided to use only Fortran
codes based on real numbers because this enabled further
optimizations, such as the replacement of multiplication by
i (the square root of —1) with a swap instruction followed
by a negation instruction.

3.4 Compiler Optimizations

The SPL compiler applies constant folding, copy propa-
gation, common subexpression elimination, and dead code
elimination. These default optimizations are applied in a
single pass using a value numbering algorithm. Both scalar
variables and array elements are handled by the optimiza-
tions. Performing conventional optimizations in the SPL
compiler was necessary to improve the quality of the code
generated by the native Fortran and C compilers we used in
our experiments.

To demonstrate the effect of the optimizations applied by
the SPL compiler, we selected a set of 45 SPL formulas, and
generated three versions of Fortran code for each of them.
Figure 2 shows the normalized performance measured on the
three platforms listed in Table 1. The three versions of For-
tran code are: (1) no optimization; (2) replacing temporary
vectors with scalar variables; (3) default optimization. All
these versions are compiled by the corresponding back-end
compiler with the maximum optimization turned on. The
performance data is obtained by taking the inverse of the
execution time, and then normalizing with respect to the
performance of the version with default optimization.

The effect of default optimizations depend on the platform
and the back-end compiler. In the SPARC machine (Figure
2), replacing array elements with scalar variables improved
the performs by 60 percent, the default optimizations in-
troduced similar amount of improvement. On the Pentium
II machine, changing array elements to scalar variables did
not help much, while the default optimizations improved
the performance by a factor of two. On the MIPS machine,
however, the effect of these optimizations was insignificant.
It means the MIPSpro compiler did a good job in standard
optimizations.
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Figure 2: Effect of basic optimization



An additional effect of these optimizations is that they
improve the readability of the target code by avoiding much
of the redundant code that would be generated otherwise.

The compiler also applies two, machine-dependent, peep-
hole optimizations. One replaces unary minus operators on
double precision operands with subtraction operations or
negative constants. For example, the compiler generates
“£2=0-f1” instead of “f2=-f1” and “f2=(-7)*f1” instead
of “£2=-7+f1”. The reason is that, on SPARC systems,
arithmetic negation is a single precision instruction and it
takes at least six cycles for the floating point unit to switch
between single precision mode and double precision mode.
Another optimization declares all temporary variables as
“automatic” so they will be allocated on the stack. Many
Fortran compiler, by default, regards all variables as static.
This transformation led to significant performance improve-
ments on SPARC systems. Both of these transformations
are machine-specific and may not have a positive effect on
machines other than the SPARC.

3.5 Target Code Generation

In addition to generating code in different target lan-
guages, the SPL compiler can add stride and offset infor-
mation to the input and output vectors, so that the com-
putation can be performed and the result stored in vector
elements that are not consecutive and do not start at the
beginning of the vector. For example, if the input stride is
2, the output stride is 4 and both offsets are 1, then the
code generated for (I 2) will copy x(1), x(3) to y(1), y(5)
(suppose subscripts start from 0). The compiler also can
vectorize the resulting code by adding an outer loop to the
the code so the computation changes from A to A ® I,
where m is a parameter and A is a formula.

4. EXPERIMENTS

To evaluate the SPL compiler, we present results on code
generation of the FFT transforms Fj,:, with ¢ between 1 and
20. We used a simple search strategy in these experiments.
More elaborate strategies are possible and they may produce
codes with better performance than the codes tabulated in
this paper. However, the simple strategy we used was suf-
ficient to match the performance of the codes generated by
FFTW and demonstrate the viability of this approach.

Our search strategy proceeded by first searching for a good
implementation for small-size transforms, 2 to 64, and then
searching for a good implementation for larger size trans-
forms that use the small-size results as basic computation
modules. For the small sizes, we used dynamic programming
over all possible factorizations using Equation 10 (Section
2.1) and, for each size, we selected the factorization with
the lowest execution time. For larger sizes, we also used dy-
namic programming over the factorization obtained by using
the equation

Frs = (Fr & IS)T.:S(IT & FS)L:S

with the restriction that r < 64. The formula was applied
recursively to F, until s < 64. In the case of large-size
FFTs the dynamic programming algorithm kept the three
best results at each stage instead of just one as is usually
done. To generate code for large size FFTs, templates for
F., 2 < r < 64, were created using for the intermediate
code component the outcome of the search for small-size

transforms. The reason we chose this strategy is that it
parallels the strategy followed by FFTW.

The experiments were carried out on the same platforms
as described in Table 1. In the rest of this section, we first
present the performance results for small-size transforms,
then the results for larger sizes. In each case, we compare
performance with FFTW.

4.1 Small SizeFFTs

For small-size problems, after some trial and error, we
found that it is usually better to generate straight-line code
because loop control overhead is eliminated and all the tem-
porary variables can be scalars. Using scalars enables the
back-end compiler to do a better optimization job. Further-
more, for small-size transforms, code size does not affect
performance.

For a given FFT size, the number of operations gener-
ated by the compiler is fixed, and the performance depends
exclusively on factors such as register allocation, memory
access pattern, and instruction scheduling. These factors
are influenced by the order in which the instructions appear
in the source program. We found this order to be an impor-
tant factor despite the fact that optimizing compilers are
supposed to do instruction reordering. In the experiments
reported here, the different computation orders were exclu-
sively the result of using different formulas. For example,
the following two formulas are different factorizations of Fy:

; common definition
(define F4
(compose (temnsor (F 2)(I 2) (T 4 2)
(tensor (I 2)(F 2)) (L 4 2))))

; formula-1
(compose (tensor (F 2)(I 4)) (T 8 4)
(tensor (I 2) F4) (L 8 2))

; formula-2
(compose (tensor F4 (I 2)) (T 8 2)
(tensor (I 4)(F 2)) (L 8 4))

The corresponding Fortran code using complex arithmetics
perform the same computations but in different order:

; formula-1 ; formula-2

f0 = x(1) + x(5) f0 = x(1) + x(5)
f1 = x(1) - x(5) f1 = x(1) - x(5)
£f2 = x(3) + x(7) £f2 = x(2) + x(8)
£3 = x(3) - x(7) £3 = x(2) - x(6)
f4 = (0,-1)*£3 f4 = x(3) + x(7)
f5 = f0 + £2 £5 = x(3) - x(7)
6 = £f0 - £2 £6 = x(4) + x(8)
f7 = f1 + f4 £7 = x(4) - x(8)
f8 = f1 - f4 £f8 = (0.7,-0.7)*£3
f9 = x(2) + x(6) f9 = (0,-1) * £5
£10 = x(2) - x(6) £10 = (-0.7,-0.7)*£f7
f11 = x(4) + x(8) f11 = fO + f4

f12 = x(4) - x(8) f12 = fO - f4

£13 = (0,-1)*f12 £f13 = f2 + f6

f14 = f9 + f11 f14 = f2 - f6

f15 = f9 - f11 f15 = (0,-1)*f14
f16 = f10 + f13 y(1) = f11 + £13
£f17 = £10 - f13 y(5) = f11 - £13
f18 = (0.7,-0.7)*£f16 y(3) = £f12 + £f15

£19 = (0,-1) * f15 y(7) = f12 - £15
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Figure 3: Performance for small-size FFTs)

£20 = (-0.7,-0.7)*f17 £20 = f1 + £9
y(1) = £f5 + f14 £21 = f1 - £9
y(5) = £f5 - f14 £22 = £8 + £10
y(2) = £f7 + £18 £23 = £8 - £10
y(6) = £f7 - £18 £24 = (0,-1)*£23
y(3) = £f6 + £19 y(2) = £20 + £22
y(7) = £6 - £19 y(6) = £20 - £22
y(4) = £8 + £20 y(4) = £21 + f24
y(8) = £8 - £20 y(8) = f21 - f24

For FFTs of size 2, 4, 8, 16, 32, and 64, dynamic pro-
gramming was used on the formulas generated by Equation
10. Each formula was passed to the SPL compiler with the
unrolling flag turned on to enforce the generation of straight-
line (loop free) code.

We compared with the performance of the FFTW codelets,
a set of optimized straight-line code for small-size FFTs.
These codelets accept two parameters, “istride” and “ostride”,
which are used to control the access to the input and output
vectors. For each codelet, we measured the performance of
the original code and of a modified version involving fewer
instructions because it assumes that the stride is always 1.
The modified version was expected to be faster because it
contains fewer instructions. However, this was not always
true. On the SPARC machine, the modified version per-
formed no better than the original version and, in some
cases, it was much slower. One explanation is that stride
computations are integer operations that can be executed
in parallel with floating point operations and removing the
stride does not necessarily reduce execution time. Variabil-
ity caused by scheduling strategies probably account for the
slowdown.

Figure 3 compares the performance of the code generated
by the SPL compiler for small size FFT's after performing the
search described above with the performance of the FFTW
codelets. The performance is measured in terms of “pseudo
MFlops”, which is a value calculated by using the equation
M7 where N is the size of FFT and ¢ is the execution
time in microseconds. The performance of the codes gener-
ated by the SPL compiler is very close to the performance
of the FFTW codelets.

4.2 LargeSizeFFTs

We decided to use straight-line code only for FFT sizes less
than 64 in part to parallel FF'TW but also because straight-
line code for FFT sizes greater than 64 do not fit in the
cache of the SPARC we used in our experiments.

For FFT sizes larger than 64, we factored the formula
into FFTs of size 2, 4, 8, 16, 32, or 64, and implemented the
computation using loops containing the straight-line codes
generated for the small-size FFTs as discussed above. We
used the best program resulting from the previous search
under the assumption that a good formula for small size
FFTs also could be a good sub-formula for larger size FFTs.
It is possible we could have missed the actual best formula
but following this approach significantly reduced the search
space and made the search for large-size FFTs possible.

In this experiment, the search space was restricted to bi-
nary Cooley-Tukey style factorization, as expressed in Equa-
tion 5 (Section 2.1), and to right-most factorization. This
means that when a FFT of size N is factored into two sub-
FFTs of size N1 and N2, the sub-FFT of size N; will not
be factored further. Only the second sub-FFT could be
factored again. Again, this decision paralleled FFTW and
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reduced the size of the search space.

The search strategy we used for large-size FFTs is a mod-
ified version of dynamic programming. Ordinary dynamic
programming keeps the best result for each size. Our ver-
sion keeps the three best results for each size. This strategy
increases the chance of finding the best formulas because
the best formula for one size is not necessarily also the best
sub-formula for a larger size.

In FFTW, large-size FFTs are computed recursively us-
ing three components: the planner, the executor, and the
codelets. The planner searches for an optimal factorization
at run-time using dynamic programming. This factoriza-
tion, called a plan, is then interpreted by the executor. The
executor calls to the codelets in the order specified by the
plan. FFTW also has an option to select plan by “estimat-
ing” instead of measuring the execution time. This option
saves time and memory.

The performance results for FFT of size 27 to 2% are
shown in Figure 4. One line (labeled “SPL”) represents the
performance of the loop code generated by SPL compiler, a
second line (labeled “FFTW?”) represents the performance
of FFTW when the the plan is chosen by measuring the ex-
ecution time, and a third line (labeled “FFTW estimate”)
represents the performance of FFTW when the plan is cho-
sen using estimation. The time for planning in FFTW was
excluded from the measurement.

As was the case for small-size FFTs, the performance of
the code generated by the SPL compiler is similar to the
performance of FFTW.

In addition to the performance, we also measured mem-
ory requirements. Figure 5 shows that the memory required
to run the code generated by the SPL compiler is similar to
the memory required by “FFTW estimate”. More memory
is required for FFTW to find a plan by measuring the exe-
cution time. However, this is not a significant issue, because
in FFTW one can save the plan to a file and re-use it in later
sessions.

An interesting observation of the performance curves in
Figure 4 is that there are two large drops in each graph. For
example, for the SPARC machine, they happened at size 2°
and 2. By analyzing the size of individual segments of the
executables, we found out that the drops are related to the
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data cache. The size of data segment exceeded L1 cache
limit (16KB) when the problem size reached 2°, and ex-
ceeded L2 cache limit (2MB) when the problem size reached
2'¢. The next limitation would be the physical memory size.
Our SPARC machine has 128MB memory, about 90MB of
which can be used to run a specific program. For this rea-
son, from size 22! to size 222 we expect to see another per-
formance drop. The curves of the other two machines have
similar shapes.

It is not surprising that our loop code matched the perfor-
mance of FFTW’s recursive code. Our loop code was gener-
ated by applying recursive factorization rules and hence fol-
lowed the same computation order and data access pattern
of the recursive code used by FFTW. One possible drawback
of the loop code is that code size may increase faster than
recursive code because recursive code can re-use “codelets”
while loop code has to duplicate them. Our analysis, how-
ever, showed that the increase of code size was very slow.
The size of the text segment of the loop code for size 2%°
was only 50 percent larger than that of size 27.

Finally, we measured the accuracy of the computation rep-
resented by these code by using the package benchfft [4].
Figure 6 shows the relative error of FF'T of each size.

5. RELATED WORK

Our approach is similar to that used by FFTW [5, 6].
However, FFTW is specific to the FFT. Since the algorithm
and implementation are mixed in the package, it’s not easy
to extend the ability to other algorithms. A recent work
by [17] showed how to modify FFTW to support discrete
cosine transform. However, doing this requires a good un-
derstanding of the internal mechanism of FFTW, especially
the compiler that generates the codelets. This requirement
is too much for an ordinary user. Our use of SPL allows
us to implement and optimize a far more general set of
programs. FFTW also utilizes a special purpose compiler.
However, their compiler is based on built-in code sequences
for a fixed set of FFT algorithms and is used for generating
only codelets. FFTW uses runtime dynamic programming
to search for efficient implementations, while our approach
performs search at compile-time and allows more flexible
selection of search algorithm and search space.

Similar to the work in FFTW is the package described in
[11] for computing the Walsh-Hadamard transform (WHT).
This work is closer in spirit to the work in this paper in that
the different algorithms considered are expressed mathemat-
ically and the search is carried out over a space of formulas.
Similar to FF'TW, the WHT package is restricted to a spe-
cific transform, and a code generator restricted to the WHT
is used rather than a compiler.

Another closely related work is EXTENT (3], which uses
tensor product to represent block recursive algorithms and
uses a translator to generate programs in high-level lan-
guages. Our work differs from EXTENT in several way:
at first, we provide a language for describing algorithms,
while in EXTENT an “application subsystem” has to be
added for every algorithm. Secondly, our use of templates
enable us to extend the algorithm defining language and to
change the code generation strategy without modifying the
system; while in EXTENT, code generation is built into the
translator so that it doesn’t have this flexibility; thirdly, in
EXTENT performance data is fed back to the user for man-
ual performance tuning; while we use search to automate
the tuning procedure.

Also related to our approach is the ATLAS project, whose
goal is portable high performance implementation of the
Basic Linear Algebra Subroutines (BLAS) [18]. They iso-
late machine specific operations to several routines that deal
with performing optimized on-chip, cache contained matrix
multiply. General matrix multiply is built from these basic
routines. The basic routines are created by a code generator
that searches for the correct blocking and loop unrolling fac-
tors based on timing information. PHiPAC[2] presents some
guidelines for writing compiler friendly high performance C
programs and makes use of code generators to create spe-
cial purpose (for matrix multiply) C code that follows these
guidelines. Their code generators are parameterized so that
they can tune performance by searching over these parame-
ters. Our work differs from theirs in that they are focusing
on general linear algebra routines, while we are interested
in different signal transform algorithms. Furthermore, their
code generators are hand-coded, while we can automate the
entire procedure through the use of a domain-specific lan-
guage and compiler.

We use compile-time search to find optimal implementa-
tions. Kisuki and Knijnenberg [12] presented similar ideas
using the term “iterative compilation”. They experimented
with loop tiling, loop unrolling and array padding with dif-
ferent parameters, as well as different search algorithms.
Their results appear to be good compared with static se-
lection algorithms. One difference between their work and
ours is that we allow a wider range of search objects because,
in addition to compiler options, input programs can be in
the search space.

6. CONCLUSIONS

We have presented a domain-specific language, SPL, and
compiler for representing and implementing signal process-
ing algorithms. The SPL compiler applies several optimiza-
tions and transformations and is extensible in that new oper-
ators and their semantics can be introduced using a pattern
matching mechanism and templates. When the compiler is
combined with an algorithm generator and a search engine,
as is the case in SPIRAL, it is possible to automatically
search for optimal implementations. This paper shows that



when the compiler is incorporated into a search of FFT fac-
torizations, it produces library routines that are competitive
in their performance with those generated by FFTW. The
SPL compiler, however, is more general in that it can gener-
ate libraries not only for FFT computations, as is the case
with FFTW, but also for many other classes of algorithms.
The results presented in the paper illustrate the power of
domain-specific languages and compilers. By focusing on a
particular domain, the process of generating highly-tuned
code can be automated to a degree that is not possible in
more general contexts, at least with today’s technology. The
signal processing domain is particularly attractive because
of the many applications of signal processing algorithms and
the degree of interest that exist today in these applications.
However, signal processing is not necessarily better suited
for an approach like the one discussed in this paper than
other problem domains. It is likely, therefore, that we will
see many more domain-specific projects in other areas in the
near future.
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