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Abstract. This paper reports on an FPGA implementation of sparse
LU decomposition. The resulting special purpose hardware is geared to-
wards power system problems - load flow computation - which are typ-
ically solved iteratively using Newton Raphson. The key step in this
process, which takes approximately 85% of the computation time, is the
solution of sparse linear systems arising from the Jacobian matrices that
occur in each iteration of Newton Raphson. Current state-of-the-art soft-
ware packages, such as UMFPACK and SuperLU, running on general
purpose processors perform suboptimally on these problems due to poor
utilization of the floating point hardware (typically 1 to 4% efficiency).
Our LU hardware, using a special purpose data path and cache, de-
signed to keep the floating point hardware busy, achieves an efficiency
of 60% and higher. This improved efficiency provides an order of mag-
nitude speedup when compared to a software solution using UMFPACK
running on general purpose processors.
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1 Introduction

The goal of this work is to investigate the implementation of application specific
hardware on an FPGA designed to compute the lower/upper triangular (LU)
decomposition of sparse matrices arising from the Load Flow calculation of power
systems. Load flow is an essential part of power system market and contingency
analysis where 85% of the compute time is devoted to solving sparse linear
systems [1].

Sparse matrices are ubiquitous in scientific calculations when modeling sys-
tems with a large number of variables with limited coupling. In the electric power
grid computations, direct methods for solving large sparse system equations
such as Lower/Upper triangular (LU) decomposition are preferred over iterative
methods which suffer from convergence issues. However, our benchmark studies
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show that high performance sparse linear solver software can fail to effectively
utilize the available floating point computational throughput on general purpose
processors due to data structure overhead and poor data locality [1].

We propose the use of application specific hardware implemented on an
FPGA as a method to address the specific computational needs of sparse di-
rect LU decomposition. Our design is based on an empirical study of benchmark
power system matrices and their behavior during sparse LU decomposition.

The use of field programmable gate arrays (FPGAs) for high performance
floating point scientific computing competitive with high performance general
purpose processors has been previously reported [2-7]. Previous work on sparse
matrix computations implemented on an FPGA include [5, 6], where sparse ma-
trix vector multiplication is explored, and [8] which utilizes parallel soft-core
processing. In contrast, the implementation of an application specific sparse
direct LU decomposition hardware design on FPGA has not been previously
attempted.

In this paper we present the design and prototype implementation of sparse
direct LU decomposition hardware on FPGA, comparing performance to a gen-
eral purpose processor based platform. Our results show that despite more than
an order of magnitude deficit in clock speed as compared to general purpose pro-
cessors, specialized sparse LU hardware running on an FPGA is capable of an
order of magnitude speedup in computation time relative to high performance
sparse linear solver packages.

In the next section we review the electric power flow computation which pro-
vides us with practical data used to develop high-performance custom hardware.
In Section 3 we will review the sparse LU algorithm used in this implementation
We present the hardware design in Section 4 and the results of performance
evaluation in Section 5.

2 Power Flow Computation

Power flow is the calculation of the complex voltages and powers for a power
system network to model the steady state of the system. In this analysis the
power system is modeled as a set of nodes, also called buses, interconnected by
transmission links, also called branches. The bus admittance matrix, or Ybus,
is a mathematical representation of the power system based on Kirchoff’s cur-
rent law. Since the interconnectivity of a typical power system is less than four
branches per bus, the Ybus matrix is very sparse for larger systems.

The real (P) and imaginary power (Q) for the ith bus in the power system
can be calculated as

Pi(z) = Z [Vi| [Vk| [Gir cos(8; — Ok) + By sin(6; — 6)]
k=1
n (1)
QZ(LL') = Z ‘V;| ‘Vkl [sz sin(&i — Qk) — Bik COS(QZ‘ — Qk)]
k=1
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Where G;i represents the real part of the ik entry in the Ybus and B
represents the complex part. V; and 6; represent the complex voltage magni-
tude and phase angle at a particular bus in the system. x is the state vector
whose elements are the voltage magnitudes and phase angles at the buses in the
transmission power grid.

The solution of the equations (1) can be calculated by using the Newton-
Raphson method. The Newton-Raphson method utilizes successive refinements
to an initial guess and converges quadratically to a solution.

JV.AxY = —f(xV) (2)

The Jacobian matrix, JV, and the power mismatch vectors, AxY in equa-
tion (2), are updated during iteration based on the current solution vector. The
repeated solution of the sparse Jacobian matrix can be calculated by LU decom-
position.

During the operation of an electric grid, the power flow computation is con-
stantly performed in conjunction with contingency and economic analysis. For
each contingency, the grid is assumed to have a fault and power flow is calcu-
lated to determine if the fault will cause instability or black out. The number of
faults considered for practical operation of a grid demands significant computing
resources. Previous study on power flow calculation found that roughly 85% of
the computation time is spent on LU decomposition [1,9]. A cost-effective sparse
LU hardware accelerator can provide a high-performance computing solution.

3 Sparse LU Decomposition

Lower/Upper triangular decomposition is the factorization of a matrix A into
the product of a lower triangular matrix L and an upper triangular matrix U.
For direct methods, it may be necessary to perform pivoting, the swapping of
a row/column with another, in order to maintain numerical stability as well as
accuracy in the solution. In these cases one or more permutation matrices, P for
row and Q for column pivoting, are also included as part of the solution.

PAQ(Q"z) = LUz = PB (3)

With the upper, lower, and permutation matrices for a given system of linear
equations, the solution x can be obtained by forward and backward substitution.

The LU decomposition of a matrix can be computed by iterative methods
such as conjugate-gradient, or by direct methods such as Gaussian elimination.
Iterative sparse LU solvers suffer from convergence issues with power flow [10],
which restricts our focus to direct algorithms.

Direct LU solvers for dense matrices, require O(n?) floating point operations
for LU decomposition. Sparse matrices on the other hand can benefit from algo-
rithms that reduce the number of operations required to calculate the solution.
Unlike dense methods which follow a regular computation pattern though, sparse
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methods suffer from irregular computation patterns that are dependent on the
non-zero structure of the matrix.

Based on empirical study on the power grid data and power flow calculation
we reported that sparse LU decomposition requires roughly O(n'#) floating
point operations [1], given a suitable matrix ordering, for the type of sparse
matrices encountered in power flow. Properties for some of the power system
matrices studied in [1] are given in Table 1. Suitable pre-ordering of the matrix
is required to prevent large amounts of fill-in which can degrade the performance
of sparse LU solvers. For the power flow computation, the pre-ordering compu-
tation time can be amortized over multiple contingencies of the same power
system matrix. Our results include the use of the approximate minimum degree
(AMD) ordering algorithm [11] computed in software prior to LU decomposition
in hardware.

Table 1. Sparse Matrix Properties

Number of Post-LU Reported Floating Point
System  Matrix Size Non-Zeros Sparsity Sparsity MFlops Efficiency
1648 Bus 2,982 21,196 0.24 % 0.51 % 41.20 1.29 %
7917 Bus 14,508 105,522 0.05% 011 % 39.25 1.23 %
10278 Bus 19,285 134,621  0.036 % 0.079 % 27.57 0.86 %

Benchmark system results from 3.2 GHz Pentium 4
Running UMFPACK 5.2.0 with ATLAS 3.8.0

4 Sparse LU Hardware Design

Our FPGA based sparse LU hardware implements a row-wise, right-looking
method of Gaussian elimination with row partial pivoting. To maximize perfor-
mance, the design of the sparse LU hardware focuses on maintaining regular
computation and memory access patterns that are parallel and fully pipelined
wherever possible. Synchronous First-In-First-Out buffers implemented with em-
bedded memory blocks are used for high speed buffering of data words through-
out the pipelined design. A separate column-oriented mapping (colmap) of the
non-zero structure of the matrix reduces pivot search from O(n?) to O(n) time.
The empirical study of power system matrices in [1] provides parameters for the
hardware design such as cache line size, total cache size, and buffer depths, min-
imizing the need to handle more general cases and error conditions with extra
logic.

A high level diagram of the sparse LU hardware implementation and basic
data flow is depicted in Figure 1. The design of the hardware can be broken down
into four main partitions. A central control, implemented as a state machine,
tracks the progress of the functional units to ensure synchronized operation. The
pivot logic and sub-matrix update logic implement the necessary computations
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required for sparse LU decomposition. The last partition, cache, handles sparse
matrix data retrieval and storage for the pivot search and sub-matrix update.

| CONTROL |

------------- R et L L EE P EE L P EE TR

[ coLmaP |ii[ MERGE |

‘[ swap |ii[ Divibe | [ResuLT |

Pivot Logic Sub-matrix Update Logic

Fig. 1. Top Level Sparse LU Hardware Block Diagram

Not shown are the external memory interfaces to the Sparse LU Hardware,
which depend on the FPGA prototype board used for implementation. Our
design assumes independent memory banks for the units which require access to
external memory such as SDRAM. The colmap utilizes one memory interface to
store a column-wise representation of the sparse matrix structure for fast pivot
search capability. The cache utilizes another memory interface to store a row-
wise representation of the sparse matrix in compressed form. Having two separate
memory banks and controllers allow concurrent operation for the colmap and
cache units.

A detailed diagram of the pivot search logic and the submatrix update logic
is depicted in Figure 2. The logic to perform the pivot search consists of three
units, referred to as colmap, swap, and pivot. The pivot selection algorithm
used in the hardware design is row partial pivoting based solely on numerical
criteria and does not perform any analysis for potential fill-in reduction. The
pivot logic performs a search, element by element, of the current column for
the LU decomposition. The highest magnitude element is selected as the pivot
element.

The colmap unit first performs a burst read of the column-wise matrix
representation to form the pivot column. The swap unit maintains a mapping
of the pivoting operations that have occurred. This is used to reject candidate
rows from the colmap which have already been eliminated. Rows which are not
rejected are sent to the cache read queue as single word read requests. The
pivot unit compares pivot column values returned from cache, selecting the
element with the highest floating point magnitude as the pivot element. Once
the exhaustive search of the pivot column is complete the swap unit updates the
row mappings and the sub-matrix update can begin.

The sub-matrix update logic has two main computations, the normalization
of the pivot column by the pivot element, followed by a reduction of the re-
maining sub-matrix by the product of the pivot row and the pivot column. The
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filter unit feeds the pivot column elements to the divide unit to be normalized.
The mer_mem unit handles cache requests and schedules computation for row
updates by the merge unit(s). The result unit records the pivot element, pivot
row, and normalized pivot column as parts of the final L and U matrices.
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Fig. 2. Pivot and Sub-matrix Update Logic

The merge unit performs three tasks in a streaming parallel fashion which
make up the bulk of computation. The first is calculating the product of the pivot
row and an element of the normalized pivot column. The second is a comparison
of the pivot row indices to the sub-matrix row indices to determine the non-zero
structure of the reduced row. Finally, the scaled pivot row and sub-matrix row
are merged into the new non-zero structure as operands to the floating point
addition unit. Additional parallelism is possible by increasing the bandwidth
to the cache and instantiating multiple merge units to allow row reductions in
parallel.

The use of a memory hierarchy consisting of one or more levels of cache has
been used for quite some time in order to address the growing disparity between
memory performance and the performance of high speed logic. The use of a cache
for our FPGA based Sparse LU Hardware is two fold. The first is to reduce the
latency of memory read operations and therefor idle cycles where computations
could occur. The second reason, and perhaps most important, is to supply the
merge unit with enough scalable read/write bandwidth for high performance.

A detailed diagram of the special purpose cache is depicted in Figure 3. The
cache design is single level and utilizes the embedded FPGA memory blocks for
cache data storage and tag data arrays. The cache policy is write-back with read
miss allocation and a modified First-In-First-Out (FIFO) replacement policy.
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The cache is fully associative and stores entire compressed matrix rows to allow
high speed constant burst read/write operations. The tag array logic uses content
addressable memory (CAM) functionality based on [12] to look up a cache line
from a matrix row number. Additional logic guarantees that no rows in-process
will be replaced and all writes will be a cache hit.
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Fig. 3. Special Purpose Cache

This cache is an example of where the reconfigurable nature of the FPGA
can allow application specific design for performance enhancements tailored to
a specific algorithms data access requirements. Simulation results show that our
cache design results in a row read hit rate of ~85% (word read hit rate over 90%)
including compulsory misses; all row writes are hits as previously mentioned.

5 Sparse LU Hardware Performance

In order to evaluate the performance of our hardware design, a prototype was
implemented, a scalable performance model written, and performance compared
to state-of-the-art sparse linear solver packages on matrices used in power system
analysis [13].

To provide a valid reference for the performance of our hardware design,
several state of the art linear solver packages were tested for their performance
using a system based on a general purpose microprocessor [1]. Data for 1648,
7917, and 10279 bus systems (see Table 1 and [1]) was used. Three state of the
art solvers were tested as packaged, UMFPACK [14], SuperLU [15], and WSMP
[16]. For the LU decomposition of our benchmark matrices, UMFPACK pro-
vided the best solve times so it was chosen to be the reference for comparisons
to the performance of the Sparse LU Hardware. Due to the size and structure
of the power system matrices, parallel solvers did not perform as well as sequen-
tial the sequential packages. In our performance calculations we used the CPU
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time reported by UMFPACK 5.2.0 for numerical solve running on an Intel Pen-
tium 4 3.2 GHz system. It should also be noted that the pre-ordering used by
UMFPACK is the same ordering used for our Sparse LU Hardware.

The Sparse LU hardware was first implemented using SBS Technologies
Tsunami PCI board containing of an Altera 1525 FPGA, IMB ZBT SRAM,
256MB SDRAM, and running at 50 MHz capable of operating on the 1648 Bus
and smaller systems. The number of clock cycles required to perform the LU
decomposition for the FPGA based hardware was measured using a hardware
counter that increments every clock cycle during LU decomposition. This hard-
ware cycle count is used to verify the accuracy of the software performance model
for the Sparse LU architecture. Table 2 details the FPGA resource usage for the
Sparse LU Hardware in configurations of 1 and 2 merge units.

Table 2. Sparse LU Hardware Resource Utilization

Logic Memory DSP

Elements (Kb) Blocks
Single Merge 15,274 1,503 42
Dual Merge 22,165 1,606 50

To gauge the practicality of a FPGA based accelerator for sparse LU de-
composition of power system matrices, analysis of the data transfer time was
performed. Figure 4 illustrates the time required to transfer all necessary data
to the FPGA relative to the numerical solve time on Pentium 4 running UMF-
PACK. Three typical interconnections are compared by using the bandwidth
rates of PCI, PCI-X, and HyperTransport. These results show that given a high
speed interconnect, the data transfer cost would not be a significant bottleneck
relative to the calculation time.

12.00% 12.00%
11.00% 11.00%
10.00% 10.00%
9.00% 9.00%
8.00% 8.00%
7.00% 1 w1648 Bus 7.00% 1648 Bus
6.00% m7917 Bus 6.00% 87917 Bus
5.00% m10278 Bus 5.00% 10278 Bus
4.00% 4.00%
3.00% 3.00%
2.00% 2.00%
1.00% 1.00%
0.00% 0.00%
0.133GB/s 1GB/s 1.6 GB/s 0.133GB/s 1GBis 1.6 GB/s
(a) Matrix to FPGA (b) Result to CPU

Fig. 4. Data Transfer Relative to Benchmark System Solve Time

The performance model of the LU hardware was written to project perfor-
mance on larger systems and to determine the impact of design changes. Based
on hardware parameters such as latency and cache size, the model reports the
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expected number of clock cycles for LU decomposition. The model successfully
projects the performance to within 95% of the actual results of the hardware
prototype.

Figure 5 compares the projected performance, with varying clock speeds and
number of merge units, of the LU hardware versus the run time of UMFPACK
[14] running on a Pentium 4 (3.2 GHz) benchmark system. To confirm the pro-
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Fig. 5. Performance of Sparse LU Hardware Relative to Benchmark System

jected speedup, we are porting the LU hardware design to a Xilinx Virtex 4
LX200 FPGA which is capable of holding the larger systems, multiple merge
units, and running at higher frequencies.

6 Conclusion

Our results show that the sparse LU decomposition hardware design imple-
mented on an FPGA is capable of an order of magnitude speedup relative to the
Pentium 4 based benchmark system. This result highlights the practical use of
FPGAs for high performance sparse direct LU decomposition.
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