
An Investigation of Cooley�Tukey Decompositions for the FFT

Gavin Haentjens

May ��� ����

Abstract

The goals of the research discussed in this report are to determine the impact of di�erent
Cooley�Tukey decompositions on the performance of computer programs that compute the
FFT� evaluate di�erent methods for �nding the most e�cient decompositions� and deter�
mine the characteristics of the most e�cient decompositions� Experiments are conducted
using three di�erent FFT programs and three dynamic programming �DP	 methods for
searching for e�cient decompositions� The results show that even for FFTs of sizes under

��� the runtime for the average decomposition may be up to three times the runtime for the
optimal decomposition� The results also show that a basic implementation of DP performs
as well as an exhaustive search at �nding fast decompositions for FFTs of sizes up to
���
and that the simple DP performs as well as two more sophisticated versions of DP for FFT
sizes up to
��� Furthermore� the results show that for an out�of�place implementation of
the FFT� right�expanded decompositions are optimal because they require memory storage
only for the input and output data arrays� whereas other decompositions require additional
temporary storage� Moreover� the results show that for an in�place implementation of the
FFT� balanced decompositions are optimal if the algorithm is iterative� and right�expanded
decompositions are optimal if the algorithm is recursive�

i

Acknowledgements

I would like to thank Prof� Jos�e M� F� Moura� Prof� Jeremy Johnson� Dr� Markus P�uschel�
and David Sepiashvili for all of their assistance� This research was funded by the Defense
Advanced Research Projects Agency �DARPA	�

ii

Contents

� Introduction �

�
 Nature of the problem �

�
�
 Cooley�Tukey Decompositions �

�
�
 Multitude of Decompositions for a Given Size FFT � � � � � � � � � � �

�
 The Cooley�Tukey FFT Algorithm �

�
�
 The Tensor Product �

�
�
 DFT Matrices �

�
�� Twiddle Factor Matrices �

�
�� Stride Permutation Matrices �

�
�� Tensor Product Formulation of the Cooley�Tukey FFT Algorithm � �

�
�� Arithmetic Cost �

�� Research Goals �

� Searching for E�cient Cooley�Tukey Decompositions ��

�
 Introduction �
�

�
 Methodology �
�

�
�
 An Original FFT Program �
�

�
�
 Exhaustive Search �

�
�� Dynamic Programming Search �
�

�
�� N�Best Dynamic Programming Search � � � � � � � � � � � � � � � � �
�

�
�� Stride Sensitive Dynamic Programming Search � � � � � � � � � � � �
�

�
�� Measuring Runtimes �
�

�� Results �
�

�� Conclusions �
�

� Experiments with FFTW ��

��
 Introduction �
�
��
�
 Motivation and Goals �
�
��
�
 Introduction to FFTW �
�

��
 Methodology �
�
��
�
 Modi�cations to FFTW �
�
��
�
 Modi�cation to the Stride Sensitive DP Search Strategy � � � � � � �
�
��
�� Adding a Penalty for Twiddle Nodes � � � � � � � � � � � � � � � � � � ��
��
�� Removing a Penalty for LCINL Nodes � � � � � � � � � � � � � � � � � ��
��
�� Removing All Twiddle Factor Multiplications � � � � � � � � � � � � � �

��� Results �

��� Conclusions ��

iii

� Experiments with Egner�s FFT Program �	

��
 Introduction ��
��
�
 Motivation and Goals ��
��
�
 Introduction to Egner�s Program ��

��
 Methodology �

��
�
 Improving the Order of the Twiddle Factors � � � � � � � � � � � � � � �

��
�
 Making the Program More Recursive � � � � � � � � � � � � � � � � � � ��
��
�� Adding the No�Twiddle Codelets from FFTW � � � � � � � � � � � � ��
��
�� Untransposing the Cooley�Tukey Algorithm � � � � � � � � � � � � � � ��
��
�� Adding the Twiddle Codelets from FFTW � � � � � � � � � � � � � � � ��

��� Results ��
��� Conclusions ��

 Conclusions and Future Work
�

Bibliography
�

iv

Chapter �

Introduction

��� Nature of the problem

In many areas of digital signal processing� there is great demand for highly e�cient imple�
mentations of the discrete Fourier transform �DFT	� With the advent of the Cooley�Tukey
�CT	 algorithm �
� for the fast Fourier transform �FFT	� the e�ciency of DFT imple�
mentations was increased considerably� The algorithm reduces the arithmetic cost of the
computation of a DFT of size N from O�N�	 to O�N log�N		 by recursively decomposing
the problem of size N into smaller problems that can be solved more e�ciently� However�
there are many di�erent ways to decompose a DFT� Although all of the possible decompo�
sitions have equal arithmetic cost� they vary signi�cantly in terms of data access patterns�
Therefore� since data access costs have become increasingly expensive relative to the cost
of �oating point operations on modern computer architectures� it has become increasingly
important to choose a good decomposition�

����� Cooley�Tukey Decompositions

In �
� it is shown that a DFT of size N can be computed using the following three steps�

� Compute R DFTs of size S� where N � R � S�

� Multiply the result by twiddle factors� which are N �th roots of unity�

�� Compute S DFTs of size R�

Essentially� the FFT is computed by decomposing a problem of size N into smaller problems
of size R and S� The procedure can be applied recursively� meaning that the problems of
size R and S can be further decomposed into smaller problems� as long as they are not
prime� The problems that are not further decomposed are referred to as base cases of the
recursive algorithm� The smallest possible base cases for the CT algorithm are DFTs of size
two� As shown in �
�� each time a problem of size N is decomposed into smaller problems�
there is a reduction in the number of complex additions and multiplications required to
compute the DFT� Therefore� in order to compute a DFT with minimal arithmetic cost�
the problem must be decomposed as fully as possible� To simplify matters� only DFTs of
sizes that are powers of two are considered in this report� Therefore� all of the problems
can be decomposed so that all base cases are DFTs of size two�
Cooley�Tukey decompositions are represented graphically in this report using a binary

tree structure� An example of a single tree is shown in Figure
�
� The nodes of the tree

are the circles in the �gure� The number listed in each node is an exponent that indicates
a DFT size� In this report� all lower�case letters indicate exponents with a base of two�
That is N �
n� R �
r� etc� The tree in Figure
�
 represents a DFT of size
n that is
decomposed into problems of size
r and
s� where n � r � s�

����n
� �����r ����s

Figure
�
� Tree Representation of a Cooley�Tukey Decomposition

Two important terms used when discussing the trees are parent nodes and child nodes�
If a DFT of size
n is decomposed into DFTs of size
r and
s� then the node labeled n is
the parent node and nodes labeled r and s are the child nodes� Figure
�
 illustrates the
concept of parent and child nodes� It is important to note that a decomposition with r as
the left child and s as the right child is distinct from a decomposition with s as the left
child and r as the right child� unless r � s� It is also important to note that child nodes
can also be considered parent nodes if they have children of their own�

����n�parent node
� �����r�left child node ����s � right child node

Figure
�
� Parent and Child Nodes for a Single Decomposition

Three other important terms used when discussing the trees are root node� leaf node�
and top�level decomposition� The root node is simply the node that has no parents� that is�
the node at the top of a tree� In Figure
��� the root node of each tree is the node labeled
with a �� The leaf nodes are the nodes that do not have any children� In Figure
��� the
leaf nodes are the nodes labeled with
�s� The top�level decomposition refers to the root
node of a tree and its two child nodes� Figure
�� shows two distinct decompositions that
have the same top�level decomposition� In each tree� the top�level decomposition consists
of a node labeled with a � as the parent� a node labeled with a
 as the left child� and a
node labeled with a � as the right child�

4

1 3

2 1

1 1

4

1 3

1 2

1 1

Figure
��� Two Distinct Decompositions with the Same Top�Level Decomposition

Three other important terms used when discussing the trees are left�expanded� right�
expanded� and balanced� In a left�expanded decomposition� only one of the leaf nodes is a
left�child� Simlarly� in a right�expanded decomposition� only one of the leaf nodes is a right�
child� Finally� in a balanced decomposition� the two subtrees that are children of the root
node are identical� In this report a decomposition is described to as �somewhat balanced� if
those subtrees are similar but not identical� The decomposition on the far left of Figure
��
is left�expanded� while the decomposition on the far right of the �gure is right�expanded�
and the decomposition in the center is balanced�

����� Multitude of Decompositions for a Given Size FFT

There are numerous ways to fully decompose a DFT of size
n� A DFT is �fully decomposed�
if none of the base cases can be further decomposed� In the case of a DFT of size
n� �fully
decomposed� means that all of the base cases are
�point DFTs� As shown in Figure
���
for an FFT of size
� there are �ve possible full decompositions� that is� decompositions in
which none of the base cases can be further decomposed� The number T �n	 of distinct full

4

13

12

11

4

3 1

1 2

1 1

4

2 2

1 1 1 1

4

1 3

2 1

1 1

4

1 3

1 2

1 1

Figure
��� All Possible Decompositions for an FFT of Size
�

decompositions for a DFT of size
n is given be the recurrence

T �n	 �

��
�

� n �

n��P
i��

T �i	T �n� i	� n �
�
�
�
	

This formula follows from the fact that all decompositions for an FFT of size
n can be
generated by combining all possible decompositions for an FFT of size
i as the left subtree
of the root node� with all possible decompositions for an FFT of size
n�i as the right
subtree of the root node� i �
� � � � � n�
�
It can be shown using standard methods that T �n	 is � �n

n���
	� That is� the function

�n

n���
is an asymptotically tight bound for T �n	� More speci�cally� there exist constants C��

C�� and K� such that

� � C�
�n

n���
� T �n	 � C�

�n

n���
�
�
	

for all n � K� The values of C�� C�� and K are �xed for the function T �n	 and do not
depend on n� Table
�
 lists the number of distinct decompositions for FFTs of size of
�

through
��� As shown in the table� there are over
�� distinct decompositions for an FFT
of size
���

n T �n	 n T �n	 n T �n	 n T �n	

 � �

�����
� ���������

 �
�

 ������
� ����������
�
 � �
�
�
����

�

���������
� � �
����
� ��
����
� �����������
�
�
� ����

�
��������
�
�����
���
��

Table
�
� Distinct Decompositions T �n	 for an FFT of size
n

In order to minimize arithmetic cost� all of the computer programs discussed in this
report compute FFTs using decompositions that are fully expanded� that is� all of the
FFTs are computed by decomposing the problem all the way down to two�point DFTs�
However� most of the trees that represent the algorithms used by these computer programs
have DFTs larger than two as the leaf nodes� Leaf nodes with DFTs larger than two
simply indicate that a computer program switches to unrolled code at that point in the

�

decomposition instead of continuing to make recursive function calls� The unrolled code is
highly optimized and is used to compute FFTs as large as
	 in the programs discussed in
this report� Using unrolled code is advantageous because it eliminates the overhead costs
due to recursive function calls� However� using unrolled code is not advantageous for large
size FFTs� since the code in that case is very long and competes with data for space in the
level�two cache on most modern architectures�
Although using unrolled code for small size FFTs increases the e�ciency of the FFT

computation� it also signi�cantly increases the number of distinct decompositions for a given
size FFT� Table
�
 lists the number of decompositions when the largest allowable base case
is a size
	 DFT� As shown in the table� for an FFT of size
��� there are over
��� distinct
decompositions�

n T �n	 n T �n	 n T �n	 n T �n	

 �
��

����
� ����������

 � ���

 �������
�
������������
� � �
����
� ��
������
� ��
�
������

�
� �

�

�
�
��
�
��
�
� ����
��������

� �

� �
����
� ���

�����
�
�
���
���
����

Table
�
� Distinct Decompositions When the Largest Base Case is a Size
	 FFT

��� The Cooley�Tukey FFT Algorithm

In this subsection we present the Cooley�Tukey FFT algorithm� First� some notation must
be introduced�

����� The Tensor Product

The tensor product of a matrix A of size R�S with a matrix B of sizeM�N is the matrix
of size MR�NS

A�B �

�
�����
a���B a���B � � � a��SB

a���B a���B � � � a��SB
���

���
� � �

���
aR��B aR��B � � � aR�SB

�
����	 � �
��	

It should be noted that the coarse structure of �A�B	 is determined by A while the �ne
structure is determined by B�

����� DFT Matrices

The DFT matrix of order N � denoted by FN � is de�ned as �see ���	

FN �

�
������

w���
N w���

N � � � w
��
N���
N

w���
N w���

N � � � w
��
N���
N

���
���

� � �
���

w

N�����
N w

N�����
N � � � w

N����
N���
N

�
�����	 � �
��	

wN � e�j ���N �

�

In particular we have

F� �

 �

�
� �
��	

hence y � F� �x requires only two additions� A straightforward implementation of the trans�
form y � FN �x would require O�N

�	 arithmetic operations� The Cooley�Tukey algorithm�
which we will introduce in Subsection
�
��� reduces the arithmetic cost to O�N logN	� if
N is su�ciently composite�

����� Twiddle Factor Matrices

A twiddle factor matrix TRS
S � where N � RS� is a diagonal matrix with N �th roots of unity�

called twiddle factors� on the diagonal� TRS
S is given by

TRS
S �

R��
�

K��

�
�����
w�
N

w�
N

� � �

wS��
N

�
����	
K

� �
��	

where the symbol � indicates a direct sum� As shown in Equation �
��	� many of the
exponents of the term wN are zero� resulting in twiddle factors that are one� Speci�cally�
the �rst matrix in the direct sum contains S ones� and the R �
 subsequent matrices in
the direct sum each contain a single one� Therefore� the total number of twiddle factors in
TRS
S that are equal to one is given by

W��R�S	 � S �R�
 �
��	

Since the total number of twiddle factors in TRS
S is RS� we can compute the total number

of twiddle factors in TRS
S that are not equal to one as

Wn��R�S	 � RS �W��R�S	 �
��	

� RS � S �R�
� �
��	

The term Wn��R�S	 is used later in this chapter to count the number of complex multipli�
cations required to apply TRS

S � omitting multiplications by one�

����� Stride Permutation Matrices

The action of a stride permutation matrix LRSR on an arbitrary column vector x of length
RS is to rearrange x as follows�

LRSR

�
�����

x�
x�
���

xRS

�
����	 �

�
�����
y�
y�
���
yR

�
����	 � yi �

�
�����

x��R�i
x��R�i
���

x
S����R�i

�
����	 � �
�
�	

In words� the i�th chunk of y contains the S elements of x collected at stride R� starting
with the i�th element of x� i �
� � � � � R�

�

The formula for a stride permutation matrix is the following�

LRSR �

�
�����
A�

A�
���
AR

�
����	 � Ai �

�
�����

eRS��R�i
eRS��R�i
���

eRS
S����R�i

�
����	 � �
�

	

where eRSj denotes a row vector of length RS with a one in the j�th coordinate and zeros
elsewhere� It is important to note that stride permutation matrices are not actually con�
structed in the computer programs discussed in this report� Stride permutation matrices
are only used in equations to indicate that elements in a vector are to be reordered� As
is explained later in this report� the reordering of elements is rarely done as a stand�alone
procedure� That is� when data in arrays are accessed at stride� processing is usually done on
the data immediately� instead of after the entire array is reordered� This practice eliminates
the need for an extra pass through the data� which could incur extra cache misses�
As shown in ���� if an RS�
 vector c can be represented as a tensor product of an R�

vector a with an S�
 vector b� then an elegant way to represent the action of LRSR on c is

LRSR c � LRSR �a� b	 � b� a� �
�

	

����� Tensor Product Formulation of the Cooley�Tukey FFT Algorithm

In the previous sections� the tensor product operator� and DFT� twiddle factor� and stride
permutation matrices were introduced� With these concepts in place� we now introduce
the tensor product formulation of the Cooley�Tukey FFT algorithm� As shown in ����
the Cooley�Tukey FFT algorithm for a single decomposition can be represented in tensor
product notation as

FRS � �FR � IS	T
RS
S �IR � FS	L

RS
R � �
�
�	

where IS is an identity matrix of size S � S� It is important to note that all four terms
in Equation �
�
�	 are sparse matrices� If this were not the case� then the decomposition
would not be any more e�cient than computation of the DFT by de�nition�
Two important terms in Equation �
�
�	 are �IR�FS	 and �FR� IS	� We now present

examples to illustrate what these terms represent� First consider the operation

y � �IR � FS	x� �
�
�	

where x and y are both vectors of size RS �
� The operation in Equation �
�
�	 �lls the
i�th chunk of y with the S�point DFT of the i�th chunk of x� i �
� � � � � R� Two examples
of y � �IR � FS	x are illustrated in Figure
���
Next consider the operation

y � �FR � IS	x� �
�
�	

where x and y are again vectors of size RS�
� The operation in Equation �
�
�	� �lls y at
stride S starting from element i with the R�point DFT of the elements of x taken at stride
S starting from element i� i �
� � � � � S� Two examples of y � �FR � IS	x are illustrated in
Figure
���

�

x

x�

x	

x�

x�

x�

x�

x�

�

�

�

�

�

�

�

�

F���	

F���	

F���	

F���	

�

�

�

�

�

�

�

�

y

y�

y	

y�

y�

y�

y�

y�

x

x�

x	

x�

x�

x�

x�

x�

�

�

�

�

�

�

�

�

F���	

F���	

�

�

�

�

�

�

�

�

y

y�

y	

y�

y�

y�

y�

y�

Figure
��� Left� y � �I� � F�	x� Right� y � �I� � F�	x

x

x	

x�

x�

x�

x�

x�

x�

�

�

�

�

�

�

�

�

F���	

F���	

�

�

�

�

�

�

�

�

y

y	

y�

y�

y�

y�

y�

y�

x

x�

x�

x�

x	

x�

x�

x�

�

�

�

�

�

�

�

�

F���	

F���	

F���	

F���	

�

�

�

�

�

�

�

�

y

y�

y�

y�

y	

y�

y�

y�

Figure
��� Left� y � �F� � I�	x� Right� y � �F� � I�	x

����� Arithmetic Cost

The arithmetic cost of a decomposition is the number of complex additions and multi�
plications required to compute an FFT using that decomposition� As is shown next� the
arithmetic cost of the Cooley�Tukey algorithm for an FFT of two�power size is independent
of the particular decomposition that is used� To the author�s knowledge� the following two
lemmas and proofs do not exist in the literature�
Lemma � The number A�w	 of complex additions required to compute a F�n that is fully

decomposed is independent of the decomposition and is given by

A�n	 � n �
n� �
�
�	

Proof We will prove Equation �
�
�	 using induction on n� First consider the base case
n �
� As shown in Equation �
��	� multiplication by F� requires
 �
 �

� additions� as
desired� Next we will count the number of complex additions required to compute Fn���
where n �
� using an arbitrary decomposition n �
 � �n�
 � s	 � s� where
 � s � n�
The tensor product formulation for the decomposition is given by

F�n�� � �F�n���s � I�s	T
�n��
�s �I�n���s � F�s	L

�n��

�n���s � �
�
�	

The terms in Equation �
�
�	 that involve additions are the matrices F�n���s and F�s � As
shown in the equation� the F�n���s is applied

s times� and the F�s is applied

n���s times�

Using the induction hypothesis for n �
 � s and s� we compute the number of additions
required as�

s �A�n�
� s	 �
n���s
� A�s	

�

�
s � �n�
� s	 �
n���s �
n���s
� s �
s

�
n��
� �n�
� s	 �
n��

� s

� �n�
	 �
n��

� A�n�
	�

which completes the proof�
Lemma � The number M�n	 of complex multiplications required to compute a F�n that is

fully decomposed is independent of the decomposition and is given by

M�n	 � �n�
	 �
n�� �
 �
�
�	

Proof We will again use induction on n to prove Equation �
�
�	� First we consider
the base case n �
� As shown in Equation �
��	� multiplication by F� requires � �
�
 �
	 �
� �
 multiplications� as desired� Next we will count the number of complex
multiplications required to compute Fn��� where n �
� using an arbitrary decomposition
n�
 � �n�
�s	�s� where
 � s � n� The terms in the tensor product formulation given
in Equation �
�
�	 that involve multiplications are the DFT matrices F�n���s and F�s and
the twiddle matrix T�n��

�s � As shown in the equation� the F�n���s is applied

s times� the

F�s is applied

n���s times� and the T�n��

�s is applied once� Using the induction hypothesis
for n�
� s and s� we compute the number of multiplications required as�

s �M�n�
� s	 �
n���s
�M�s	 �Wn��

n���
s	� �
�
�	

where Wn��

k���
s	 is the number of twiddle factors in T�k��

�s that are not equal to one�
given in Equation �
��	� Substituting Equation �
��	 in Equation �
�
�	� we compute the
number of multiplications required as�

s
�
�n�
� s�
	
n���s�� �

�
n���s

�
�s�
	
s�� �

�

n��
�
s �
n���s �

� �n� s�
	 �
n �
s � �s�
	 �
n �
n���s �

n��
�
s �
n���s �

� �n� �	 �
n �
n�� �

� �n� �	 �
n �
 �
n �

� �n�
	 �
n �

� �n�
�
	 �
n���� �

� M�n�
	�

which completes the proof�

��� Research Goals

The goals of this research are to answer several questions about the e�ect of Cooley�Tukey
decompositions on the performance of computer programs for computing FFTs�
Chapter
 of this report addresses the following questions�

� What guidelines should be followed to create an e�cient computer program for per�
forming FFTs!

�

� How does the run time of an e�cient FFT program vary over all possible Cooley�Tukey
decompositions for a given size FFT!

�� What is the best way to search the large space of Cooley�Tukey decompositions for
e�cient decompositions!

�� What topological features are common to the most e�cient decompositions!

Chapter � addresses the following questions�

� Why does the successful FFT program FFTW ��� consider only right�expanded de�
compositions!

� Can the performance of FFTW be improved by expanding the program to consider
arbitrary decompositions!

Chapter � addresses the following questions�

� How does the performance of an FFT program that computes FFTs in�place using
explicit permutations compare with the performance of FFTW� which computes FFTs
out�of�place and does not perform explicit permutations!

� What e�ect does transposing the Cooley�Tukey algorithm have on the performance
of an FFT implementation!

�� How does the performance of an iterative implementation of the Cooley�Tukey al�
gorithm compare with the performance of a fully�recursive implementation of the
algorithm!

�� What decompositions are optimal for iterative and recursive implementations of a
computer program for computing in�place FFTs!

Finally� Chapter � reviews the principal conclusions from Chapters
 through � and
discusses future directions for the research discussed in this report�

�

Chapter �

Searching for E�cient

Cooley�Tukey Decompositions

��� Introduction

In the previous chapter the Cooley�Tukey algorithm for the FFT was introduced and brie�y
explained� It was noted that the number of distinct decompositions for an FFT of size
k

increases exponentially with k� and that all decompositions for a given size FFT have
equivalent arithmetic complexity� It was also noted that the di�erent decompositions have
di�erent data access patterns� and that the variation in data access patterns should translate
to a variation in performance among FFTs computed using the di�erent decompositions�
In this chapter� the exact impact of the di�erent data access patterns on computer

program runtimes is studied by writing a program to compute FFTs corresponding to
arbitrary decompositions and timing the program as it computes FFTs using all of the de�
compositions� In addition� a basic dynamic programming strategy for drastically reducing
the size of the search space of decompositions is applied to �nd e�cient decompositions�
The concept of dynamic programming is introduced in �
�� and an explanation of dynamic
programming applied to FFTs is provided in ���� Two more sophisticated versions of dy�
namic programming are introduced in this chapter and are compared to the basic dynamic
programming� Finally� the features of the optimal decompositions for FFTs of size up to

�� are investigated�

��� Methodology

����� An Original FFT Program

In order to investigate various Cooley�Tukey decompositions for the FFT� an original FFT
program was written� The program was implemented in both Fortran and C��� in order
to ensure that results were not tied to one particular programming language� The Fortran
implementation is called FFT�Fortran and the C�� implementation is called FFT�C� The
program borrows ideas from a successful FFT program called FFTW ���� However� the
program has an important distinction from FFTW in that it can compute FFTs corre�
sponding to arbitrary decompositions while FFTW can compute FFTs corresponding to
right�expanded decompositions only� The FFT program borrows the following ideas from
FFTW�

�

� Use highly optimized code modules for the base cases of the recursion in the Cooley�
Tukey algorithm�

� Create a plan structure that allows each decomposition to be represented by a unique
plan�

�� Precompute the twiddle factors that will be needed for a decomposition and store
them with the plan�

�� Create an executor program that computes an FFT according to a plan without
performing explicit permutations�

The Small FFT Code Modules

Highly optimized code modules were written to compute FFTs of sizes
��
��
�� and

�� The code modules were used for the base cases of the recursion in the Cooley�Tukey
algorithm� The code modules are discussed in detail in ��� and are based on algorithms
given in ����

The Plan Structure

The FFT program uses a plan structure that allows each decomposition to be represented
by a unique plan� A plan is simply a linked list of nodes that contains information needed
for di�erent steps in an FFT computation� A diagram of a single plan node is shown in
Figure
�
�

nt � array of twiddle factors from T�n
�st � temporary storage array of size
nt

�
��left�child node�

Plan for an FFT
of size
r

t
�
�R right�child node�

Plan for an FFT
of size
s

Figure
�
� A Single Plan Node for an FFT of Size
n

As shown in Figure
�
� each plan node contains the size of the FFT at a particular step
in the decomposition and four pointers� The �rst pointer points to an array of twiddle factors
that are the elements from the diagonal of the twiddle matrix T�n

�s � The twiddle factors are
computed as a plan is being created and are stored with the plan� so that they do not have
to be computed when an FFT is being computed� The second pointer in a plan node points
to an array that is used to store intermediate results in an FFT computation� This array
is necessary because at certain steps in the FFT computation� FFTs must be computed at
an input stride that is di�erent from the output stride� The third and fourth pointers in
a plan node point to other plan nodes� These plan nodes specify how the children of the
current node are to be decomposed� Figure
�
 shows a decomposition for an FFT of size

�� and Figure
�� shows the plan that would be created to represent that decomposition�
As shown in Figure
��� the pointers in all of the leaf nodes do not point to anything� The
reason the pointers do not point to anything is that the only information that is needed at
the base cases of the recursion is the size of the FFT that is to be computed�

5

2 3

Figure
�
� A Simple Decomposition

�t � array of twiddle factors from T��

��t � temporary storage array of size
�t
�
��

t
�
�R

�t �t �t

�
��

t
�
�R

�t �t �t
�
��

t
�
�R

Figure
��� Plan Corresponding to the Decomposition in Figure
�

The Executor Subroutine

The FFT program uses a subroutine called the executor to compute an FFT corresponding
to a plan� An important feature of the executor subroutine that is borrowed from FFTW is
that the stride permutations in the FFT computation are not performed explicitly� Instead�
the stride permutations are implemented by computing the FFTs for the subproblems at
various input and output strides� That is� to compute

y� �IR �FS	L
RS
R x� �
�
	

the elements in vector x are not �rst completely permuted by LRSR before the FS �s are
applied� Instead� the entire operation in Equation �
�
	 is performed by computing m FS�s
in which the input is the elements of x taken at stride R and the output is stored in y at
stride
�
The executor computes an FFT by evaluating each of the nodes in a plan and making

computations based on information contained in the nodes� The executor begins by evalu�
ating the root node� and recursively visits all of the nodes in the plan� When the executor
encounters an internal node� that is� a node that is not a leaf� the executor computes

t � TRS
S �IR � FS	L

RS
R x �
�
	

y � �FR � IS	t� �
��	

where x is the array containing the input for the transform� y is the array for the output
of the transform� and t is the temporary storage array associated with the current node�
When the executor routine encounters a leaf node� it simply makes a call to the small FFT
code module that computes an FFT of the size indicated by the node�

����� Exhaustive Search

In order to compute FFTs using all possible decompositions� it is necessary to �rst generate
the decompositions and save them to a �le� The decompositions are generated using the

following algorithm� To generate all decompositions for an FFT of size
n� it is necessary to
�rst generate all possible decompositions for FFTs of size
� through
n��� For an FFT of
size
�� there is only one �decomposition�� since the problem cannot be further decomposed�
For an FFT of size
n� n �
� a decomposition tree is generated for every possible combina�
tion of one of the decomposition trees for an FFT of size
r with one of the decomposition
trees for an FFT of size
n�r� r �
� � � � � n �
� as shown in Figure
��� A parameter nL

����n � root node
�

���
�
��R

ith tree for an
FFT of size
r

�
� �z �

left subtree

jth tree for an
FFT of size
n�r

�
� �z �

right subtree

i �
� � � � � T �r	
j �
� � � � � T �n� r	
r �
� � � � � n�

T �r	 � number of decompositions

for an FFT of size
r

Figure
��� Algorithm for Generating All Decompositions for an FFT of Size
n� n � nL

must be used to specify the largest allowable size for a leaf in any decomposition tree� nL is
always set to equal the size of the largest FFT for which a small code module is available�
When the decompositions for an FFT of size
n are being generated� an extra decomposi�
tion must be generated if n � nL� This decomposition corresponds to the case where the
problem is not further decomposed and contains only one node"the root node�

����� Dynamic Programming Search

The dynamic programming search is performed by �lling a list of length nmax with the
optimal top�level decompositions for FFTs of sizes
� through
nmax � After the DP search
is complete� the n�th entry in the list contains the optimal top�level decomposition for
an FFT of size
n� By necessity� the list is �lled from smallest FFT sizes to largest� To
determine the optimal top�level decomposition for an FFT of size
n� all possible top�level
decompositions for that size FFT are timed� If no small DFT code module exists for an
FFT of size
n� then there are n �
 decompositions to time in order to �nd the optimal
top�level decomposition for that size FFT� otherwise there are n decompositions to time�

����� N�Best Dynamic Programming Search

The n�best DP search is performed by �lling a nmax � bmax table with the b best top�level
decompositions for FFTs of sizes
� through
nmax � When the n�best DP search is complete�
the entry at row n� column b of the table contains the b�th best top�level decomposition
for an FFT of size
n� The table is �lled one row at a time� from the smallest size FFT
to the largest� To determine the b best top�level decompositions for an FFT of size
n� all
top�level decompositions must be timed�

�

����� Stride Sensitive Dynamic Programming Search

The stride sensitive DP search is performed by �lling nmax tables of size nmax� nmax with
the best top�level decompositions for FFTs of sizes
� through
nmax performed at input
strides of
� through
nmax�� and output strides of
� through
nmax��� When the stride
sensitive DP search is complete� the entry at row i� column j of the n�th table contains the
optimal decomposition for an FFT of size
n performed at input stride
i and output stride

j �
Once the tables have been �lled completely� one has all of the information needed to

perform the optimal decompositions at various input and output strides� However� in order
to use this information� it is necessary to know the correct input and output strides for each
subproblem in a decomposition� In order to see how the input and output strides for each
subproblem in a decompsition are computed� consider the simple decomposition shown in
Figure
��� This decomposition could be a subproblem in a larger decomposition� Assume

����n
� �����r ����s

Figure
��� A Single Decomposition

that for the FFT corresponding to node N � the input stride is Pin and the output stride is
Pout� The input and output strides for the child nodes in Figure
�� are listed in Table
�
�

right�child node left�child node

input stride�
r � Pin
r

output stride�

r � Pout

Table
�
� Input and Output Strides for the Child Nodes in Figure
��

As shown in the table� the input stride accumulates mulitplicatively with each deeper
right�child in the recursion� while the output stride accumulates multiplicatively with each
deeper left�child in the recursion� The table also shows that there is no accumulation of
strides for the output of the right�child computation� since the output of this computation
is stored in the temporary storage array that is dedicated for node n�

����� Measuring Runtimes

All runtimes are measured using a software timer explained in ���� The timer uses the clock��
function in the C library to make the timings� The timer repeats each routine it measures
until at least one second has expired before making a single timing� The reason for making
the minimum experiment duration one second is that the precision of the clock�� function
is ���
 second� and a reasonably acceptable value for the maximum relative error in each
timing is
#� Each time the timing routine is called� it makes several timings of a routine
to be measured� and returns the average of all the timings that were left after any outlying
times were removed� The standard deviation of timing estimates was typically about �#�

�

��� Results

Figures
�� and
�� show the runtimes for all decompositions using FFT�Fortran and FFT�
C for FFT sizes of
� through
��� The runtimes are sorted from shortest to longest� As
shown in the �gures� the runtimes for FFT�Fortran are fairly evenly distributed between
the minimum and maximum� while for FFT�C the runtimes are slightly more concentrated
near the maximum�

1 50
0

20

40

k=5

ti
m

e
[μ

se
c]

1 185
0

50

100

k=6
1 720

0

100

200

k=7

1 2905
0

0.25

0.5

k=8

tree ranking

ti
m

e
[m

se
c]

1 12040
0

0.5

1

k=9

tree ranking
1 50950

0

1.1

2.2

k=10

tree ranking

Figure
��� Sorted Runtimes for All Decompositions Using FFT�Fortran

1 50
0

15

30

k=5

ti
m

e
[μ

se
c]

1 185
0

35

70

k=6
1 720

0

90

180

k=7

tree ranking

1 2905
0

0.2

0.4

k=8

tree ranking

ti
m

e
[m

se
c]

1 12040
0

0.5

1

k=9

tree ranking

Figure
��� Sorted Runtimes for All Decompositions Using FFT�C

These �ndings are underscored in Figures
�� and
��� which contain histograms for all
of the runtimes� As shown in Figure
��� the histograms for the runtimes of FFT�C all
contain a large spike that is located near the maximum runtime� In contrast� Figure
��
shows that the histograms for the runtimes of FFT�Fortran contain multiple spikes� and

�

the spikes are not all concentrated close to the maximum runtime�

0 20 40
0

10

20
k=5

tr
ee

s

0 50 100
0

30

60
k=6

0 0.1 0.2
0

100

200
k=7

0 250 500
0

0.5

1
k=8

times [μ sec]

tr
ee

s
[t

h
o

u
sa

n
d

s]

0 500 1000
0

2

4
k=9

times [μ sec]
0 2 4

0

10

20
k=10

times [msec]

Figure
��� Histogram of the Runtimes for All Decompositions Using FFT�Fortran

0 20 40
0

10

20
k=5

tr
ee

s

0 40 80
0

40

80
k=6

0 0.1 0.2
0

150

300
k=7

0 200 400
0

0.75

1.5
k=8

times [μsec]

tr
ee

s
[t

h
o

u
sa

n
d

s]

0 500 1000
0

2.5

5
k=9

times [μsec]

Figure
��� Histogram of the Runtimes for All Decompositions Using FFT�C

Figure
�
� shows the ratios of the mean� median� and maximum runtimes to the min�
imum runtime for the experiments done with FFT�Fortran and FFT�C� This �gure shows
the average performance advantage of the optimal decomposition over a random decom�
position� As shown in the right plot in the �gure� all of the mean and median runtimes
found using FFT�C lie close to the maximum runtime� a point that was emphasized by the
histograms of Figure
��� This means that� on average� a random decomposition gives close
to the worst possible performance for FFT�C� Another important point about the right
plot in Figure
�
� is that all of the median and mean runtimes lie close to about twice
the minimum runtime� This means that FFT�C can compute an FFT of size
� to
�� on
average twice as fast with the optimal decomposition as with a random decompositon�

�

The ratio of mean runtime to minimum runtime is even greater for FFT�Fortran� as
shown in the left plot in Figurr
�
�� In this plot the mean and median runtimes are about
three times the minimum runtime� This means that FFT�Fortran can compute an FFT
of size
� to
�� on average three times as fast with the optimal decomposition as with
a random decompositon� The �ndings presented in Figure
�
� justify putting e�ort into
�nding e�cient decompositions� especially since these �ndings are for relatively small size
FFTs� in which data access patterns and cache misses are not as much of an issue�

5 6 7 8 9 10
0

2

4

6

8

10

k

ru
n

 t
im

e
ra

ti
o

s

FFT−FORTRAN

mean time / min. time
median time / min. time
max. time / min. time

5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4
FFT−C

k

ru
n

 t
im

e
ra

ti
o

s

mean time / min. time
median time / min. time
max. time / min. time

Figure
�
�� Mean� Median� and Maximum Runtime Relative to the Minimum Runtime

Figure
�

 compares the runtimes of the optimal decompositions found using both an
exhaustive search and a dynamic programming �DP	 search� As shown in the �gure� within
the precision of the timer� which is about �#� the performance of the two search strategies
is equivalent for FFTs of size
� through
���

5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

−8 FFT−FORTRAN

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Exhaustive Search
Dynamic Programming

5 6 7 8 9
0

0.5

1

1.5
x 10

−7 FFT−C

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Exhaustive Search
Dynamic Programming

Figure
�

� Dynamic Programming �DP	 Search vs� Exhaustive Search

Figure
�

 compares the performance of basic DP with n�best DP and stride sensitive
DP� As shown in the �gure� n�best DP and stride sensitive DP provide only slightly better
performance than basic DP�
Figures
�
� and
�
� show the DP optimal decompositions found using FFT�Fortran

and FFT�C� respectively� As shown in the �gures� for FFTs larger than
��� the trees are
mostly balanced� For smaller FFTs however� there is no clear preference for left�expanded
decompositions or right�expanded decompositions� Another trend in Figures
�
� and
�
�

�

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−7 FFT−FORTRAN

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Basic DP
N−best DP
Stride Sensitive DP

10 12 14 16 18 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFT−C

Basic DP
N−best DP
Stride Sensitive DP

Figure
�

� DP Search Strategy Comparisons

is that the leaf nodes consist mostly of DFTs of size
�� with a few DFTs of size
� and
almost zero DFTs of size
� or
��

5

2 3

6

3 3

7

3 4

8

4 4

9

3 6

3 3

10

37

43

11

4 7

3 4

12

48

44

13

2 11

4 7

3 4

14

7 7

3 4 3 4

15

7 8

3 4 4 4

16

8 8

4 4 4 4

17

6 11

3 3 4 7

3 4

18

7 11

3 4 4 7

3 4

19

8 11

4 4 4 7

3 4

20

12 8

8 4 4 4

4 4

Figure
�
�� DP Optimal Decompositions Using FFT�Fortran

5

1 4

6

3 3

7

3 4

8

4 4

9

4 5

1 4

10

4 6

3 3

11

38

44

12

48

44

13

8 5

4 4 1 4

14

7 7

3 4 3 4

15

7 8

3 4 4 4

16

8 8

4 4 4 4

17

9 8

4 5 4 4

1 4

18

6 12

3 3 8 4

4 4

19

12 7

8 4 3 4

4 4

20

12 8

8 4 4 4

4 4

Figure
�
�� DP Optimal Decompositions Using FFT�C

Figures
�
� and
�
� show the �ve best decompositions for FFTs of size
	 through
���
The decompositions are found using the n�best dynamic programming search� The very
best decomposition is shown on the left side of each �gure� and the �fth�best decomposition
is shown on the right side of each �gure� As shown in Figure
�
�� the majority of the best
decompositions using FFT�Fortran are right�expanded� However� as shown in Figure
�
��
the best decompositions using FFT�C are almost equally divided between right�expanded
and left�expanded decompositions�
Figures
�
� and
�
� show the �ve best decompositions for FFTs of size
�� through

��� As shown in the �gures� more of the best decompositions are somewhat balanced for
these FFT sizes than for the smaller size FFTs in Figures
�
� and
�
��
Figure
�
� and
�
� show the best �ve decompositions for FFTs of size
�	 through
���

As shown in the �gures� most of the best decompositions for these size FFTs are somewhat

�

6

3 3

6

2 4

6

4 2

6

1 5

3 2

6

2 4

1 3

7

3 4

7

4 3

7

1 6

3 3

7

1 6

2 4

7

2 5

2 3

8

4 4

8

1 7

3 4

8

3 5

2 3

8

1 7

4 3

8

2 6

3 3

9

1 8

4 4

9

3 6

3 3

9

36

33

9

3 6

2 4

9

3 6

4 2

10

3 7

3 4

10

46

33

10

4 6

3 3

10

4 6

2 4

10

4 6

4 2

Figure
�
�� Five Best Decompositions Using FFT�Fortran� n � �� � � � �
�

balanced�
Figure
�

 compares the runtimes of the DP optimal decompositions for FFT�Fortran

and FFT�C� As shown in the �gure� FFT�Fortran is often almost ��# faster than FFT�C�
Since both programs use the same algorithm� the reason for the di�erence in performance
may be that� for this type of program� the Fortran compiler� DIGITAL Visual Fortran ����
produces more optimized assembly code than the C�� compiler� Microsoft Visual C��
����

��� Conclusions

In this chapter the following �ndings were presented�

� The median and mean runtimes of all decompositions are about twice the minimum
runtime for FFT�C and about three times the minimum runtime for FFT�Fortran�

� The dynamic programming search performs as well as an exhaustive search at �nding
e�cient decompositions for FFTs of size
� through
���

�� Two more sophisticated versions of dynamic programming� n�best DP and stride sen�
sitive DP� were introduced� but neither performs signi�cantly better than basic DP
at �nding fast decompositions�

�� The DP optimal decompositions for FFTs of sizes larger than
�� are mostly balanced�
For FFTs of smaller sizes the optimal decompositions are balanced� left�expanded� or
right�expanded about equally as often�

�� Most of the leaf nodes of the optimal decompositions consist of DFTs of size
�� while
a smaller amount consist of DFTs of size
�� and almost zero consist of DFTs of size

� or
��

�� FFT�Fortran is about ��# faster than FFT�C� The reason for the di�erence may be
that the Fortran compiler produces more optimized assembly code than the C��
compiler for this type of program�

�

6

3 3

6

2 4

6

4 2

6

42

11

6

1 5

1 4

7

3 4

7

4 3

7

16

33

7

1 6

4 2

7

1 6

3 3

8

3 5

1 2 4 1

1 1

8

4 4

8

1 7

4 3

8

44

31

8

4 4

1 3

9

4 5

1 4

9

4 5

4 1

9

45

14

9

1 8

4 4

9

45

41

10

37

43

10

4 6

2 4

10

4 6

4 2

10

46

33

10

37

34

Figure
�
�� Five Best Decompositions Using FFT�C� n � �� � � � �
�

In the next chapter a successful FFT program called FFTW is used as a tool to con�
duct further experiments� Although the results from this chapter suggest that the optimal
decompositions for larger size FFTs are balanced� FFTW was designed to compute FFTs
using right�expanded decompositions only� Therefore� modi�cations were made to FFTW
to allow it to compute FFTs using arbitrary decompositions�

�

11

4 7

4 3

11

3 8

4 4

11

4 7

3 4

11

47

34

11

47

43

12

4 8

4 4

12

48

44

12

2 10

3 7

3 4

12

2 10

6 4

3 3

12

2 10

4 6

3 3

13

2 11

3 8

4 4

13

6 7

2 4 4 3

13

7 6

4 3 2 4

13

9 4

1 8

4 4

13

2 11

4 7

4 3

14

6 8

2 4 4 4

14

10 4

3 7

3 4

14

7 7

3 4 4 3

14

410

46

33

14

8 6

4 4 3 3

15

8 7

4 4 4 3

15

11 4

3 8

4 4

15

4 11

4 7

4 3

15

4 11

3 8

4 4

15

4 11

4 7

3 4

Figure
�
�� Five Best Decompositions Using FFT�Fortran� n �

� � � � �
�

11

4 7

2 2 1 6

1 1 3 3

11

47

34

11

4 7

4 3

11

3 8

4 4

11

38

44

12

48

44

12

4 8

4 4

12

7 5

3 4 1 4

12

7 5

4 3 1 4

12

8 4

1 7

4 3

13

4 9

4 5

1 4

13

4 9

5 4

4 1

13

4 9

5 4

1 4

13

5 8

4 1 4 4

13

5 8

1 4 4 4

14

7 7

4 3 4 3

14

8 6

4 4 3 3

14

7 7

4 3 3 4

14

4 10

6 4

3 3

14

5 9

1 4 5 4

1 4

15

8 7

4 4 3 4

15

7 8

3 4 4 4

15

8 7

4 4 4 3

15

4 11

3 8

4 4

15

411

47

34

Figure
�
�� Five Best Decompositions Using FFT�C� n �

� � � � �
�

16

8 8

4 4 4 4

16

5 11

2 3 4 7

4 3

16

5 11

2 3 4 7

3 4

16

5 11

1 4 4 7

3 4

16

9 7

3 6 4 3

3 3

17

7 10

3 4 4 6

3 3

17

6 11

4 2 4 7

4 3

17

6 11

2 4 3 8

4 4

17

6 11

3 3 4 7

3 4

17

7 10

3 4 3 7

3 4

18

7 11

4 3 3 8

4 4

18

7 11

3 4 4 7

4 3

18

7 11

3 4 3 8

4 4

18

11 7

4 7 3 4

3 4

18

7 11

4 3 4 7

4 3

19

8 11

4 4 3 8

4 4

19

11 8

4 7 4 4

3 4

19

12 7

4 8 4 3

4 4

19

7 12

3 4 8 4

4 4

19

8 11

4 4 4 7

4 3

20

12 8

4 8 4 4

4 4

20

12 8

8 4 4 4

4 4

20

13 7

6 7 4 3

2 4 4 3

20

13 7

6 7 3 4

2 4 4 3

20

14 6

6 8 2 4

2 4 4 4

Figure
�
�� Five Best Decompositions Using FFT�Fortran� n �
�� � � � �
�

16

8 8

4 4 4 4

16

4 12

8 4

4 4

16

12 4

4 8

4 4

16

412

48

44

16

4 12

4 8

4 4

17

8 9

4 4 4 5

1 4

17

8 9

4 4 5 4

1 4

17

9 8

4 5 4 4

1 4

17

9 8

5 4 4 4

1 4

17

8 9

4 4 1 8

4 4

18

7 11

3 4 7 4

4 3

18

8 10

4 4 6 4

3 3

18

10 8

6 4 4 4

3 3

18

11 7

7 4 3 4

4 3

18

6 12

3 3 8 4

4 4

19

12 7

8 4 3 4

4 4

19

11 8

7 4 4 4

4 3

19

12 7

8 4 4 3

4 4

19

7 12

3 4 8 4

4 4

19

12 7

4 8 3 4

4 4

20

12 8

4 8 4 4

4 4

20

12 8

8 4 4 4

4 4

20

8 12

4 4 8 4

4 4

20

8 12

4 4 4 8

4 4

20

8 12

4 4 8 4

1 7

4 3

Figure
�
�� Five Best Decompositions Using FFT�C� n �
�� � � � �
�

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFT−Fortran
FFT−C

Figure
�

� FFT�Fortran vs� FFT�C

�

Chapter �

Experiments with FFTW

��� Introduction

����� Motivation and Goals

In Chapter
� computer programs for computing FFTs using an algorithm similar to the
one used by FFTW were introduced� Although the programs were designed to be as fast as
possible� they are still slower than FFTW� as shown in Figure ��
� There are two reasons
why FFTW is faster than the programs introduced in Chapter
� The �rst reason is that
FFTW has more optimized code for the base cases of the recursion� as will be explained later
in this chapter� The second reason is that FFTW does not use any arrays for temporary
storage other than a single input and output array when it computes an FFT�
Given that FFTW is clearly faster than the programs discussed in Chapter
� a surprising

feature of FFTW is that it computes FFTs using right�expanded decompositions only�
This feature is surprising in light of the experiments in Chapter
� which suggest that the
optimal decompositions tend to be balanced for FFTs larger than
��� Therefore� in order
to determine if the performance of FFTW is inhibited by the fact that it computes FFTs
using right�expanded decompositions only� we modi�ed FFTW to allow it to compute FFTs
corresponding to arbitrary decompositions�

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFTW
FFT−C

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFTW
FFT−Fortran

Figure ��
� Left� FFTW vs� FFT�C� Right� FFTW vs� FFT�Fortran

The goals of the experiments discussed in this chapter are the following�

� Determine if the performance of FFTW can be improved if it is expanded so that
it can compute FFTs using arbitrary decompositions instead of only right�expanded

�

decompositions�

� Determine if the stride sensitive or n�best dynamic programming searches are more
e�ective than basic DP at �nding fast decompositions for FFTW�

�� If FFTW is not faster for balanced trees than right�expanded trees� determine why
not�

����� Introduction to FFTW

FFTW is an FFT program that is generally faster than all other publicly available DFT
software and is at least competitive with most proprietary codes ���� Three key features of
FFTW that will be explained next are the codelets� the plan structure� and the executor�

Codelets

The most powerful feature of FFTW is the codelets� which are machine�generated blocks of
C code that compute FFTs of various sizes� The codelets are generated by a Meta Language
�ML	 program that is explained in ���� Each codelet computes an FFT of a speci�c size�
For convenience� a codelet that computes an FFT of size N is referred to as a �size N
codelet� in this report� The largest codelets that are distributed with FFTW are of size ���
Larger size codelets can be generated with the FFTW codelet generator FFTW� but they
are ine�cient because the code is very large and takes up a signi�cant amount of space in
the cache�
There are two types of codelets"twiddle codelets and no�twiddle codelets� The twiddle

codelets compute in�place FFTs while the no�twiddle codelets compute out�of�place FFTs�
The twiddle codelets get their name because they also perform multiplication by twiddle
factors� unlike the no�twiddle codelets�
A no�twiddle codelet of size N computes the following�

y� FNx� ���
	

where x corresponds to an input array and y corresponds to an output array� Both arrays
are of length M � where M � N � An important feature of the no�twiddle codelets is that
they can compute the FFT of N elements of x collected at stride P� and store the result
in y at stride P�� That is� the no�twiddle codelets can perform FFTs with an input stride
that is di�erent from the output stride�
A twiddle codelet of size R computes the following�

y� �FR � IS	T
RS
S y� ���
	

where y is the array for both the input and output of the computation� which is performed
in�place� The length of y is M � where M � RS� The twiddle factors for TRS

S are pre�
computed and stored in an array that is accessed when the computation in Equation ���
	
is performed� The computation in Equation ���
	 is performed in S steps� In step i�
i �
� � � � � S� the following computations are performed�

� Read R elements of y at stride S� starting at location i�

� Multiply those elements of y by the appropriate R twiddle factors�

�� Store the result back in y in the same locations that the elements of y were read from�

�

�� Compute the in�place FFT of size R on those same elements of y�

An important aspect of the above procedure is that the multiplication by twiddle factors is
interleaved with the computation of the FR�s� This practice is more e�cient than simply
multiplying all of y by the twiddle factors and then doing the S FFTs on y� because it
allows the entire computation in Equation ���
	 to be performed with a single pass through
y instead of two passes� If y is large enough� then each time all of the elements of y are
accessed� there could be many cache misses� Therefore� it is important to use procedures
that minimize the number of passes through the data�

The Plan Structure

FFTW represents each possible right�expanded decomposition with a plan� A plan is simply
a list of nodes that contain pointers to codelets� Figure ��
 illustrates the two types of plan
nodes in FFTW"twiddle nodes and no�twiddle nodes� As shown in the �gure� each twiddle
node contains pointers to an array of twiddle factors� a twiddle codelet� and another plan
node called the right�child node� There is no pointer to a left�child node� for two reasons�
The �rst reason is that only right�expanded decompositions are considered by FFTW� The
second reason is that a twiddle node contains all of the information needed to perform the
computations associated with a parent node and a left�child node�
Each no�twiddle node contains only a pointer to a no�twiddle codelet� No�twiddle nodes

do not contain pointers to other nodes� because there is only one no�twiddle node per plan�
and it is always the last node in the plan�

Twiddle Node

t � array of twiddle factors from T�n
�st � twiddle codelet of size
rtHHHj right�child node�

Plan for an FFT
of size
s

No�twiddle Node

t � no�twiddle
codelet
of size
n

Figure ��
� The Two Types of Nodes in an FFTW Plan

An example of complete plan is shown in Figure ���� which corresponds to the Cooley�
Tukey decomposition shown in Figure ���� The procedure that FFTW uses to compute an
FFT according to a plan is explained next�

The Executor

The executor is a recursive C subroutine that computes an FFT corresponding to a plan�
Like the executor program discussed in Chapter
� the FFTW executor computes an FFT
by evaluating each of the nodes in a plan and making computations based on information
contained in the nodes� The executor begins the FFT computation by evaluating the root
node� and recursively evaluates all of the nodes in the plan� The executor performs the
computations for each node at a particular input stride and output stride� That means that
when the executor evaluates a node with input stride Pin and output stride sout� the input
for the computations performed for that node is accessed at stride sin and the output is
stored at stride Pout�

�

t � array of twiddle factors from T��

��t � twiddle codelet of size
�tHHHj t � array of twiddle factors from T��

��t � twiddle codelet of size
�tHHHj t � no�twiddle codelet of size
�

Figure ���� The FFTW Plan for the Decomposition in Figure ���

6

2 4

3 1

Figure ���� A Right�Expanded Decomposition

When the executor encounters a node of type twiddle� it performs the following compu�
tations�

y � �IR � FS	L
RS
R x ����	

y � �FR � IS	T
RS
S y� ����	

where x is the input array and y is the output array� Like the executor discussed in
Chapter
� the FFTW executor does not explicitly permute the elements of x to perform
the computation in Equation ����	� Instead� the executor performs the computation in R
steps� doing the following tasks on the i�th step� i �
� � � � � R�

� Read S elements from x at stride R � Pin� starting at location i�

� Compute the S�point FFT of those elements from x�

�� Store the output of the FFT in y at stride Pout� starting at location �i�
	 �S �Pout�
�

The executor applies the FS in Equation ����	 by recursively calling itself with the right�
child node of the node currently being evaluated� The computation in Equation ����	 is
performed with a single call to the twiddle node associated with the current node� The
twiddle factors for TRS

S are accessed from the twiddle factor array that is associated with
the current node�
When the executor encounters a node of type no�twiddle� it performs the following

computation�
y � FNx� ����	

where x and y are again the input and output arrays� The FFT is performed at the appro�
priate input and output strides� The executor performs the computation in Equation ����	
with a single call to the no�twiddle codelet that is associated with the current node�

�

��� Methodology

����� Modi	cations to FFTW

New Node Type

In order to allow FFTW to compute FFTs using arbitrary decompositions instead of only
right�expanded decompositions� a new type of plan node was added to the plan structure�
The name for the new node is �left�child�is�not�leaf�"abbreviated LCINL"since the left
child of the node is never a leaf node� that is� the left child is always further decomposed� An
LCINL node is illustrated in Figure ���� As shown in the �gure� an LCINL node contains
pointers to an array of twiddle factors� an array for temporary storage� a left�child node�
and a right�child node� The temporary storage array is used to hold intermediate results
in the FFT computation� An example of a complete plan that contains an LCINL node is
shown in Figure ����

t � array of twiddle factorst � array for temporary storaget����left�child node

tHHHj right�child node
Figure ���� An LCINL Node

t � twiddle factors from T��

��t � array of length
	 for temporary storagetHHHj t � twiddle factors from T��

��t � twiddle codelet of size
�tHHHj t � no�twiddle codelet of size
�

t����t�twiddle factors from T��

�� t�twiddle codelet of size
� tHHHj t�no�twiddle codelet of size
�

Figure ���� The Plan for the Decomposition in Figure ���

6

2 4

1 1 3 1

Figure ���� A Balanced Decomposition

Modi�cation to the Executor

The executor was modi�ed so that it would be able to evaluate nodes of type LCINL�
This modi�cation does not a�ect the way the executor evaluates nodes of type twiddle or
no�twiddle�
When the modi�ed executor encounters a node of type LCINL with input stride Pin

and output stride Pout� it computes the following�

t � TRS
S �IR � FS	L

RS
R x ����	

�

y � �FR � IS	t� ����	

where x and y are input and output arrays� and t is the temporary storage array associated
with the node currently being evaluated� The computation in Equation ����	 is performed
in R iterations� On the i�th iteration� i �
� � � � � R� the following tasks are performed�

� Read S elements from x at stride R � Pin� starting at location �i�
	 � Pin �
�

� Compute the FFT of those elements of x�

�� Multiply the result of the FFT by the appropriate S twiddle factors from the twiddle
factor array associated with the current node�

�� Store the result of the twiddle factor multiplications in t at stride
� starting at
location i � S�

The executor subroutine applies the FS in Equation ����	 by recursively calling itself to
evaluate the right�child node of the current node� The right�child node is evaluated at
input stride R � Pin and output stride
�
The computation in Equation ����	 is performed in n iterations� On the i�th iteration�

i �
� � � � � S� the following tasks are performed�

� Read R elements from t at stride S� starting at location i�

� Compute the FFT of those R elements from t�

�� Store the output of the FFT in y at stride S �Pout� starting at location �i�
	 �Pout�
�

The executor routine applies the FR in Equation ����	 by recursively calling itself to evaluate
the left�child node of the current node� The left�child node is evaluated at input stride S
and output stride S � Pout�

����� Modi	cation to the Stride Sensitive DP Search Strategy

The stride sensitive approach used with FFTW is slightly di�erent than the stride sensitive
search discussed in Chapter
� As before� the idea of the stride sensitive DP search is to
determine the optimal decomposition for a particular size FFT at a given input stride and
output stride� The complication that arises in the case of the modi�ed version of FFTW
is that the input and output strides of the left and right children of a node depend on
whether the node is of type twiddle or LCINL� This is due to the fact that the executor
makes di�erent computations for a twiddle node than it does for an LCINL node�

����n
� �����r ����s

Figure ���� A Single Decomposition

Consider the simple decomposition shown in Figure ���� This decomposition could
appear anywhere in a larger decomposition� Assume that the input stride for node n is Pin
and the input stride is Pout� Table ��
 lists the input and output strides for the child nodes
of node n when the node is of type twiddle� Similarly� Table ��
 lists the input and output

�

right�child node left�child node

input stride�
r � Pin
s � Pout
output stride� Pout
s � Pout

Table ��
� Input and Output Strides for the Child Nodes of a Twiddle Node

right�child node left�child node

input stride�
r � Pin
s

output stride�

s � Pout

Table ��
� Input and Output Strides for the Child Nodes of a LCINL Node

strides for the child nodes of node n when the node is of type LCINL� Comparing the two
tables� one sees that twiddle nodes and LCINL nodes di�er in the output stride for the
right�child node and the input stride for the left�child node� The reason for the di�erence in
output strides for right�child nodes is that the output of the right�child node computation
is stored in the output array y for twiddle nodes� and in the temporary storage array t for
LCINL nodes� Similarly� the reason for the di�erence in input strides for left�child nodes is
that the input for the left�child node computation is the output array y for twiddle nodes�
and the temporary storage array t for LCINL nodes�

����� Adding a Penalty for Twiddle Nodes

In order to compensate for the fact that the executor normally has to access three arrays
when evaluating an LCINL node and only two when evaluating a twiddle node� a modi��
cation was made that forces the executor to access a third array when evaluating twiddle
nodes� The modi�cation was made in two steps� The �rst step was to add pointers to tem�
porary storage arrays in the twiddle nodes� The second step was to modify the executor so
that it reads and writes data to a temporary storage array when it evaluates a twiddle node�
Speci�cally� when the modi�ed executor encounters a node of type twiddle� it performs the
following computations�

t � �IR � FS	L
RS
R x ����	

y � �FR � IS	T
RS
S t� ����	

where x and y are the input and output arrays� and t is the temporary storage array
associated with the current node� Essentially� this modi�cation forces the executor to store
the output of the computation in Equation ����	 in t instead of directly in y�

����� Removing a Penalty for LCINL Nodes

In another attempt to compensate for the fact that the executor normally accesses three
arrays when evaluating an LCINL node and only two when evaluating a twiddle node� a
modi�cation was made that allows the executor to access only two arrays when evaluating
LCINL nodes� This modi�cation was made independently of the previous modi�cation� in
which a penalty was added to the executor for twiddle nodes� This modi�cation causes
FFTW to no longer compute FFTs correctly� so it was added only to see how the runtimes
would be a�ected� This modi�cation was made in two steps� The �rst step was to remove

��

the pointers to temporary storage arrays from the LCINL nodes� The second step was to
modify the executor so that when it encounters a node of type LCINL� it computes

x � TRS
S �IR � FS	L

RS
R x ���
�	

y � �FR � IS	x� ���

	

where x and y are the input and output arrays� Essentially� this modi�cation allows the
executor to store the result of the computation in Equation ���
�	 back in x instead of in
a third array�

����� Removing All Twiddle Factor Multiplications

In order to compensate for the fact that the executor performs twiddle factor multiplica�
tions outside of a codelet when evaluating a LCINL node� and inside of a codelet when
evaluating a twiddle node� the following modi�cation was made� The expanded version
of FFTW was modi�ed so that none of the twiddle factor multiplications are performed
when an FFT is computed� The modi�cation was added independently of the previous two
modi�cations"the addition of a penalty for twiddle nodes and the removal of a penalty for
LCINL nodes� Like the previous modi�cation� this modi�cation causes FFTW to compute
FFTs incorrectly� so it was added only to see how the runtimes would be a�ected� This
modi�cation was implemented by replacing the twiddle codelets with modi�ed versions of
the no�twiddle codelets� The modi�ed no�twiddle codelets compute�

y� �FR � IS	y ���

	

in contrast to the regular twiddle codelets� which compute

y� �FR � IS	T
RS
S y� ���
�	

The modi�cation allows these no�twiddle codelets to perform the same computations as
twiddle codelets� with the exception that the no�twiddle codelets do not perform the twiddle
factor multiplications�
In addition to replacing the twiddle codelets� the executor was also modi�ed so that

when it encounters a node of type LCINL� it computes�

t � �IR � FS	L
RS
R x ���
�	

y � LRSR �IS � FR	L
RS
S t� ���
�	

instead of�

t � TRS
S �IR � FS	L

RS
R x ���
�	

y � LRSR �IS � FR	L
RS
S t� ���
�	

As can be seen by comparing Equations ���
�	 and ���
�	� the twiddle factor multiplications
that are normally performed when LCINL nodes are evaluated are no longer performed�

��� Results

Figure ��� shows the dynamic programming �DP	 optimal decompositions found using the
modi�ed version of FFTW that can compute FFTs using arbitrary decompositions� As

�

7

2 5

8

2 6

9

5 4

10

5 5

11

2 9

5 4

12

2 10

5 5

13

5 8

2 6

14

4 10

5 5

15

5 10

5 5

16

5 11

2 9

5 4

17

2 15

5 10

5 5

18

3 15

5 10

5 5

19

2 17

2 15

5 10

5 5

20

5 15

5 10

5 5

Figure ���� DP Optimal Decompositions for the Expanded Version of FFTW

shown in the �gure� the optimal decompositions that were found are all right�expanded�
This result means that none of the optimal plans contain an LCINL node�
Figures ��
� through ��

 show the �ve best decompositions for FFTs of size
	 through

��� The very best decompositions are shown on the left of each �gure� and the �fth�best
decompositions are shown on the right of each �gure� As shown in the �gures� the best �ve
trees are all right�expanded for FFT sizes of
	 through
���

6 6

1 5

6

2 4

6

3 3

6

1 5

1 4

7

2 5

7

3 4

7

1 6

7

4 3

7

2 5

1 4

8

2 6

8

3 5

8

5 3

8

1 7

1 6

8

1 7

2 5

9

3 6

9

4 5

9

5 4

9

3 6

1 5

9

1 8

3 5

10

5 5

10

4 6

10

4 6

1 5

10

4 6

2 4

10

5 5

1 4

Figure ��
�� Best Five Decompositions for FFTs of Size
	 through
��

Figure ��
� compares the runtimes of the optimal decompositions found using three
types of dynamic programming"basic� n�best� and stride sensitive� As shown in the �gure�
within the precision of the timer� which is about �#� the three search strategies perform
equally well�
Figure ��
� shows the DP optimal decompositions found when a penalty is added to the

executor for evaluating twiddle nodes� As shown in the �gure� with the penalty added� the
optimal decompositions for FFTs of size of
�� and
�� are not right�expanded� although
the optimal decompositions for all smaller size FFTs are right�expanded� Figure ��
� shows
the surprising result that adding the penalty for twiddle nodes to the executor does not
signi�cantly increase the runtimes of the optimal decompositions� This result suggests that
accessing the extra temporary storage arrays may not be very costly�
Figure ��
� shows the DP optimal decompositions found when the penalty paid by the

executor for evaluating LCINL nodes is removed� As shown in the �gure� right�expanded

�

11

2 9

5 4

11

2 9

3 6

11

2 9

4 5

11

2 9

3 6

1 5

11

2 9

1 8

3 5

12

2 10

5 5

12

5 7

2 5

12

5 7

1 6

12

5 7

3 4

12

2 10

4 6

13

5 8

3 5

13

2 11

2 9

3 6

13

5 8

2 6

13

5 8

1 7

2 5

13

2 11

2 9

5 4

14

4 10

5 5

14

4 10

4 6

2 4

14

2 12

2 10

5 5

14

4 10

4 6

1 5

14

5 9

4 5

15

5 10

5 5

15

5 10

4 6

15

5 10

4 6

1 5

15

5 10

4 6

2 4

15

2 13

5 8

2 6

Figure ��

� Best Five Decompositions for FFTs of Size
�� through
��

decompositions are still optimal without the penalty� This result suggests that the reason
decompositions with LCINL nodes lose to right�expanded decompositions is not because
the executor must access a temporary storage array when evaluating a LCINL node�
Figure ��
� shows the DP optimal decompositions when all twiddle factor multipli�

cations are removed from the FFT computation� Under these conditions� the optimal
decompositions are still right�expanded� This result suggests that the fact that twiddle fac�
tor multiplications must be performed outside of a codelet when the executor evaluates an
LCINL node is not the reason why decompositions with LCINL nodes lose to right�expanded
decompositions�
Figure ��
� shows the DP optimal decompositions when the data access penalty is

added for twiddle nodes and all twiddle factor multiplications are removed� As shown in
the �gure� under these conditions many of the decompositions are somewhat balanced�
and only one is right�expanded� This result suggests that balanced decompositions are
inferior to right�expanded decompositions due to a combination of two factors� twiddle
factors multiplications that are performed outside of codelets for LCINL nodes� and the
cost associated with accessing extra arrays for LCINL nodes�

��� Conclusions

The following conclusions can be drawn from the results presented in this chapter�

� Even if FFTW is modi�ed so that it can compute FFTs according to arbitrary de�
compositions instead of only right�expanded decompositions� the right�expanded de�
compositions are still optimal�

��

16

2 14

5 9

4 5

16

2 14

2 12

2 10

5 5

16

5 11

2 9

5 4

16

2 14

4 10

5 5

16

5 11

2 9

4 5

17

2 15

5 10

5 5

17

2 15

5 10

4 6

17

2 15

5 10

4 6

2 4

17

2 15

2 13

5 8

2 6

17

2 15

5 10

4 6

1 5

18

2 16

2 14

5 9

4 5

18

2 16

2 14

2 12

2 10

5 5

18

2 16

2 14

4 10

5 5

18

3 15

2 13

5 8

2 6

18

3 15

5 10

5 5

19

2 17

2 15

5 10

5 5

19

2 17

2 15

2 13

5 8

2 6

19

2 17

2 15

5 10

4 6

19

2 17

2 15

5 10

4 6

1 5

19

2 17

2 15

5 10

4 6

2 4

20

4 16

2 14

2 12

2 10

5 5

20

4 16

2 14

5 9

4 5

20

4 16

2 14

4 10

5 5

20

5 15

5 10

5 5

20

2 18

2 16

2 14

2 12

2 10

5 5

Figure ��

� Best Five Decompositions for FFTs of Size
�	 through
��

� N�best DP and stride sensitive DP do not o�er an advantage over basic DP when
searching for a fast decomposition for FFTW�

�� Neither the cost of accessing extra arrays for LCINL nodes nor the cost of perform�
ing twiddle factor multiplications outside of codelets by itself is the reason that the
right�expanded trees are optimal� Instead� it is a combination of these two factors
that causes non�right�expanded decompositions to be inferior to right�expanded de�
compositions�

In the previous chapter it was shown that the optimal Cooley�Tukey decompositions for
FFTs larger than
�� tend to be somewhat balanced� In this chapter it was shown that
the optimal decompositions are right�expanded� but the exact reason why is not clear� It
was concluded that the reason was due at least in part to the fact that non�right�expanded
decompositions require extra arrays to be accessed and twiddle factor multiplications to
be performed outside of codelets� However� it is not clear whether or not there is some
other reason why right�expanded decompositions are the fastest� Therefore� in the next
chapter� a powerful FFT program that does not access extra arrays for non�right�expanded
decompositions or use codelets to perform twiddle factor multiplications is investigated�

��

10 15 20
0

0.2

0.4

0.6

0.8

1
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Basic DP
N−best DP
Stride Sensitive DP

Figure ��
�� Comparison of Dynamic Programming Search Strategies

7

2 5

8

3 5

9

5 4

10

5 5

11

2 9

5 4

12

4 8

3 5

13

5 8

3 5

14

5 9

5 4

15

5 10

5 5

16

5 11

2 9

5 4

17

5 12

4 8

3 5

18

5 13

5 8

3 5

19

13 6

5 8

3 5

20

13 7

5 8 2 5

3 5

Figure ��
�� DP Optimal Decompositions with Penalty Added for Twiddle Nodes

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

With Penalty
Without Penalty

Figure ��
�� Best Runtimes With and Without the Twiddle Node Penalty

7

2 5

8

2 6

9

5 4

10

5 5

11

2 9

5 4

12

2 10

5 5

13

2 11

2 9

5 4

14

4 10

5 5

15

5 10

5 5

16

5 11

2 9

5 4

17

2 15

5 10

5 5

18

3 15

5 10

5 5

19

2 17

2 15

5 10

5 5

20

5 15

5 10

5 5

Figure ��
�� DP Optimal Decompositions with Penalty for LCINL Nodes Removed

��

7

3 4

8

3 5

9

2 7

3 4

10

4 6

3 3

11

2 9

2 7

3 4

12

2 10

4 6

3 3

13

2 11

2 9

2 7

3 4

14

2 12

2 10

4 6

3 3

15

2 13

2 11

2 9

2 7

3 4

16

2 14

2 12

2 10

4 6

3 3

17

2 15

2 13

2 11

2 9

2 7

3 4

18

2 16

2 14

2 12

2 10

4 6

3 3

19

2 17

2 15

2 13

2 11

2 9

2 7

3 4

20

2 18

2 16

2 14

2 12

2 10

4 6

3 3

Figure ��
�� DP Optimal Decompositions with All Twiddle Factor Multiplications Removed

7

3 4

8

3 5

9

4 5

10

46

33

11

2 9

4 5

12

48

53

13

58

53

14

8 6

3 5 3 3

15

8 7

3 5 3 4

16

8 8

3 5 3 5

17

4 13

8 5

3 5

18

5 13

8 5

3 5

19

6 13

3 3 8 5

3 5

20

6 14

3 3 8 6

3 5 3 3

Figure ��
�� Penalty for Twiddle Nodes and All Twiddle Factor Multiplications Removed

��

Chapter �

Experiments with Egner�s FFT

Program

��� Introduction

����� Motivation and Goals

The results of experiments conducted with a modi�ed version of FFTW in Chapter � sug�
gest that right�expanded decompositions are optimal� in contradiction to results presented
in Chapter
 that suggest that balanced decompositions are optimal� However� since it was
determined that the FFTW tool su�ers a penalty for non�right�expanded decompositions�
it was decided that another program would be needed to investigate the decompositions
without bias� A program developed by Sebastian Egner and investigated in this chapter is
highly appropriate for the task� since it su�ers no penalty for non�right�expanded decom�
positions� However� as shown in Figure ��
� Egner�s program is signi�cantly slower than
FFTW� which bene�ts from highly�optimized� machine�generated code for the base cases
of the recursion and the fact that it computes FFTs without performing explicit permuta�
tions� Therefore� it was decided that Egner�s program would �rst have to be signi�cantly
optimized so that it would be competitive with FFTW before it could be used as a reliable
tool for �nding fast decompositions�

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFTW
Egner

Figure ��
� FFTW vs� Egner�s FFT Program

The goals of the research discussed in this chapter are the following�

� Implement various modi�cations to Egner�s program to make it more competitive

��

with FFTW�

� Investigate the topology of the optimal decompositions using improved versions of
Egner�s program�

�� Determine which aspects of Egner�s program and FFTW are most important for
creating an e�cient FFT implementation�

����� Introduction to Egner
s Program

Egner�s program has many features that make it exceptionally powerful� The main features
are�

� Generic arithmetics over an arbitrary base �eld�

� Various algorithms for computing the FFT other than Cooley�Tukey� including Rader�
Good�Thomas� Bluestein� and Q�power�

�� E�cient methods for non�power�of�two FFT sizes

�� E�cient methods for large prime FFT sizes�

�� A syntactical interface that makes experiments easy� The interface allows decompo�
sitions to be expressed in words so that they are highly readable�

�� Reentrant design that allows several applications to use the package at a single time�

Five important elements of Egner�s program that are discussed next are the small�FFT
code modules� the plan structure� the iterative nature� the permutation arrays� and the
executor subroutine�

Small�FFT Code Modules

Like FFTW� Egner�s program used highly optimized code modules to compute the small
FFTs at the base cases of the recursion in the Cooley�Tukey algorithm� Egner�s program
includes code modules for computing FFTs of size
� through
�� The algorithms for the
code modules were adapted from the Nussbaumer text ���� Each small�FFT code module
computes

x� �IC �FN � ID	x� ���
	

where x is the array containing the data to be transformed� and C and D are integer
arguments to the code module� The purpose of the arguments C and D is explained below�

The Plan Structure

Like FFTW� Egner�s program uses a plan structure to represent Cooley�Tukey decompo�
sitions� There are two types of nodes in Egner�s plan structure"Cooley�Tukey nodes and
small�FFT nodes� The two types of plan nodes are illustrated in Figure ��
� As shown in
the �gure� Cooley�Tukey nodes contain pointers to an array of twiddle factors� a permuta�
tion array� a left�child node� and a right�child node� The concept of a permutation array is
explained below� The small�FFT nodes� also shown in Figure ��
� contain only a pointer to
a code module that computes a small FFT�

��

Cooley�Tukey Node

t � twiddle factor array �T�n
�s 	t � permutation array �L�n

�s 	t���
left�child node�
Plan for an FFT
of size
r

tHHj right�child node�
Plan for an FFT
of size
s

Small�FFT Node

t � small�FFT subroutine

Figure ��
� The Two Types of Plan Nodes in Egner�s Program

Unlike the FFT programs discussed in Chapters
 and �� Egner�s program computes
FFTs using the transpose of the tensor product formulation of the Cooley�Tukey �CT	
algorithm shown below�

FRS � �FR � IS	T
RS
S �IR � FS	L

RS
R � ���
	

The transpose of the algorithm in Equation ���
	 must compute the same result as the
untransposed algorithm since the DFT matrix Fmn is symmetric� Egner�s algorithm is
derived as follows� Using the rule

�AB	T � BTAT� ����	

the transpose of Fmn can be written as

FT
RS �

�
LRSR

T
�IR � FS	

T
�
TRS
S

T
�FR � IS	

T� ����	

Next� using the rule
�A�B	T � AT

�BT� ����	

Equation ����	 can be written as

FRS �
�
LRSR

T
�ITR � FT

S 	
�
TRS
S

T
�FT

R � I
T
S 	� ����	

Finally� using the fact that matrices IR� FS � and T
RS
S are all symmetric� and the fact that

�
LRSR

T
� LRSS � ����	

Equation ����	 can be written as

FRS � LRSS �IR � FS	T
RS
S �FR � IS	� ����	

Using the two plan nodes shown in Figure ��
� one can create any decomposition of the form
shown in Equation ����	� An example of a complete plan for Egner�s program is shown in
Figure ���� The plan corresponds to the decomposition shown in Figure ����

Iterative Nature of the Program

An important di�erence between Egner�s program and FFTW is that Egner�s program is
not quite as recursive as FFTW� In fact� Egner�s program has an iterative nature that
may hinder performance for data locality reasons that are explained below� The iterative

��

t � twiddle factors from T��

��t � L��

�� arrayt��� tHHj t � twiddle factors from T��

��t � L��

�� arrayt
�
�
�
�	

tHHj

t � F�� subroutine

t � F�� subroutine

t�twiddle factors from T��

�� t�L��

�� array t��� t
C
C
C
CW

t�F�� subroutine

t�F�� subroutine

Figure ���� Plan Corresponding to the Decomposition in Figure ���

6

2 4

1 1 3 1

Figure ���� A Cooley�Tukey Decomposition for an FFT of Size
��

nature of Egner�s program can be explained with the following example� Consider the
decomposition shown in Figure ���� An FFT computation according to this decomposition
can be written in tensor product notation as�

y � �F�� � I��	T
��

��

�
I�� �

h
�F�� � I��	T

��

���I�� � F��	L
��

��

i

L��

��x� ����	

FFTW would compute the FFT by applying the operations in about the order that they
are shown in Equation ����	� with the exception that FFTW would not perform explicit
permutations� In contrast� Egner�s program uses a procedure that di�ers signi�cantly from
the order of operations shown in Equation ����	� First of all� as explained above� Egner�s
program uses the transpose of the regular algorithm� In this case� the transpose of the
algorithm is given by�

y � L��

��

�
I�� �

h
L��

���I�� � F��	T
��

���F�� � I��	
i

T��

���F�� � I��	x� ���
�	

Secondly� Egner�s program does not compute the FFT in the order speci�ed by the paren�
theses in Equation ���
�	� Using properties of the tensor product introduced in Chapter
�
Equation ���
�	 can be expanded as�

y � L��

���I�� � L��

��	�I�� � F��	�I�� �T��

��	�I�� � F�� � I��	T
��

���F�� � I��	x� ���

	

Egner�s program performs the operations from right to left exactly in the order that they
are shown in Equation ���

	� Comparing Equations ����	 and ���

	� one sees that while
FFTW alternates between performing F�� �s and F�� �s� Egner�s program �rst computes all
of the F�� �s and then computes all of the F�� �s afterwards� The advantage of the approach
used by FFTW is that the F�� and the F�� are applied to the same section of data at
roughly the same time� In contrast� Egner�s program �rst applies F�� �s to all �� elements of
the data� and then applies F�� �s to all �� elements of the data� Essentially� FFTW uses the
data more e�ciently with respect to the cache than Egner�s program� On the other hand�

��

6

2 4

1 3

Figure ���� A Cooley�Tukey Decomposition for an FFT of Size
	

since Egner�s program uses one code module for computing a small DFT at a time� instead
of alternating between code modules as FFTW does� Egner�s program uses the instructions
more e�ciently than FFTW with respect to the cache�

Execution of a Plan

Like FFTW� Egner�s program also uses an executor program to compute FFTs correspond�
ing to the decomposition in a plan� Egner�s executor program begins evaluating a plan at
the root node� and computes an FFT by evaluating all of the nodes in the plan using a
depth��rst search traversal�
When Egner�s executor program encounters a node of type Cooley�Tukey� it computes

the following�

x � �IC � FR � IDS	x� ���

	

x � �IC �TRS
S � ID	x� ���
�	

x � �ICR � FS � ID	x� ���
�	

x � �IC � LRSS � ID	x� ���
�	

where x is the array that contains the data to be transformed� The parameters C and D are
both set to
 for the root node� and accumulate with deeper levels of recursion� Speci�cally�
C increases with each deeper left child node that is evaluated� while D increases with
each deeper right child node that is evaluated� The executor performs the computation in
Equation ���

	 by recursively calling itself with the left�child node of the current node�
Similarly� the executor performs the computation in Equation ���
�	 by recursively calling
itself with the right�child node of the current node� The permutation LRSS is performed
according to the permutation array associated with the current node� The procedure for
storing a permutation in an array and then performing the permutation according to the
array are explained in the next section�
When Egner�s program encounters a small�FFT node� it performs the computation

shown in Equation ���
	� The computation is performed with a single call to the small code
module associated with the plan node�

Permutations

An important feature of Egner�s program is that it performs explicit permutations on the
data� unlike FFTW� This practice allows Egner�s program to perform FFTs completely in�
place� and is the reason that Egner�s program does not penalize for decompositions that are
not completely right�expanded as FFTW does� Each permutation is stored in cycle notation
as an array of signed integers� The cycle �x�� x�� � � � � xN 	 corresponds to a permutation of a
vector of lengthM � N in which element xi is moved to position xi��� i �
� � � � � N�
� and
element xN is moved to position x�� Figure ��� shows both of the cycles needed to represent
the permutation L

�x� Figure ��� illustrates the steps that Egner�s program would take to

�

x

x�

x	

x�

x�

x�

x�

x� �

��

�
�
�

	
�

�	

�
����	

x

x�

x	

x�

x�

x�

x�

x�

x

x�

x	

x�

x�

x�

x�

x�

�
�

�

�

�

�

�

�
�	

������	

x

x	

x�

x�

x�

x�

x�

x�

Figure ���� Cycles for the Permutation L

�x

implement the permutation corresponding to the cycle �
����	� A single permutation usually

x�

x�

x�

x�

x�

x��
current value

temp� value

Step

x�

x�

x�

x�

x�

x�

x�

current value

temp� value

Step

x�

x�

x�

x�

x�

x�

x�

��
��

current value

temp� value

Step �

x�

x�

x�

x�

x�

x�

x�HH
HY

current value

temp� value

Step �

x�

x�

x�

x�

x�

x�

x�

current value

temp� value

Step �

x�

x�

x�

x�

x�

x�

x�
�
�
�
��

current value

temp� value

Step �

x�

x�

x�

x�

x�

x�

x�����

current value

temp� value

Step �

x�

x�

x�

x�

x�

x�

x�

�
current value

temp� value

Step �

Figure ���� Implementation of the Permutation Corresponding to the Cycle �
����	

cannot be represented with one cycle only� Therefore� in order to store multiple cycles in a
single array� Egner�s program uses a negative integer to indicate the end of each cycle�

��� Methodology

����� Improving the Order of the Twiddle Factors

In Egner�s program the twiddle factors are computed and stored in the plan nodes in the
following order�

wi�� � e
�j���N�i� i � �� � � � � N �
� ���
�	

where wi is the i�th element in the array of twiddle factors� However� when an FFT is
computed� the twiddle factors are accessed in a di�erent order� so index computation for
the array of twiddle factors must be performed as the FFT is being computed� In order to

�

eliminate the need for index computation� Egner�s program was modi�ed so that the twiddle
factors are stored in the order that they are accessed� That order� which corresponds to the
diagonal of the twiddle factor matrix Tmn

m � is the following�

wi�k�m�� � e
�j���N�i�k� i � �� � � � �m�
� k � �� � � � � n�
� ���
�	

����� Making the Program More Recursive

In order to use the data cache more e�ciently� the iterative nature of Egner�s program was
removed� This was done in two steps� The �rst step was to modify Egner�s code modules
for computing small�FFTs so that instead of performing the computation in Equation ���
	�
the small�FFT code modules simply compute

x� FNx ���
�	

at a particular stride� The second step was to modify Egner�s executor program� The
executor program was modi�ed so that when it encounters a node of type Cooley�Tukey� it
computes

x � �FR � IS	x� ���
�	

x � �IR � FS	T
RS
S x� ���
�	

x � LRSS x� ���

	

where x is the array that contains the data to be transformed� The executor performs the
S FR�s in Equation ���
�	 by calling itself recursively n times to evaluate the left�child node
of the current node� Similarly� the executor performs the R FS�s in Equation ���
�	 by
calling itself R times recursively to evaluate the right�child node of the current node�
The executor program was also modi�ed so that when it encounters a node of type

small�FFT� it performs the computation in Equation ���
�	� such that the FFT is performed
in�place at a particular stride� The computation is performed with a single call to one of
the modi�ed small�FFT code modules�

����� Adding the No�Twiddle Codelets from FFTW

The next modi�cation made to Egner�s program was to replace the small�FFT code modules
with no�twiddle codelets from FFTW� This is a straight�forward modi�cation that requires
only that the small�FFT nodes in the plans be changed so that they include pointers to
FFTW codelets instead of to Egner�s small�FFT code modules�

����� Untransposing the Cooley�Tukey Algorithm

Egner�s program was also modi�ed so that it no longer uses the transpose of the Cooley�
Tukey algorithm� This change is made by modifying the executor program� The executor
program is modi�ed so that when it encounters a node of type Cooley�Tukey� it computes

x � LRSR x� ���

	

x � TRS
S �IR � FS	x� ���
�	

x � �FR � IS	x� ���
�	

where x is the array that contains the data to be transformed�

��

����� Adding the Twiddle Codelets from FFTW

In order to insert the twiddle codelets from FFTW� it is �rst necessary to untranspose the
Cooley�Tukey algorithm� since each twiddle codelet computes

x� �FR � IS	T
RS
S x� ���
�	

and the expression �FR�IS	T
RS
S does not appear in the transposed version of the algorithm

shown in Equation ����	� The method used to untranspose the algorithm was explained in
the previous section� The next step in inserting the twiddle codelets into Egner�s program
is to create a new type of plan node� The new type of plan node is called a twiddle node�
and is illustrated in Figure ���� An entire plan that includes two twiddle nodes is shown in

t � twiddle factor array �T�n
�s 	t � permutation array �L�n

�r 	t � size
r twiddle codelettHHHj right�child node�
Plan for an FFT
of size
s

Figure ���� A Twiddle Node

Figure ���� The plan corresponds to the decomposition shown in Figure ����

t � twiddle factors from T��

��t � L��

�� arrayt��� tHHj t � twiddle factors from T��

��t � L��

�� arrayt � twiddle codelet of size
�tHHHj t � no�twiddle codelet of size
�

t�twiddle factors from T��

�� t�L��

�� array t�twiddle codelet of size
� tHHHj t�no�twiddle codelet of size
�

Figure ���� Plan with Twiddle Nodes Corresponding to the Decomposition in Figure ���

The last step in inserting the twiddle codelets is to modify the executor program so that
it can accommodate the twiddle codelets� The executor program is modi�ed so that when
it encounters a node of type twiddle� it performs the following computations�

x � LRSR x� ���
�	

x � �IR � FS	x� ���
�	

x � �FR � IS	T
RS
S x� ���
�	

where x is the array containing the data to be transformed� The executor performs the R
FS �s in Equation ���
�	 by recursively calling itself R times to evaluate right�child node of
the current node� The computation in Equation ���
�	 is performed with a single call to
the twiddle codelet associated with the current node�

��

��� Results

Figure ��
� shows the dynamic programming �DP	 optimal decompositions for an unmod�
i�ed version of Egner�s program� As shown in the �gure� the optimal decompositions tend
to be somewhat balanced�

7

34

22

8

35

23

9

36

33

10

4 6

2 2 3 3

11

2 9

6 3

3 3

12

6 6

3 3 3 3

13

4 9

2 2 6 3

3 3

14

2 12

6 6

3 3 3 3

15

9 6

6 3 3 3

3 3

16

13 3

4 9

2 2 6 3

3 3

17

11 6

2 9 3 3

6 3

3 3

18

3 15

9 6

6 3 3 3

3 3

19

2 17

11 6

2 9 3 3

6 3

3 3

20

5 15

3 2 9 6

6 3 3 3

3 3

Figure ��
�� DP Optimal Trees Found Using Egner�s FFT Program

Figure ��

 shows the improvement gained when the precomputed twiddle factors are
stored in the order in which they are accessed instead of in the order that Egner originally
used� The improvement in run�time is as much as ��# for FFTs of size
� through
�� but
is only about �# for FFTs of size
�� through
���

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Improved TF Order
Old TF Order

Figure ��

� Performance Comparison for Two Twiddle Factor Orderings

As shown in Figure ��

� the DP optimal decompositions when the twiddle factor order�
ing is improved have a similar topology to the DP optimal decompositions for the original
twiddle factor ordering� shown in Figure ��
��
Figure ��
� shows the improvement gained by making Egner�s program more recursive�

As shown in the �gure� there is little improvement for FFTs of size
� through
��� but
there is up to ��# improvement for the FFTs of size
�	 through
��� The reason for the
improvement is that the more recursive algorithm uses the data cache more e�ciently than
the iterative algorithm� The reason that there is no improvement for FFT sizes smaller
than
�	 is that the size of the level�two cache on the computer used for the experiment
is �

 kB� or
�� bytes� and the size of each double precision complex number is
� bytes�
Therefore� an entire array of up to
�� complex numbers can �t in the level�two cache�
Figures ��
� and ��
� show the DP optimal decompositions for the recursive version

��

7

34

22

8

35

32

9

36

33

10

5 5

2 3 2 3

11

2 9

6 3

3 3

12

6 6

3 3 3 3

13

3 10

5 5

2 3 2 3

14

2 12

6 6

3 3 3 3

15

6 9

3 3 6 3

3 3

16

11 5

2 9 2 3

6 3

3 3

17

2 15

6 9

3 3 6 3

3 3

18

3 15

6 9

3 3 6 3

3 3

19

4 15

2 2 6 9

3 3 6 3

3 3

20

3 17

2 15

6 9

3 3 6 3

3 3

Figure ��

� DP Optimal Decompositions Using the Improved Twiddle Factor Ordering

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

More Recursive
Less Recursive

Figure ��
�� The Result of Making Egner�s Program More Recursive

of Egner�s program� Comparing these �gures to Figure ��

� one immediately sees that
the optimal decompositions for the recursive version of the program are much more often
right�expanded than the optimal decompositions for the iterative version�
Figure ��
� shows the improvement gained when the no�twiddle codelets from FFTW

are added to Egner�s program� As shown in the �gure� there is �����# improvement for
most FFT sizes� The improvement is due to the optimizing techniques used in the creation
of the FFTW codelets and explained in ����
Figure ��
� shows the DP optimal decompositions for the version of Egner�s program

with the no�twiddle codelets inserted� As shown in the �gure� all of the trees are completely
right�expanded�
Figure ��
� shows a comparison of the run times for the untransposed version of the

Cooley�Tukey algorithm with run times for the transposed version of the algorithm� As
shown in the �gure� within the precision of the timer� which is about �#� the two versions
of the algorithm perform equally well�
Figure ��
� shows the DP optimal decompositions for the untransposed version of the

Cooley�Tukey algorithm� Comparing Figures ��
� and ��
� one immediately sees that the
optimal decompositions are the same no matter which version of the algorithm is used�
Figure ��
� shows a comparison of the runtimes of Egner�s program with and without

the twiddle codelets from FFTW inserted� As shown in the �gure� there is almost zero
improvement in performance within the precision of the timer� This result suggests that
the twiddle factor multiplications performed inside the twiddle codelets are not signi�cantly

��

7

25

23

8

2 6

3 3

9

3 6

3 3

10

2 8

2 6

3 3

11

2 9

3 6

3 3

12

2 10

2 8

2 6

3 3

13

2 11

2 9

3 6

3 3

14

5 9

3 2 3 6

3 3

15

3 12

2 10

2 8

2 6

3 3

16

2 14

5 9

3 2 3 6

3 3

17

3 14

5 9

3 2 3 6

3 3

18

3 15

3 12

2 10

2 8

2 6

3 3

Figure ��
�� DP Optimal Decompositions For the Recursive Implementation� n � �� � � � �
�

19

3 16

2 14

5 9

3 2 3 6

3 3

20

4 16

2 2 2 14

5 9

3 2 3 6

3 3

Figure ��
�� DP Optimal Decompositions for the Recursive Implementation� n �
��
�

more e�cient than the twiddle factor multiplications performed in a straight�forward man�
ner outside of the codelets�
Figure ��

 shows the DP optimal decompositions for the version of Egner�s program

with twiddle codelets from FFTW inserted� Comparing this �gure with Figure ��
�� one
sees that there is little di�erence in the topology of the optimal decompositions with and
without the twiddle codelets other than that left child nodes of size
� occur more frequently
when twiddle codelets are inserted�
Figure ��

 shows the overall improvement made to Egner�s program by implementing

the changes discussed above� As shown in the �gure the overall improvement is typically
about ��# �
Figure ��
� shows a comparison of Egner�s program with all of the modi�cations to

FFTW� As shown in the �gure� FFTW is about
�# faster for FFTs larger than
��� The
gap in performance between the two programs decreases for FFTs smaller than
���

��� Conclusions

The following �ndings were presented in this chapter�

� The recursive version of the Cooley�Tukey algorithm is up to ��# faster than the
iterative version for FFT sizes that exceed the size of the L
 cache on a pentium

��

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

With No−Twiddle Codelets
Without Codelets

Figure ��
�� Egner�s Program With and Without No�Twiddle Codelets Inserted

7

3 4

8

5 3

9

5 4

10

5 5

11

2 9

5 4

12

6 6

13

6 7

3 4

14

6 8

5 3

15

6 9

5 4

16

6 10

5 5

17

5 12

6 6

18

6 12

6 6

19

6 13

6 7

3 4

20

6 14

6 8

5 3

Figure ��
�� DP Optimal Decompositions with No�Twiddle Codelets Inserted

computer�

� Storing the twiddle factors in the order that they will be accessed instead of the order
of increasing powers of an N �th root of unity can result in about a ��# increase in
performance for FFTs of size
� through
��

�� The no�twiddle codelets from FFTW result in a �����# increase in performance when
used instead of the hand�optimized implementations of algorithms from Nussbaumer
as the base cases of the recursion in an FFT program� The principal advantage that
the no�twiddle codelets have over Egner�s code for the small FFTs is that Egner has
only code modules for base cases up to size
�� while FFTW has codelets for base cases
up to size
	� The FFTW codelets are machine�generated and feature optimization
that would be nearly impossible to implement by hand�

�� The twiddle factor multiplications performed inside the twiddle codelets from FFTW
are not signi�cantly more e�cient than a straight�forward hand�coded implementation
of the operation� In other words� an FFT implementation that uses no�twiddle codelets
from FFTW as the base cases of the recursion gains very little in terms of performance
if the twiddle codelets are also inserted�

�� Transposing the Cooley�Tukey algorithm results in no change in the performance of
the FFT computation�

�� For an iterative implementation of the Cooley�Tukey FFT� somewhat balanced de�
compositions are optimal�

��

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Regular Algorithm
Transposed Algorithm

Figure ��
�� The Result of Transposing the Cooley�Tukey Algorithm

7

3 4

8

3 5

9

5 4

10

4 6

11

2 9

5 4

12

6 6

13

5 8

3 5

14

6 8

3 5

15

6 9

5 4

16

6 10

4 6

17

5 12

6 6

18

6 12

6 6

19

6 13

5 8

3 5

20

6 14

6 8

3 5

Figure ��
�� DP Optimal Decompositions Using Transposed Cooley�Tukey Algorithm

�� For a recursive implementation of the algorithm� right�expanded decompositions are
optimal� even if there is no penalty associated with accessing extra arrays for non�
right�expanded decompositions�

��

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
x 10

−7

k
n

o
rm

al
iz

ed
 r

u
n

 t
im

e

Twiddle Codelets
No−Twiddle Codelets

Figure ��
�� Egner�s Program With and Without Twiddle Codelets Inserted

7

2 5

8

5 3

9

5 4

10

5 5

11

2 9

5 4

12

2 10

5 5

13

5 8

5 3

14

5 9

5 4

15

5 10

5 5

16

2 14

5 9

5 4

17

3 14

5 9

5 4

18

5 13

5 8

5 3

19

5 14

5 9

5 4

20

5 15

5 10

5 5

Figure ��

� DP Optimal Decompositions with Twiddle Codelets Inserted

0 5 10 15 20
0

0.5

1

1.5

2
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

Improved Egner
Old Egner

Figure ��

� The Overall Improvement Made to Egner�s Program

��

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
x 10

−7

k

n
o

rm
al

iz
ed

 r
u

n
 t

im
e

FFTW
Improved Egner

Figure ��
�� FFTW vs� the Improved Version of Egner�s Program

�

Chapter �

Conclusions and Future Work

In this report we investigated the e�ect of di�erent Cooley�Tukey decompositions on the
performance of FFT programs on a modern computer architecture� The reason for inves�
tigating the decompositions was to determine which topological features correspond to the
fastest FFT implementations� In Chapter
� it was shown that for FFTs of relatively small
sizes"
� through
��"the runtime for the average decomposition can be up to three times
the runtime for the best decomposition� It was also shown that a basic dynamic program�
ming search performs as well as an exhaustive search at �nding fast decompositions� at least
for FFTs of size
� through
��� Futhermore� two more sophisticated versions of dynamic
programming"n�best DP and stride sensitive DP"were introduced� but neither proved
more e�ective than basic DP at �nding fast decompositions� Moreover� it was found using
DP that the optimal decompositions for larger FFTs"sizes
�� through
��"tend to be
somewhat balanced�
In Chapter �� it was shown that if FFTW is modi�ed so that it can use arbitrary

decompositions to compute FFTs� it is still no faster than when it can use only right�
expanded decompositions� Also� it was shown that basic DP performs as well as n�best
DP and stride sensitive DP at �nding fast decompositions for FFTW� Furthermore� it
was shown that if not for the fact that balanced decompositions require extra arrays to
be accessed and twiddle factor multiplications to be performed outside of codelets� the
optimal decompositions for the expanded version of FFTW would be balanced� However�
under normal conditions� the best decompositions for the expanded version of FFTW are
overwhelmingly right�expanded�
In Chapter �� it was shown that a recursive version of the Cooley�Tukey algorithm may

be up to ��# faster than a more iterative version for FFT sizes that exceed the size of the
L
 cache on a Pentium computer� Also� it was shown that storing the twiddle factors in
the order that they will be accessed instead of the order of increasing powers of an N �th
root of unity can result in about a ��# increase in performance for FFT sizes of
� through

�� Furthermore� it was shown that transposing the Cooley�Tukey algorithm results in
no change in the performance of the FFT computation� Moreover� it was shown that for
an iterative� in�place implementation of the Cooley�Tukey algorithm� somewhat balanced
decompositions tend to be optimal� whereas for a recursive� in�place implementation of the
algorithm� right�expanded decompositions are optimal� Lastly� it was shown that even with
all of the optimizations made to Egner�s program� it is still not as fast as FFTW� In fact� the
unmodi�ed version of FFTW was shown to be faster than all other FFT implementations
discussed in this report�
In the future� we will take several steps to extend this research� In particular� we

�

plan to conduct experiments using architectures other than Pentium� including parallel
architectures� In addition� we plan to study compilers more closely in order to learn how
to write source code that can be compiled into the most e�cient assembly code possible�
Furthermore� we plan to use tools such as a pro�ler� a performance counter� and a cache
simulator in the design of future programs� Finally� we plan to expand the research to
include transforms other than the FFT� such as the discrete cosine transform and wavelet
transforms�

��

Bibliography

�
� J� W� Cooley and J� W� Tukey� An algorithm for the machine calculation of complex
Fourier series� Mathematical Computation�
��
��$��
�
����

�
� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to Algo�

rithms� The MIT Press� Cambridge� Massechusetts�
����

��� Sebastian Egner� Zur algorithmischen Zerlegungstheorie linearer Transformationen mit

Symmetrie� PhD thesis� Universit�aT Karlsruhe �Technische Hochshule	� July
����

��� Matteo Frigo� A fast Fourier transform compiler� In Proceedings of the ���� ACM

SIGPLAN Conference on Programming Language Design and Implementation �PLDI��
Atlanta� Georgia� May
����

��� Matteo Frigo and Steven G� Johnson� The fastest Fourier transform in the West� Tech�
nical report� MIT Laboratory for Computer Science� September
����

��� Howard W� Johnson and C� Sidney Burrus� The design of optimal DFT algorithms using
dynamic programming� IEEE Transactions on Acoustics� Speech� and Signal Processing�
�
����$���� April
����

��� H� J� Nussbaumer� Fast Fourier Transformation and Convolution Algorithms� Springer�

 edition�
��
�

��� David Sepiashvili� Performance models and search methods for optimal FFT implemen�
tations� Master�s thesis� Carnegie Mellon University� Pittsburgh� May
����

��� Richard Tolimieri� Myoung An� and Chao Lu� Algorithms for Discrete Fourier Trans�

form and Convolution� Springer�Verlag� New York�
nd edition�
����

��

