
ALGEBRAIC DERIVATION OF GENERAL RADIX COOLEY-TUKEY ALGORITHMS FOR
THE REAL DISCRETE FOURIER TRANSFORM

Yevgen Voronenko and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University

ABSTRACT

We first show that the real version of the discrete Fourier transform
(called RDFT) can be characterized in the framework of polynomial
algebras just as the DFT and the discrete cosine and sine transforms.
Then, we use this connection to algebraically derive a general radix
Cooley-Tukey type algorithm for the RDFT. The algorithm has a
similar structure as its complex counterpart, but there are also impor-
tant differences, which are exhibited by our Kronecker product style
presentation. In particular, the RDFT is decomposed into smaller
RDFTs but also other auxiliary transforms, which we then decom-
pose by their own Cooley-Tukey type algorithms to obtain a full re-
cursive algorithm for the RDFT.

1. INTRODUCTION

The discrete Fourier transform (DFT) is the ubiquitous tool in signal
processing. By definition, the DFT processes complex inputs to pro-
duce complex outputs. In many cases, the input signal is real, and it
is well-known that in this case the computational cost can be reduced
by a factor of roughly 2 [1]. In fact, this “real” DFT (RDFT) can be
viewed again as a transform that is related to the DFT, but maps real
inputs to real outputs. So it is not surprising that many DFT algo-
rithms have RDFT counterparts, but the derivation turns out to be
a nontrivial task. In fact, while there is a considerable body of lit-
erature on complex fast Fourier transforms (FFTs), publications on
real FFTs are comparatively few and far. This becomes particularly
apparent in standard books on the topic: the use of polynomial alge-
bra in [2] to derive DFT algorithms is restricted to the complex case;
similarly [3, 4] develop the underpinning of FFTs and propose the
very concise Kronecker product formalism for their representation,
but again focus only on the complex case. Only a radix-2 Cooley-
Tukey real FFT is discussed in [3].

The contribution of this paper is two-fold. First, we show that
the RDFT, just as the DFT, can be characterized in the framework
of polynomial algebras. Then, we derive a general-radix Cooley-
Tukey type algorithm for the RDFT using the same general principle
that accounts for the (complex) Cooley-Tukey FFT. Thus, in contrast
to previous work, we do not derive the algorithms by manipulating
the actual transform, nor by specializing the corresponding complex
FFT. This is theoretically satisfying, since we already showed that
also many discrete cosine and sine transform algorithms can be de-
rived this way [5, 6]. Second, the derivation naturally leads to a pre-
sentation using Kronecker products in the spirit of [3, 4]. This way,
it also becomes apparent that the RDFT decomposes into smaller
transforms, which however are of different types. These “auxiliary”
transforms are then decomposed using their own Cooley-Tukey type
algorithms, again derived using polynomial algebras. Note that the
complex FFT decomposes the DFT into smaller DFTs of the same
type and is thus of simpler structure.

Cooley-Tukey type algorithms for the RDFT were derived in
[1] for radix 2 and split radix 2/4, and for a general radix in [7].

This work was supported by NSF through award 0310941.

FFTW [8] also uses a general radix RDFT algorithm, which is very
close to the one we derive this paper. An algebraic method for pro-
jecting complex FFTs was presented in [9], but it appears that the
method, as presented based on normal bases, works for the discrete
Hartley transform, but not for the RDFT.

In Section 2 we provide the background on polynomial algebras
and explain their relationship to signal transforms. Then we present
a general method that, as we illustrate, allows us to concisely de-
rive the Cooley-Tukey FFT through a stepwise decomposition of its
associated polynomial algebra. The same method is then used in
Section 3 to derive the corresponding RDFT algorithms, after estab-
lishing the algebraic interpretation of the RDFT.

2. POLYNOMIAL ALGEBRAS AND TRANSFORMS

In this section we introduce polynomial algebras and explain how
they are associated to transforms. Then we present a general decom-
position theorem for polynomial algebras and show that it can be
used to derive the Cooley-Tukey FFT. Later, we will use the same
theorem to derive Cooley-Tukey type algorithms for the RDFT.

Polynomial algebra. An algebra is a vector space that permits
also multiplication and that is closed under multiplication. Examples
include the set of complex or real numbersC or R, and the set of
polynomialsC[x] or R[x].

The key player in this paper is thepolynomial algebra. Given a
fixed polynomialp(x) of degreedeg(p) = n, we define a polyno-
mial algebra as the set

C[x]/p(x) = {s(x) | deg(s) < deg(p)}

of polynomials of degree smaller thanp with addition and multipli-
cation modulop. As a vector space,C[x]/p(x) has dimensionn.
Intuitively, C[x]/p(x) is the set of polynomialsC[x] with the condi-
tion p(x) = 0 imposed.

Chinese remainder theorem (CRT). Assumep(x) = q(x)r(x)
factorizes into two coprime (no common factors) polynomialsq and
r. Then the Chinese remainder theorem (CRT) for polynomials gives
the linear mapping1

∆ : C[x]/p(x) → C[x]/q(x) ⊕ C[x]/r(x),
s(x) 7→ (s(x) modq(x), s(x) modr(x)).

Here,⊕ is the direct sum of vector spaces with elementwise opera-
tion. If we choose basesb, c, d in the three polynomial algebras, then
∆ can be expressed as a matrix. This matrix is obtained by mapping
every element ofb with ∆, expressing it in the concatenationc ∪ d
of the basesc andd, and writing the results into the columns of the
matrix. This is best explained using an example.

We considerp(x) = x2 − 1 = (x − 1)(x + 1) and

∆ : C[x]/(x2 − 1) → C[x]/(x − 1) ⊕ C[x]/(x + 1).

As bases, we chooseb = (1, x), c = (1), d = (1). ∆(1) = (1, 1)
with the same coordinate vector inc ∪ d = (1, 1). Further, because

1More precisely, isomorphism of algebras.



of x ≡ 1 mod(x − 1) andx ≡ −1 mod(x + 1), ∆(x) = (x, x) ≡
(1,−1) with the same coordinate vector. Thus the desired matrix is
the so-called butterfly[ 1 1

1 −1 ].
Polynomial transforms. Assumep(x) ∈ C[x] is separable, i.e.,

it has pairwise distinct zerosα = (α0, . . . , αn−1). Then the CRT
decomposesC[x]/p(x) completely into itsspectrum:

∆ : C[x]/p(x) → C[x]/(x − α0) ⊕ . . . ⊕ C[x]/(x − αn−1),
s(x) 7→ (s(α0), . . . , s(αn−1)).

(1)
If we choose a basisb = (p0, . . . , pn−1) in C[x]/p(x) and bases
bi = (1) for the C[x]/(x − αi), then the corresponding matrix is
given by

Pb,α = [pj(αi)]0≤i,j<n

and is called apolynomial transformfor C[x]/p(x) with basisb.
For example, the DFT of sizen (viewed as a matrix) is a polyno-

mial transform forC[x]/(xn − 1) with basisb = (1, x, . . . , xn−1).
Namely,xn − 1 =

Q

0≤i<n(x − wi/n), wu = exp(−2π
√
−1u),

and thus

Pb,α = [wj
i/n]0≤i,j<n = [wij/n]0≤i,jn = DFTn .

ChoosingC[x]/(xn + 1) instead with the same basis yields

Pb,α = [wj
(i+1/2)/n]0≤i,jn = DFT-3n,

which has been called the DFT of type 3 [10].
We have shown that all 16 discrete cosine and sine transform are

polynomial transforms (if scalars6= 1 are allowed in thebi) [5].
Cooley-Tukey type algorithms. The connection to polynomial

algebras can be used to derive fast algorithms for the associated
transforms using a general method that is related to, but somewhat
different from the early work [2]. In short, we derive Cooley-Tukey
algorithms by performing the decomposition (1)in stepsbased on
a decompositionof p (if one exists). To state the general method
we first introduce the product of bases of polynomials. Letb =
(p0, . . . , pk−1) andc = (q0, . . . , qm−1) be two lists of polynomi-
als. Then theirproductis the list of lengthkm

b ⋆ c = (p0q0, . . . , p0qm−1, . . . . . . . . . , pk−1q0, . . . , pk−1qm−1).

Further, ifb is as above, andr(x) is any polynomial, then we denote
with

b(r(x)) = (p0(r(x)), . . . , pk−1(r(x)))

the same list but withr(x) inserted forx.
Further, recall that ifA = [ai,j ] andB are matrices, then the

direct sum and the tensor or Kronecker product are respectively de-
fined as

A ⊕ B =

»

A
B

–

, A ⊗ B = [ai,jB].

Then × n identity matrix is denoted withIn.
Now we can state our lemma, a variation of a theorem we al-

ready used in [5] to derive DCT algorithms. Thus we also omit the
proof. Note that the lemma also holds ifC is replaced byR.

Lemma 1Let q(x) be separable andq(x) =
Q

0≤i<k qi(x). Fur-
ther, letc andci, 0 ≤ i < k, be bases forC[x]/q(x) andC[x]/qi(x),
respectively, and let, with these bases,M be the matrix associated
with the decomposition

C[x]/q(x) →
M

0≤i<k

C[x]/qi(x).

If r(x) is an arbitrary polynomial of degreem and d a basis for
C[x]/r(x), thenM ⊗ Im is the matrix associated with

C[x]/q(r(x)) →
M

0≤i<k

C[x]/qi(r(x)),

w.r.t. the basesb = c(r(x)) ⋆ d andbi = ci(r(x)) ⋆ d.

We use Lemma 1 to derive the Cooley-Tukey FFT. The polynomial
algebra forDFTn isC[x]/(xn−1) with basisb = (1, x, . . . , xn−1).
Assumingn = km, thenxn − 1 = (xm)k − 1 decomposes. Apply-
ing the CRT in steps yields

C[x]/(xn − 1) = C[x]/((xm)k − 1)

→
M

0≤i<k

C[x]/(xm − wi/k) (2)

→
M

0≤i<k

M

0≤j<m

C[x]/(x − w(jk+i)/n) (3)

→
M

0≤i<n

C[x]/(x − wi/n). (4)

We read off the matrices for each decomposition step. First, we ob-
serve thatb = c(xm) ⋆ d, with c = (1, x, . . . , xk−1) and d =
(1, x, . . . , xm−1). Thus, Lemma 1 is applicable: step (2) corre-
sponds toDFTk ⊗Im andd is the basis in eachC[x]/(xm −wi/k).
Each of the latter polynomial algebras is completely decomposed in
step (3) by the polynomial transform

DFTm(i/k) = [wℓ
(jk+i)/n]0≤j,ℓ<n

= DFTn · diag0≤j<m(wij/n). (5)

The final step (4) is just a permutation (the so-calledstride permuta-
tion) of the one-dimensional algebras and is given by

Ln
m : jk + i 7→ im + j, 0 ≤ i, j < n. (6)

In summary we get

DFTn = Ln
m

`

M

0≤i<k

DFTm(i/k)
´

(DFTk ⊗Im)

= Ln
m(Ik ⊗ DFTm)Dn

m(DFTk ⊗Im),

whereDn
m is diagonal, namely the direct sum of the diagonal ma-

trices in (5). The algorithm is the decimation-in-frequency FFT, its
transpose is the decimation-in-time version.

3. REAL DFT

We associate a polynomial algebra with the real DFT (RDFT), then
we derive its Cooley-Tukey type algorithms using again Lemma 1.
This shows that the mathematical underpinning is the same in the
real and complex case. The difference is in some of the details: the
RDFT algorithms have a somewhat more complicated structure and
require auxiliary transforms for a complete recursion.

RDFT. To obtain the RDFT, we decomposeR[x]/(xn −1) over
the real numbers rather thanC[x]/(xn − 1) over the complex num-
bers (as for the DFT). To do so, we setcu = cos(2πu), su =
sin(2πu), and introduce the polynomials (for0 < u < 1/2)

p2n,u(x) = (xn − wu)(xn − w−u) = x2n − 2cuxn + 1. (7)



Over the real numbers, we have the following complete factoriza-
tions into polynomials of degree one and two:

xn − 1 = (x − 1)

„

Y

0<i<n/2

p2,i/n(x)

«

(x + 1), n even,

xn − 1 = (x − 1)
Y

0<i≤(n−1)/2

p2,i/n(x), n odd, (8)

p2n,u(x) =
Y

0≤i<n

p2,(i+u)/n(x). (9)

In (9) some of the factors have(i+u)/n > 1/2. Thus we normalize
so that the angles are again< 1/2 (usingp2,u = p2,1−u) and reorder
the factors according to the new angles. The result is

p2n,u(x) =
Y

0≤i<n

p2,U(n,i,u)(x), U(n, i, u) =

(

u+⌊i/2⌋
n

, 2|i,
1−u+⌊i/2⌋

n
, else.

The RDFT corresponds to the following decomposition. We show it
only for even sizen; the odd case is obtained analogously from (8).

R[x]/(xn − 1)

→ R[x]/(x − 1) ⊕
M

0<i<n/2

R[x]/p2,i/n ⊕ R[x]/(x + 1) (10)

with basesb = (1, x, . . . , x2n−1) in R[x]/(xn−1) and respectively
(1), ei/n, (1) in the summands of (10);ei/n has length 2 and is
defined through2

eu = (1,−cu/su + 1/su · x).

With these bases we can compute the matrix, which is, as desired3

RDFT2n =

2

6

6

4

1 1 . . . 1 1
»

cij/n

sij/n

–

0<i<n/2,0≤j<n

1 −1 . . . 1 −1

3

7

7

5

. (11)

Further, we will need two auxiliary transforms. First, the so-
calledRDFT-3, which for evenn corresponds to the decomposition

R[x]/(xn + 1) →
M

0≤i<n/2

R[x]/p2,(i+1/2)/n

with basesb on the left side ande(i+1/2)/n in the summands on the
right side. For oddn, the decomposition is analogous but with one
one-dimensional summandR[x]/(x + 1). As a matrix

RDFT-3n =

»

c(i+1/2)j/n

s(i+1/2)j/n

–

0≤i<n/2,0≤j<n

.

Second, we needrDFT2n(u), decomposing

R[x]/p2n,u →
M

0≤i<n

R[x]/p2,U(n,i,u)

with basiseu(xn) ⋆ (1, x, . . . , xn−1) on the left side, andeU(n,i,u)

in the summands on the right side.4

2This seemingly unmotivated choice of basis is such that the operation of
x on this basis becomes a rotation byu; and, of course, the one that leads to
the RDFT as we show.

3Note that the definitions of the RDFT in the literature may differ by a
permutation of the rows compared to (11).

4We deliberately use a lower case r inrDFT since the basis in the poly-
nomial algebra is not the standard basis(1, x, . . . , x2n−1).

Table 1 summarizes all complex and real types of DFTs men-
tioned and needed in this paper.

Real Cooley-Tukey FFT. Analogous to (2)–(4) we derive the
Cooley-Tukey FFT for the RDFT. We assume the sizen = km fac-
tors and consider the case that bothk andm are even. The other three
cases (even-odd, odd-even, and odd-odd) are analogous. Again,
the algorithm is based on the decomposition propertyxn − 1 =
(xm)k − 1. We get

R[x]/(xn − 1) = R[x]/((xm)k − 1)

→R[x]/(xm−1) ⊕
M

0<i<k/2

R[x]/p2m,i/k ⊕ R[x]/(xm+1) (18)

→
“

R[x]/(x − 1) ⊕
M

0<i<m/2

R[x]/p2,i/m ⊕ R[x]/(x + 1)
”

⊕
M

0<i<k/2
0<j<m

M

R[x]/p2,U(m,j,i/k) ⊕
“

M

0≤i<m/2

R[x]/p2,(i+1/2)/m

”

(19)

→R[x]/(x − 1) ⊕
M

0<i<km/2

R[x]/p2,i/km ⊕ R[x]/(x + 1). (20)

As for the DFT, we apply Lemma 1 to establish that the matrix
corresponding to (18) isRDFT2k ⊗Im if we choose in the bases
b = (1, x, . . . , xm−1), ei/k(xm) ⋆ b, andb in the summands.

The polynomial algebras of dimensionsm and2m in (18) are
next completely decomposed overR in step (19) usingRDFTm,
rDFT2m(i/k), andRDFT-3m, respectively.

A suitable permutation in (20) then reorders the one- and two-
dimensional polynomial algebras into the required order in (10).

The final algorithm is shown in (12) and (13) in Table 2. In con-
trast to the complex DFT (see (5)), it is not efficient to convert the
occurringRDFT-3 andrDFTs into ordinaryRDFTs. Rather, we
derive for these transforms their own Cooley-Tukey algorithms, us-
ing a derivation completely analogous to theRDFT. ForRDFT-3
we use the decompositionxn + 1 = (xk)m + 1 for n = km; for
rDFT2km we use the decompositionp2km,u(x) = p2k,u(xm) and
the fact that the basis decomposes asb = eu(xkm)⋆(1, . . . , xk−1) =
[eu(xk)⋆(1, . . . , xk−1)](xm)⋆(1, . . . , xm−1). Due to lack of space,
we only state the final results in Table 2. The permutationP is given
as a function permuting the output indices; the permutationKkm

m is
given by the matrix

Kkm
m = (Ik ⊕ Jk ⊕ Ik ⊕ Jm . . . )Lkm

m ,

whereJk is Ik with the column order reversed. The permutationsP̂

andQ̂ are not given due to lack of space. AsP , they would be best
visualized as matrices to assert their structure.

For two-power sizes, these algorithms specify the entire compu-
tation, together with the size-2 base cases also given in Table 2.

Discussion. In the literature we find an arbitrary radix algorithm
for RDFTn in [7], expressed solely in terms ofRDFT’s of smaller
sizes, which leads to suboptimal arithmetic cost. The authors noticed
that part of the computation is equivalent to aRDFT-3; however,
they only show how to computeRDFT-3 for an even size, namely
by decomposing it into a discrete cosine and sine transform. In the
present paper,RDFT-3 naturally occurs as a polynomial transform.
Further, completely analogously to theRDFT we derive the arbi-
trary radixRDFT-3 algorithm for both even and odd sizes.

Sorensen, et al. [1] show the radix-2 and split-radix variants of
this general algorithm, without recognizingRDFT-3 andrDFT as
auxiliary transforms. The real FFT used in the FFTW [8] source



Transform Polynomial algebra Basisb Spectrum (polynomials only) Bases in spectrumbk

DFTn C[x]/(xn − 1) (xj) {x − wi/n}0≤i<n {(1)}
DFT-3n C[x]/(xn + 1) (xj) {x − w(i+1/2)/n}0≤i<n {(1)}
DFTn(u) C[x]/(xn − wu) (xj) {x − w(i+u)/n}0≤i<n {(1)}
RDFTn (n even) R[x]/(xn − 1) (xj) (x − 1), {p2,i/n}1≤i<n/2, (x + 1) (1), {ei/n}, (1)
RDFTn (n odd) R[x]/(xn − 1) (xj) (x − 1), {p2,i/n}1≤i≤(n−1)/2 (1), {ei/n}
RDFT-3n (n even) R[x]/(xn + 1) (xj) {p2,(i+1/2)/n}0≤i<n/2 {e(i+1/2)/n}
RDFT-3n (n odd) R[x]/(xn + 1) (xj) (x + 1), {p2,(i+1/2)/n}1≤i≤(n−1)/2 (1), {e(i+1/2)/n}
rDFT2n(u) R[x]/p2n,u eu(xn) ⋆ (xj) {p2,U(n,i,u)}0≤i<n/2 {eU(n,i,u)}

Table 1. Three complex and real types of DFTs that occur in the complex and real Cooley-Tukey FFT.

RDFTkm = P km
m

„

RDFTm ⊕

„

M

1≤i<k/2

rDFT2m(i/k)

«

⊕ RDFT-3m

«

(RDFTk ⊗Im), k even, (12)

RDFTkm = P̂ km
m

„

RDFTm ⊕

„

M

1≤i≤(k−1)/2

rDFT2m(i/k)

««

(RDFTk ⊗Im), k odd, (13)

RDFT-3km = (K
km/2
m ⊗ I2)

„

M

0≤i<k/2

rDFT2m((1/2 + i)/k)

«

(RDFT-3k ⊗Im), k even, (14)

RDFT-3km = Q̂km
m

„„

M

1≤i≤(k−1)/2

rDFT2m((1/2 + i)/k)

«

⊕ RDFT-3m

«

(RDFT-3k ⊗Im), k odd, (15)

rDFT2km(u) = (Kkm
m ⊗ I2)

„

M

0≤i<k

rDFT2m(U(k, i, u))

«

(rDFT2k(u) ⊗ Im). (16)

RDFT2 =
h

1 1
1 −1

i

, RDFT-32 = I2, rDFT4(u) =

"

1 1
1 1

1 −1
−1 1

# "

1
1

cos(πu) − sin(πu)
sin(πu) cos(πu)

#

.

P km
m = i →

8

>

>

>

>

>

<

>

>

>

>

>

:

0, i = 0,

−1 + 2k⌊(i + 1)/2⌋ + (i − 1) mod 2, 1 ≤ i < m,

k + 2k⌊(i − (km − m))/2⌋ − 1 + (i − m) mod 2, i ≥ km − m,

1 + k⌊(i − m)/2⌋ mod m + 2⌊(i − m)/(2m)⌋ + (i − m) mod 2, (⌊(i − m)/2⌋ mod m) mod 2 = 0,

1 + k⌊(i − m)/2⌋ mod m + 2⌊(km − m − i)/(2m)⌋ + (i − m) mod 2, else.

(17)

Table 2. The derived arbitrary-radix real FFTs including the base cases forsize 2. The permutationŝP andQ̂ are not provided.

code is very similar to the one derived here. The occurringrDFTs
are computed using complex DFTs of half the size.

The derivation of Bruun’s real FFT [11] is similar to ours but
considers onlyk = 2 and uses (in our language) the bases(1, x)
in the spectral components, thus leading to a slightly different algo-
rithm. This turns therDFTs intoRDFTs and increases the arith-
metic cost.

4. REFERENCES

[1] H. V. Sorensen, D. L. Jones, M. T. Heideman, and C. S. Bur-
rus, “Real-valued fast Fourier transform algorithms,”IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol.
ASSP-35, no. 6, pp. 849–863, 1987.

[2] H. J. Nussbaumer,Fast Fourier Transformation and Convolu-
tion Algorithms, Springer, 2nd edition, 1982.

[3] C. Van Loan, Computational Framework of the Fast Fourier
Transform, SIAM, 1992.

[4] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete
Fourier Transforms and Convolution, Springer, 2nd edition,
1997.

[5] M. Püschel and J. M. F. Moura, “The algebraic approach to the
discrete cosine and sine transforms and their fast algorithms,”
SIAM J. of Computing, vol. 32, no. 5, pp. 1280–1316, 2003.

[6] M. Püschel, “Cooley-Tukey FFT like algorithms for the DCT,”
in Proc. ICASSP, 2003, vol. 2, pp. 501–504.

[7] N.-C. Hu and O. K. Ersoy, “Fast computation of real dis-
crete Fourier transform for any number of data points,”IEEE
Trans. on Circ. and Sys., vol. 38, no. 11, pp. 1280–1292, 1991.

[8] Matteo Frigo and Steven G. Johnson, “The design and imple-
mentation of FFTW3,”Proceedings of the IEEE, vol. 93, no.
2, pp. 216–231, 2005, special issue on ”Program Generation,
Optimization, and Adaptation”.

[9] J. Hong, M. Vetterli, and P. Duhamel, “Basefield transforms
with the convolution property,”Proceedings of the IEEE, vol.
82, no. 3, pp. 400–412, 1994.

[10] V. Britanak and K. R. Rao, “The fast generalized discrete
Fourier transforms: A unified approach to the discrete sinu-
soidal transforms computation,”Signal Processing, vol. 79,
pp. 135–150, 1999.

[11] G. Bruun, “z-transform DFT filters and FFTs,”IEEE Trans.
ASSP, vol. 26, no. 1, pp. 56–63, 1978.


