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ABSTRACT FFTW [8] also uses a general radix RDFT algorithm, which is very

close to the one we derive this paper. An algebraic method for pro-

We first show that the real version of the discrete Fourier transformecting complex FFTs was presented in [9], but it appears that the
(called RDFT) can be characterized in the framework of polynomia ethod, as presented based on normal bas'es works for the discrete
algebras just as the DFT and the discrete cosine and sine transforr|i1_§artley ’transform but not for the RDET. '

Then, we use this connection to algebraically derive a general radix In Section 2 W'e provide the background on polynomial algebras

Cooley-Tukey type algorithm for the RDFT. The algorithm has 4and explain their relationship to signal transforms. Then we present

similar structure as its complex counterpart, but there are also impog— general method that, as we illustrate, allows us to concisely de-

tant differgnces, Which are exhibited by_our Kronecker p_roduct Stylqive the Cooley-Tukey FFT through a stepwise decomposition of its
presentation. In particular, the RDFT is decomposed into Sma"eéssociated polynomial algebra. The same method is then used in
RDFTs but also other auxiliary transforms, which we then decom

by thei Coolev-Tuk lqorith btain a full Section 3 to derive the corresponding RDFT algorithms, after estab-
pose yt eir own Looley-ukey type algorithms to obtain a fu re'Iishing the algebraic interpretation of the RDFT.
cursive algorithm for the RDFT.

2. POLYNOMIAL ALGEBRASAND TRANSFORMS
1. INTRODUCTION

. . . Lo _ . Inthis section we introduce polynomial algebras and explain how
The discrete Fourier transform (DFT) is the ubiquitous tool in signakhey are associated to transforms. Then we present a general-decom
processing. By definition, the DFT processes complex inputs to prqyosition theorem for polynomial algebras and show that it can be
duce complex outputs. In many cases, the input signal is real, and|ilsed to derive the Cooley-Tukey FFT. Later, we will use the same
is well-known that in this case the computational cost can be reduce@egrem to derive Cooley-Tukey type algorithms for the RDFT.
by a factor of roughly 2 [1]. In fact, this “real” DFT (RDFT) can be Polynomial algebra. An algebra is a vector space that permits
viewed again as a transform that is related to the DFT, but maps reg|so multiplication and that is closed under multiplication. Examples
inputs to real outputs. So it is not surprising that many DFT algoincjude the set of complex or real numbéEsor R, and the set of
rithms have RDFT counterparts, but the derivation turns out to b%olynomials(C[:p] or R[z].
a nontrivial task. In fact, while there is a considerable body of lit-"  “The key player in this paper is thwlynomial algebraGiven a

erature on complex fast Fourier transforms (FFTs), publications ofixed polynomialp(z) of degreedeg(p) = n, we define a polyno-
real FFTs are comparatively few and far. This becomes particularlyyjg) aigebra as the set

apparent in standard books on the topic: the use of polynomial alge-
bra in [2] to derive DFT algorithms is restricted to the complex case; Clz]/p(x) = {s(z) | deg(s) < deg(p)}

similarly [3, 4] develop the underpinning of FFTs and propose the . . . .
very concise Kronecker product formalism for their representationOf polynomials of degree smaller tharwith addition and multipli-

. . tation modulop. As a vector space[z]/p(x) has dimensiom.
but again focus only on the complex case. Only a radix-2 Cooley:" "". . X . :
Tukey real FFT is discussed in [3]. Intuitively, C[z]/p(x) is the set of polynomial€[z] with the condi-

The contribution of this paper is two-fold. First, we show that tion p(z) = 0 imposed.

the RDFT, just as the DFT, can be characterized in the framewor tCi?Zlnesier]:eTvsmder rtirrlneor?lrn(cz'rr%.ﬁsfsu;nrqa(;c) lznq(m)_r(ac()j
of polynomial algebras. Then, we derive a general-radix Cooley-aC orizes into two coprime (no common factors) polynomials

Tukey type algorithm for the RDFT using the same general principle, Then the Chinese remainder theorem (CRT) for polynomials gives

that accounts for the (complex) Cooley-Tukey FFT. Thus, in contras e linear mapping

to previous work, we do not derive the algorithms by manipulating A: Clz]/p(z) — Clz]/q(z) ® Clz]/r(z),

the actual transform, nor by specializing the corresponding complex s(z) +— (s(z) modg(z), s(z) modr(z)).

FFT. This is theoretically satisfying, since we already showed that

also many discrete cosine and sine transform algorithms can be d&lere,® is the direct sum of vector spaces with elementwise opera-

rived this way [5, 6]. Second, the derivation naturally leads to a pretion. If we choose basésc, d in the three polynomial algebras, then

sentation using Kronecker products in the spirit of [3, 4]. This way,2A can be expressed as a matrix. This matrix is obtained by mapping

it also becomes apparent that the RDFT decomposes into smalle¥ery element ob with A, expressing it in the concatenationJ d

transforms, which however are of different types. These “aux"iary of the baseg andd, and ertlng the results into the columns of the

transforms are then decomposed using their own Cooley-Tukey typ@atrix. This is best explained using an example.

algorithms, again derived using polynomial algebras. Note that the We considep(z) = 2® —1 = (z — 1)(z + 1) and

complex FFT decomposes the DFT into smaller DFTs of the same . 2

type and is thus of simpler structure. Az Clal/(z” = 1) = Clal/(z - 1) @ Cla]/(2 + 1).
Cooley-Tukey type algorithms for the RDFT were derived in As bases, we choose= (1,z), ¢ = (1), d = (1). A(1) = (1,1)

[1] for radix 2 and split radix 2/4, and for a general radix in [7]. with the same coordinate vectorénu d = (1, 1). Further, because

This work was supported by NSF through award 0310941. IMore precisely, isomorphism of algebras.



ofzx=1mod(x — 1) andz = —1 mod(z + 1), A(z) = (z,z) = If r(x) is an arbitrary polynomial of degree andd a basis for
(1, —1) with the same coordinate vector. Thus the desired matrix iC[z]/r(x), thenM ® I, is the matrix associated with
the so-called butterfly; _11.
Polynomial transforms. Assumep(z) € C[z] is separable, i.e., Clz]/q(r(z)) — @ Clz]/qi(r(z)),
it has pairwise distinct zeras = (o, ..., an—1). Then the CRT 0<i<k
decompose€[z]/p(z) completely into itsspectrum B

A: Clel/p(e) — Clal/(x - a0) @ ... ® Clal/(x — an_1),

s(z) — (s(ao),...,s(an-1)). We use Lemma 1 to derive the Cooley-Tukey FFT. The polynomial
, , (1) algebrafoDFT,, isC[z]/(z"—1) with basish = (1, z,...,2" ).
If we choose a basis = (po,...,pn—1) in C[z]/p(z) and bases Assumingn = km, thenz™ — 1 = (z™)* — 1 decomposes. Apply-
bi = (1) for the Clz]/(z — a:), then the corresponding matrix is jng the CRT in steps yields

w.r.t. the bases = ¢(r(z)) x d andb; = ¢;(r(x)) * d.

given by
Pha = [ps(ai)logii<n Cla]/(a" — 1) = Clal/((@™)* = 1)

and is called golynomial transfornfor C[z]/p(x) with basisb. m_

For example, the DFT of size (viewed as a matrix) is a polyno- - o@k Clel/( wir) )
mial transform forC|[z]/(z™ — 1) with basisb = (1, 2,...,z" ). =
Namely,z" — 1 = [[o<; <, (T — wi/n), wu = exp(—27v/—1u), — @ @ Clz]/(x — w(ik+i)/n) ?3)
and thus - 0<i<k 0<j<m

Po,a = [wf/n]ogi,xn = [wij/nlo<i,jn = DFTy . - @ Clal/ (@ = wi/n)- )
0<i<n

ChoosingC[z]/(z™ + 1) instead with the same basis yields . » .
We read off the matrices for each decomposition step. First, we ob-

Pha = [wgi+1/2)/n]0§i’j" = DFT-3,, serve thath = c¢(z™) x d, with ¢ = (1,z,...,2""") andd =
(1,z,...,2™ ). Thus, Lemma 1 is applicable: step (2) corre-

which has been called the DFT of type 3 [10]. sponds tdF T}, ®I,, andd is the basis in eadi[z] /(=™ — w; k).

We have shown that all 16 discrete cosine and sine transform a€ach of the latter polynomial algebras is completely decomposed in
polynomial transforms (if scalaeg 1 are allowed in thé;) [5]. step (3) by the polynomial transform

Cooley-Tukey type algorithms. The connection to polynomial
algebras can be used to derive fast algorithms for the associated DFT.,.(i/k) = [wfjkﬂ)/n]ogj,kn
transforms using a general method that is related to, but somewhat = DFT, diagy<; ., (Wij/n)- (5)

different from the early work [2]. In short, we derive Cooley-Tyke

algorithms by performing the decomposition {ft)stepsbased on  The final step (4) is just a permutation (the so-casisitle permuta-
a decompositiorof p (if one exists). To state the general method tion) of the one-dimensional algebras and is given by

we first introduce the product of bases of polynomials. bet

(poy ... ,pk—1) andec = (qo, - .-, qm—1) be two lists of polynomi- L : jk+i—im+j, 0<i,j<n. (6)
als. Then theiproductis the list of lengthm

In summary we get

bxc= (poqo, ey POGm =1y vee on sy Pk—140, . .. 7pk,1qm,1).
Further, ifb is as above, and(z) is any polynomial, then we denote DFT, = Ly @ DFT,(i/k))(DF Ty ®Inm)
with 0<i<k

b(r(z)) = (po(r(z)), ..., pr—1(r(z))) = L(I» ® DFT,,)Dy(DFTy, ®I,,),

the same list but with(z) inserted forz. o . .
Further, recall that it4 = [a; ;] and B are matrices, then the where Dy, is diagonal, namely the direct sum of the diagonal ma-

direct sum and the tensor or Kronecker product are respectively d&/ic€S in (5). The algorithm is the decimation-in-frequency FFT, its

fined as transpose is the decimation-in-time version.
A
A®B= gl» A®B=la;Bl. 3. REAL DFT
Then x n identity matrix is denoted witlf,, . We associate a polynomial algebra with the real DFT (RDFT), then

Now we can state our lemma, a variation of a theorem we alwe derive its Cooley-Tukey type algorithms using again Lemma 1.
ready used in [5] to derive DCT algorithms. Thus we also omit theThis shows that the mathematical underpinning is the same in the
proof. Note that the lemma also hold€fis replaced byR. real and complex case. The difference is in some of the details: the

RDFT algorithms have a somewhat more complicated structure and

Lemma 1Let ¢(z) be separable ang(z) = [],.,., ¢i(z). Fur- require auxiliary transforms for a complete recursion.

ther, letcandc;, 0 < i < k, be bases fof[z]/q(x) andC|[x] /¢:(z), RDFT. To obtain the RDFT, we decompaBez]/ (=" — 1) over
respectively, and let, with these bas@$,be the matrix associated the real numbers rather thatiz]/(z" — 1) over the complex num-
with the decomposition bers (as for the DFT). To do so, we sgt = cos(27mu), su =

sin(27u), and introduce the polynomials (for< u < 1/2)

Clzl/a(z) = O Clal/ai(2).

0<i<k Ponyu(r) = (2" —wy) (2" —w_y) = 2> — 2,z + 1. (7)



Over the real numbers, we have the following complete factoriza- Table 1 summarizes all complex and real types of DFTs men-
tions into polynomials of degree one and two: tioned and needed in this paper.
Real Cooley-Tukey FFT. Analogous to (2)—(4) we derive the

" =1 = (z— 1)( H pz,i/n(m)) (x+1), neven Cooley-Tukey FFT for the RDFT. We assume the size km fac-
0<icn)2 tors and consider the case that bb#ndm are even. The other three
" cases (even-odd, odd-even, and odd-odd) are analogous. ,Again
" -1 = (z-1) H p2,i/n(x), nodd € the algorithm is based on the decomposition propefty— 1 =
0<i<(n—1)/2 (z™)* — 1. We get
Penu(@) = <H< PGt /n (2)- ©) Rlz)/(z" — 1) = Rlz]/((=™)" — 1)
In (9) some of the factors hayé+w)/n > 1/2. Thus we normalize —Rlzl/(z"-1) & @ Rlz]/pam,ise @ Rlal/(@"+1) - (18)
so that the angles are againl /2 (usingp2,.. = p2,1—.) and reorder Oish/2
the factors according to the new angles. The result is H(R[m]/(x -1)® @ R[z]/p2,i/m ® Rz]/(x + 1))
. wli/2] - 9|y 0<i<m/2
pana() = <1_[ Pav(ni(@), Ul fyu) = ;utw%, else. ® @@R[xl/pzy(m,j,i/k) ® ( @ R[w]/pz,(i+1/2)/m)
Osi<n ) 0<i<k/2 0<i<m/2
The RDFT corresponds to the following decomposition. We show it o<gsm (19)
only for even sizen; the odd case is obtained analogously from (8).
R/ — 1) —Rlal/(c~1) & @D Rle)/pzi/im ®Rlal/(x+1). (20)
0<i<km/2
— Rlzl/(z—1)® O Rz]/p2i/n @R[z]/(z+1) (10) : :
O<i<n/2 As for the DFT, we apply Lemma 1 to establish that the matrix

corresponding to (18) i®RDFT2x ®In if we choose in the bases
with based = (1,z,...,2*"~!) inR[z]/(z" —1) and respectively b= (1,z,..., 2™ 1), e;/(¢™) * b, andb in the summands.

(1), €i/n, (1) in the summands of (10k;,, has length 2 and is The polynomial algebras of dimensions and2m in (18) are
defined through next completely decomposed ovRrin step (19) usindRDFT,,,
rDFTs,, (i/k), andRDFT-3,,, respectively.
ew = (1, —Cu/su+1/5u - ). A suitable permutation in (20) then reorders the one- and two-

¢ dimensional polynomial algebras into the required order in (10).
The final algorithm is shown in (12) and (13) in Table 2. In con-
1 1 ... 1 1 trast to the complex DFT (see (5)), it is not efficient to convert the
Cij/n occurringRDFT-3 andrDFTs into ordinaryRDFTs. Rather, we
RDFT,, = Sij/n] o<icn2,0<5<n (11) derive for these transforms their own Cooley-Tukey algorithms, us-
1 -1 ... 171 ing a derivation completely analogous to R®FT. For RDFT-3
we use the decompositiari® + 1 = (z*)™ + 1 for n = km; for
Further, we will need two auxiliary transforms. First, the So-rDFTay,, we use the decompositignim .. (z) = pak,.(z™) and

With these bases we can compute the matrix, which is, as d&sire

calledRDFT-3, which for ever corresponds to the decomposition the fact that the basis decomposes ase,, (z*™)«(1, ...,z 1) =
[ew(@®)%(1, ..., 2" ] (z™)x(1,...,2™ ). Due to lack of space,
Rz]/(z" +1) — @ Rlz]/p2,(i+1/2)/n we only state the final results in Table 2. The permutatfds given
0<i<n/2 as a function permuting the output indices; the permutaligft is
with bases on the left side and(; 12/, in the summands on the given by the matrix
right side. For odd:, the decomposition is analogous but with one KEm — (L@ T @I ® I . .. )L’fnm,

one-dimensional summaiRiz]/(x + 1). As a matrix
whereJ,, is I, with the column order reversed. The permutatiéhs

RDFT-3, = [;@*1/2){/"} ) andQ are not given due to lack of space. &s they would be best
(i41/2)i/nlo<i<n/2,0<5<n visualized as matrices to assert their structure.
Second, we neetDF T2, (u), decomposing _ For two-power sizes, t_hese algorithms specify the _entire compu-
tation, together with the size-2 base cases also given in Table 2.
R[z]/pan. — @ R[2]/P2,0(niu) Discussion. In the literature we find an arbitrary r,adlx algorithm
0<i<n for RDFT,, in [7], expressed solely in terms 8&DFT's of smaller

sizes, which leads to suboptimal arithmetic cost. The authors noticed
with basise, (z™) x (1,z,...,z" ") on the left side, andy (i) that part of the computation is equivalent tRR®FT-3; however,
in the summands on the right sitle. they only show how to compuf@ DF'T-3 for an even size, namely
by decomposing it into a discrete cosine and sine transform. In the
present papeRDFT-3 naturally occurs as a polynomial transform.

2This seemingly unmotivated choice of basis is such that theatipa of

x on this basis becomes a rotationdyand, of course, the one that leads to - .
the RDFT as we show. Further, completely analogously to tlRDFT we derive the arbi-

SNote that the definitions of the RDFT in the literature mayaeifby a trary radixRDF'T-3 algorithm for bOIh_even and qu S'Z_es' .
permutation of the rows compared to (11). Sorensen, et al. [1] show the radix-2 and split-radix variants of

4We deliberately use a lower case mBFT since the basis in the poly-  this general algorithm, without recognizifDFT-3 andrDFT as
nomial algebra is not the standard bagisz, . .., 22"~ 1). auxiliary transforms. The real FFT used in the FFTW [8] source



Transform Polynomial algebra  Badis Spectrum (polynomials only) Bases in spectrtym
DFT, Cla]/(z" — 1) (z7) {z —wi/mto<i<n {(W)}

DFT-3, Cla]/(z" 4+ 1) (z7) {z —wir1/2)/nto<icn {(W)}

DFT,(u) Cla]/(z" —wu)  (27) {z = witw/mto<icn {}

RDFT, (neven)  Rz]/(z" —1) (z7) (@ = D) Ap2,imbicicnse, (@+1) (1), {ei/n}, (1)
RDFT, (nodd)  R[z]/(z" —1) (z7) (@ = 1) Ap2i/nt1<ic(n-1)/2 (1), {ei/n}
RDFT-3,, (n even) ]R[J:]/(x +1) (:rj) {P2,(i+1/2)/n Yo<i<n/2 {e@+1/2)/n}
RDFT-3, (nodd) R[z]/(z" +1) z’) @+ D Ap2 Gty mbicicm-nz (1), {eari/2)mt
rDF T2, (u) Rlz]/p2n,u eu(z™) * (@7)  {P2,U(niu) Fo<i<ns2 {ev i}t

Table 1. Three complex and real types of DFTs that occur in the complex ah€Cmoley-Tukey FFT.

RDFTy,, = Pkm™ (RDFTm @( P rDFTgm(i/k)) ® RDFT-Bm) (RDFTy ®I,,), keven (12)
1<i<k/2
RDFTy,, = Pkm (RDFTm @( P rDFTgm(i/k))) (RDFT}, ®I,,), kodd (13)
1<i<(k—1)/2
RDFT-3;, = (KI%g 12)< P DFTon((1/2+ i)/k)) (RDFT-3;, ®I,n), keven (14)
0<i<k/2
RDFT-3,, = QF" (( P  DFT2m((1/2+1) /k)) ® RDFT—3m) (RDFT-3;, ®I,,), kodd (15)
1<i<(k—1)/2
tDFTopm(u) = (KF™ @ 12)< P DFT2m(U(k,i, u))) (tDF T, (1) ® Im). (16)
0<i<k
1 1 1 1
RDFTs = {% _}:| ; RDFT-32 = 127 I'DFT4(U) = |:1 ! —1 1:| cos(mu) —sin(‘rru):| .
-1 1 sin(7u) cos(mu)
0, 1=0,
—1+4+2k[(i+1)/2] + (i —1) mod 2, 1<i<m,
Pk — i S k4 2k[(i — (km—m))/2] — 1+ (i—m) mod 2, i > km—m, 17
1+ k[(i—m)/2] mod m+2[(i—m)/(2m)] + (i —m) mod 2, (l(t—=m)/2] mod m) mod2=0,
1+ k[(i—m)/2] mod m+2[(km —m —1i)/(2m)| + (¢ —m) mod 2, else

Table 2. The derived arbitrary-radix real FFTs including the base casesZer2. The permutation® and( are not provided.

code is very similar to the one derived here. The occurribg§T's
are computed using complex DFTs of half the size.

The derivation of Bruun’s real FFT [11] is similar to ours but

considers onlyk = 2 and uses (in our language) the baéesr)

(5]

(6]

in the spectral components, thus leading to a slightly different algo-

rithm. This turns theDFT's into RDFT's and increases the arith-
metic cost.
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