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ABSTRACT

The low density parity check (LDPC) codes designed by a pseudorandom construction, as pro-

posed in Gallager’s original work, have been shown to perform very close to the Shannon limit

(when constructed as very long codes); however, the lack of structure in such codes makes them

unsuitable for practical applications due to high encoding complexity and costly decoder implemen-

tations. These difficulties have lead to numerous works on the structured LDPC codes, especially

array-structured codes with quasi-cyclic property.

Among the array-structured codes, those with an array of cyclic permutation matrices have been

of particular interest due to the balanced edge partitioning inherent in the structure that simplifies the

implementation of highly parallel decoders. While many construction methods havebeen proposed

for this circulant permutation array (CPA) structure, the performance ofthe codes has been reported

to a very limited extent. Especially, the effect on the performance by the explicit control of graph

parameters has not been provided despite the fact their importance is emphasized in the construction

process.

In the decoder design for quasi-cyclic LDPC codes, the primary concern is to exploit the array

structure for efficient implementation. Fast hardware-based decoderson a medium-capacity FPGA

are often faster than the software implementation by at least one or two orders of magnitude, and

thus important for both actual deployment in practical systems and evaluationof error performance.

As a large number of high-throughput decoders in the literature are designed for specific array

dimensions and the bus and memory connections are simplified using the array structure of the

code, the degree of parallelism in the decoders is dependent on the codeparameters, making it

difficult to parameterize the hardware to use a desired amount of hardware resource. Furthermore,

such architectures cannot support a large class of array-structured codes with very different array

dimensions.

In this thesis, we present a generalized hardware decoder that supports any kind of quasi-cyclic
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LDPC codes including CPA-structured codes. The decoder has been designed with a priority on

high flexibility. In the synthesis step, the degree of parallelism can be chosen independently from

the code parameters. Thus, for FPGA implementation, the decoder can be parameterized to fully

utilize a given amount of hardware resource. Also, it supports run-time reconfiguration of code

parameters, i.e., different codes can be supported by changing register contents without a new syn-

thesis. In wireless applications, such flexibility makes it possible to choose a channel code based

on the varying channel condition. When used for performance evaluation purposes for a large set

of codes, it saves a considerable amount of time by eliminating the need for re-synthesis for each

code.

Using the FPGA implementation of the proposed decoder, we characterize theperformance of

array-structured LDPC codes, with a primary focus on pseudorandomlyconstructed CPA-structured

codes. Based on the obtained simulation results, we show the effect of combinatorial parameters

(girth, diameter and column weight) on the error performance. The pseudorandom construction

is also compared with algebraic construction, and with the codes specified in the IEEE 802.16e

standards.
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CHAPTER 1

INTRODUCTION

One of the key underlying technologies in our increasingly connected world is the method for ef-

ficiently communicating discretized information over a physical medium such as telephone lines,

optical cables, radio links, or magnetic storages. Channel coding plays an integral role in provid-

ing a reliable communication method that can overcome signal degradation in practical channels.

Turbo codes, invented by Berrou, Glavieux and Thitimajshim in 1993, are the first known capacity-

approaching error correction code that provides a powerful errorcorrection capability when decoded

by an iterative decoding algorithm. More recently, research efforts toward searching for lower com-

plexity codes and iterative decoding led to the rediscovery of low density parity check (LDPC)

code, which was originally proposed by Gallager in 1960 and was later generalized as MacKay-

Neal code [1]. The LDPC codes have been shown to achieve near-optimal performance in additive

white Gaussian noise channels when decoded with the sum-product (SP) algorithm [2].

LDPC codes have several advantages over turbo codes. While it is difficult to apply parallelism

in the decoding of turbo code due to the sequential nature of the decoding algorithm, LDPC decod-

ing can be performed with a high degree of parallelism to achieve a very highdecoding throughput.

LDPC codes do not require a long interleaver, which causes a large delay in turbo codes. LDPC

codes can be directly designed for a desired code rate while turbo codes, that are based on convolu-

tional codes, require other techniques such as puncturing to get the desired rate.

1
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While LDPC codes designed by a pseudorandom construction, as proposed in Gallager’s orig-

inal work, have been shown to perform very close to the Shannon limit (when constructed as very

long codes), the lack of structure leads to very costly decoder implementations. Worse yet, the

encoding complexity that is quadratic in the codeword length puts LDPC codesat a serious disad-

vantage over turbo codes that has linear encoding complexity.

To overcome the difficulty in practical implementations, various methods have been proposed

to introduce structure in the parity check matrix. Kou, Lin and Fossorier introduced algebraic con-

structions based on finite geometries in [3, 4]. Other constructions based on combinatorics include

disjoint difference sets (DDS) codes by Johnson and Weller [5] and Song, Liu and Kumar [6] and

balanced incomplete block design (BIBD) codes by Ammar, Honary, Kou, Xu and Lin [7] and Vasic

and Milenkovic [8]. Many of the codes designed by algebraic or combinatorial construction have

certain desirable characteristics such as cyclic or quasi-cyclic properties that lead to linear-time en-

coding and a guarantee that two rows in the parity check have less than two 1’s in the common bit

positions to help the sum-product algorithm perform better.

The parity check matrixH of a code with quasi-cyclic property can be put into an array of

circulant matrices with column and row rearrangements. The LDPC codes withthe quasi-cyclic

property are called QC-LDPC codes. Because of its practical importance, most of the LDPC decoder

architectures in the literature have been designed for QC-LDPC codes orits subclass, in which the

array structure can be exploited for more efficient implementation.

Among various array-structured LDPC codes, a class of codes of which theH-matrix is an array

of cyclic permutation matrices have been of particular interest since the balanced partitioning of 1’s

into submatrices facilitates the design of a highly parallelized decoders. In therest of this chapter,

we give a brief overview on the structure and the code construction methodsfor the LDPC codes

based on the cyclic permutation array, and state the goals of this thesis.
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1.1 CYCLIC PERMUTATION ARRAY (CPA) STRUCTURE

Initially, Fan proposed in [9] to use a binaryarray codeto construct an LDPC code. Anarray

codein this context is a general class of algebraic codes defined as a two-dimensional array of code

symbols that lie in Galois rings, and should not be confused with the array structure in parity check

representation. These originalarray codesare discussed in [10, 11]. He showed that the parity

check matrixH of an array codeis a two-dimensional array ofP × P submatrices that form a

particular series of powers of a single cyclic permutation matrix, i.e.,

H =





















I I . . . I

I C . . . CP−1

...
...

...

I Cr−1 . . . C(r−1)(P−1)





















, (1.1)

where

C =





















1

1

. ..

1





















, (1.2)

and it was shown that the code is cyclic with an odd primeP andr ≤ P . Henceforth, this con-

struction was also termed “array code”, which is in fact a special case ofthe array codein the

original context of [10, 11]. It was also named “lattice code” in [8]. Thisstructure will be denoted

as array(r, P ) in Chapter 5.

A more general notion of an array code was given in [8, 9] where the submatrices can be any

permutation matrices, to facilitate the cycle analysis of the array code rather than to introduce a

new family of codes. Tanner in [12] and Milenkovic in [13] also generalized the array code by

considering other series of powers, but still based on algebraic construction. More recently, Lu,

Moura and Niesen proposed pseudorandom construction of the arraycode where the submatrices

can be any cyclic permutations [14]. Later, Lu extended the idea by allowingall-zero submatrices
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(a) Parity check matrix representation
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c1

(b) Tanner graph representation

Figure 1.1: A parity check matrix and a Tanner graph

in the array in his Ph.D. thesis [15]. This structure has also been chosen as the structure of the

LDPC codes in the IEEE 802.16e (Mobile WiMAX) standards [16]. To avoidconfusion with the

array codes used in the narrower sense to denote a particular progression in the powers, we will

refer to the more general structure consisting of any circulant permutationmatrices as the circulant

permutation array (CPA) structure in the rest of this thesis.

1.2 CONSTRUCTION OF THECPA-STRUCTUREDLDPC CODES

A parity check matrix can be graphically represented by a Tanner graph,which is a bipartite

graph with a set of check nodes on top and a set of bit nodes on bottom. When a check equation in

theH-matrix checks a particular code bit, there lies an edge between the corresponding check node

and bit node. Figure 1.1 shows a simple parity check matrix and the corresponding Tanner graph.

The performance of the SP algorithm is known to degrade if there exist short cycles in the Tanner

graph [17]. One intuitive explanation was given by Gallager in [18] by showing that the number of

independent decoding iterationsm is determined bym = ⌈g/4⌉− 1, wheregirth g is defined as the

length of the shortest cycle. In addition, Tanner derived a lower boundon the minimum distance of

a regular LDPC code as an increasing function ofg in [19], i.e.,

dmin ≥











2((j−1)g/4−1)
j−2 , g/2 : even,

j(j−1)⌊g/4⌋−2
j−2 , g/2 : odd,

(1.3)

wherej is the column weight of the parity check matrix. For these reasons, it has been of primary
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concern in LDPC code construction to avoid short cycles in the Tanner graph.

Most of the codes based on algebraic or combinatorial construction are designed to avoid 4-

cycles (i.e., cycles of length 4), which is the shortest possible length for bipartite graphs. While

none of them have direct methods to achieve a girth greater than 6, there have been indirect methods

to enlarge the girth by selectively eliminating columns in the parity check matrix. Forpseudorandom

constructions, there have been explicit efforts to find codes with a large girth. A heuristic method

called “bit-filling” tries to construct the parity check matrix column by column while maintaining

the target girth and the predefined column weight [20]. In another heuristic approach, they search for

a good LDPC code based on the average girth, where the girth is redefined as a node girth, i.e., the

length of the shortest cycle that passes through each node [21]. Due tothe arbitrary constructions, a

hardware-based decoding for these codes can be prohibitively costly. On the other hand, Lu showed

that a pseudorandom search on the CPA structure based on the girth finds good codes while allowing

a simple decoder architecture [15].

1.3 THESISGOAL

As indicated above, general CPA-structured LDPC codes encompass abroad class of algebraic

and pseudorandom construction methods. The performance of some pseudorandomly constructed

codes was given in [15], but a direct comparison with other algebraic constructions were not pro-

vided. In addition, since most of the results in the literature are obtained fromsoftware simulation,

the performance of CPA-structured codes have been usually exploredonly down to the bit error rate

(BER) range between10−6 and10−8. The performance at very low BER cannot be simply extrapo-

lated from that of the medium BER range due to the error floor, which is a phenomenon in which a

code exhibits a sudden saturation in the BER curve at sufficiently high SNR.For some applications

that require extremely reliable signalling schemes such as magnetic storage and satellite communi-

cation systems, it is important to choose a code that does not have an error floor at very low BERs

(10−11 to 10−15).
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A fast hardware-based simulation environment can extend the simulation’s reach far beyond the

limit of a software-based simulation. A large number of high-throughput hardware-based decoders

in the literature are designed for specific array dimensions, and the bus and memory connections

are simplified using the array structure of the code. As a result, the degreeof parallelism in the

decoders is dependent on the code parameters, making it difficult to parameterize the hardware to

use a desired amount of hardware resource. Furthermore, such architectures cannot support a large

class of array-structured codes with very different array dimensions.

In this thesis, we pursue broadening our understanding of the array-structured LDPC codes with

a primary focus on pseudorandomly constructed CPA-structured codes. The main objectives include

the design of a highly flexible hardware-based decoder and performance evaluation by means of

simulation using this flexible decoder.

Hardware simulation environment: We present a hardware simulation environment includ-

ing a Gaussian noise generator and a general decoder for array-structured LDPC codes. The decoder

has been designed to serve the purpose of this research; it supports any code in the family of QC-

LDPC codes including the subclass of the CPA structures, and exploits theirstructural property to

simplify the implementation. Unlike most of the decoder architectures in the literaturethat are de-

signed for high throughput, the proposed decoder has been designedwith a priority on flexibility.

The degree of parallelism in the decoder is independent of the code parameters, making it possible

to fully utilize the given hardware resource regardless of the column and row weights or the size of

the permutation matrix. Moreover, the architecture supports run-time reconfigurability, i.e., the pa-

rameter of the code to be decoded can be changed simply by modifying the parameter values stored

in registers without a new synthesis of the decoder. In wireless applications, this architecture makes

it possible to flexibly choose a channel code under varying channel conditions. When hardware de-

coders implemented in field programmable gate array (FPGA) are used for performance evaluation

purposes, this run-time flexibility can save a considerable amount of time by eliminating the need

for re-synthesis for each code to be tested.

Investigation of the effect of code parameters and combinatorial metrics: With the hard-
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ware simulator, we will investigate the effect of code parameters (column weight, code length, and

code rate) on the performance, and evaluate the influence of combinatorial metrics (girth and di-

ameter) on performance, towards a better design methodology of CPA-structured codes. We will

also compare pseudorandom construction methods and the algebraic construction of CPA-structured

LDPC codes. Besides the CPA structure, the error performance of selected finite-geometry codes

will be measured and compared with the CPA-structured codes.

Study of extension of CPA structure: We also introduce a more general array structure to

find codes with larger girths than the CPA-structured codes. Although Lu showed in [15] that an

array-structured code can be constructed to have an arbitrary girth byrecursively replacing the 1’s

in theH-matrix of CPA-structured codes by permutation matrices and the 0’s by all-zero matrices,

this procedure tends to result in very long codes, and hence it is not suitable for the construction

of the codes with moderate lengths. Our extension will take a different approach in that we allow

non-cyclic permutations as submatrices, which will be denoted as group permutation array (GPA)

structure.

1.4 THESISORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides notations and definitions to

be used in this thesis, reviews previous works on LDPC code constructionand decoding algorithm,

and introduces a nonparametric hypothesis test that will be used in Chapter5. Chapter 3 presents

new methods to find the girth and the diameter of QC-LDPC codes. Chapter 4 provides the details

of the proposed flexible decoder for QC-LDPC codes and a comparisonwith a selection of other

decoder architectures. In Chapter 5, we present the performance simulation results obtained using

the FPGA-based simulator and study the effect of structural parameters on the performance of CPA-

structured codes. Finally, Chapter 6 summarizes the thesis and discusses future work.



CHAPTER 2

BACKGROUND

2.1 A BRIEF HISTORY OFLDPC CODES

Any information sent over a practical channel is subject to errors that are caused by various

physical impairments such as thermal noise, attenuation, multi-path wave reflections, distortion

from previously transmitted signals, interference from other transmitters orimperfect timing recov-

ery at the receiver. Until the late 1940’s, a commonly held belief was that there is a rate-reliability

tradeoff in communication over noisy channels, i.e., to reduce the errors in the channel, either

the transmission power has to be increased or the message information has to be sent repeatedly.

Shannon’s work in 1948 disproved this belief by showing that there is no rate-reliability tradeoff if

the information rate is below an information-theoretic limit calledchannel capacity, which is the

maximum average number of information bits that can be reliably (i.e., with arbitrary small error)

transmitted per second for a given transmission bandwidth and signal-to-noise ratio (SNR).

Although Shannon showed the existence of good codes that achieve channel capacity by using a

“random code”, such code is not realizable due to its intractable encodingdecoding complexity. As

a result, research efforts have been focused on finding codes with simplifying structure to ensure a

good minimum distance property rather than more random-like codes envisioned by Shannon. For

45 years, researchers developed many new coding techniques with an aim to find codes that are

good (close to Shannon’s limit) and also practical, but none of them were successful in approaching

capacity, with the best practical code being away from the Shannon’s limit by 3 to 5 dB..

8
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In 1993, a significant breakthrough was achieved by turbo codes [22], which reached the BER of

10−5 at SNRs within1 dB of the Shannon’s limit. While many of the coding techniques developed

earlier were based upon delicate algebraic structures, the interleaver used in turbo code incorpo-

rated a certain degree of “random-like” nature in the code construction. Although there was no

mathematical justification for the performance of turbo codes when they werefirst presented, many

researchers investigated the underlying principles of turbo coding and validated the significance of

the invention.

LDPC codes form another class of “random-like” codes that approaches the Shannon’s limit,

and date back to Gallager’s doctoral dissertation in 1961 [18], which wasmuch earlier than turbo

codes. In 1981, Tanner generalized LDPC codes with a graphical representation, now called a

Tanner graph [19]. In spite of the excellent performance of LDPC codes, these previous works

had not drawn much attention probably because the encoding and decoding were computationally

intensive with the hardware technology at that time. LDPC codes began to berecognized as a strong

competitor to turbo codes in late 1990’s when MacKay, Luby, and others rediscovered LDPC codes

and showed that they have excellent theoretical performance [2, 23].

The asymptotic performance of LDPC codes, when the codeword length tends to infinity, has

been studied using analytical techniques called density evolution or Gaussian approximation [24–

26]. Very recently, it has been also shown that the error performancein the waterfall region under

binary input memoryless symmetric channels can be predicted by analytical methods [27].

2.2 LDPC CODE STRUCTURE

In this section, we provide the formal definition of general LDPC codes and define several array

structures to be discussed in the thesis. We confine the discussion to binarylinear codes.

2.2.1 Definition of an LDPC Code and Other Notations

An (N , K) linear block code is defined as a set of codewords that forms aK-dimensional

subspace in anN -dimensional vector space over GF(2). The usual convention to represent a linear
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block code is either as the row space of a generator matrix, i.e.,

C = {x : x = uG, ∀u ∈ GF(2)M}, (2.1)

or as the null space of a parity check matrix, i.e.,

C = {x : Hx = 0}. (2.2)

A (j, k)-regular LDPC codeis defined as the null space of aM ×N parity check matrixH that

has the following structural properties:

1. Each row containsk 1’s.

2. Each column containsj 1’s.

3. Bothj andk are small compared to the number of columns and the number of rows in the

H-matrix.

4. The number of 1’s common to any two rows is 0 or 1.

This definition is sometimes referred to as “LDPC code in narrow sense” whilethe one without

the last condition is called “LDPC code in wide sense”. The last condition, which is sometimes

called row-column (RC) constraint, ensures that there are no 4-cycles inthe corresponding Tanner

graph. The column weightj and row weightk denote the number of 1’s in each column and row,

respectively. The length of the codewords isN , and there areM parity check equations. If the rank

of theH-matrix isr, K = N − r message bits can be transmitted per codeword. Accordingly, the

code rate is given by

R =
K

N
≥ N −M

N
,

where the equality holds when allM rows are linearly independent.

For regular LDPC codes as defined above, the total number of 1’s in theH matrix isjN = kM .

If the column weight or row weight is not uniform, it is called an irregular LDPC code.
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2.2.2 LDPC Codes with Array Structure

There are particular properties of codes that result in useful array structures in the parity check

matrix. This section will provide formal definitions of the structures.

Cyclic codes:A linear codeC is calledcyclic if every cyclic shift of a codeword inC is also in

C. The parity check matrix of a cyclic code can be put into the form of a square circulant matrix. It

is easy to check that the null space of a circulantH forms a cyclic code. SupposeH is aN × N

circulant matrix with redundant rows to have a nonzero code rate. Letx be a codeword inC defined

as the null space ofH, i.e.,Hx = 0. Denoting a single downward cyclic shift ofx asx̃, it can be

expressed as̃x = Cx, whereC is aN ×N single cyclic permutation matrix as defined in eq. (1.2).

SinceC andH are both circulant,HC = CH. Multiplying x̃ with H yields

Hx̃ = HCx = CHx = 0, (2.3)

which shows that̃x is still in the null space ofH. By applying this property multiple times, it is

readily noticed that shifting by any number of symbol positions yields a valid codeword.

Cyclic codes form an important class of linear codes since the encoding complexity is linear in

codeword length and can be implemented with a simple linear shift register.

Quasi-cyclic codes:A linear codeC is calledquasi-cyclicif a codeword inC cyclically shifted

by a fixed numbers of bit positions is also inC. In other words, ifxT = (x0, x1, . . . , xN−1) is a

codeword,̃xT = (xN−s, xN−s−1, . . . , xN−1, x0, x1, . . . , xN−s−1) is another valid codeword. If we

rearrange the bit indices inx by repositioningxsm+i at the indexPi+m, where0 ≤ m ≤ P − 1,

0 ≤ i ≤ s− 1 andP = N/s, thex before and after the shift take the following form:

xT = (x0, xs, . . . , x(P−1)s|x1, xs+1, . . . , x(P−1)s+1| . . . |xs−1, x2s−1, . . . , x(P−1)s+s−1),

x̃T = (x(P−1)s, x0, . . . , x(P−2)s|x(P−1)s+1, x1, . . . , x(P−2)s+1| . . .

|x(P−1)s+s−1, xs−1, . . . , x(P−2)s+s−1), (2.4)

which indicates that a cyclic shift bys positions in the original indices is equivalent to a single shift

in each of thes subvectors in the rearranged indices.
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The parity check matrix of a quasi-cyclic code can be rewritten as an arrayof circulant matrices.

To check that the null space of such parity check matrix forms a quasi-cyclic code, consider a code

whose parity check matrix is anNc ×Nb array ofP × P submatrices, i.e.,




















H0,0 H0,1 . . . H0,Nb−1

H1,0 H1,1 . . . H1,Nb−1

...
...

...

HNc−1,0 HNc−1,1 . . . HNc−1,Nb−1





















, (2.5)

where each submatrixHi,j is a circulant matrix. If we represent a codeword in the form

x =





















x0

x1

...

xNb−1





















,

wherexi denotes thei-th subvector of thex, a new codeword̃x made by a single downward cyclic

shift in each subvector ofx can be represented as

x̃ =





















Cx0

Cx1

...

CxNb−1

.
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Multiplying x̃ by H yields

Hx̃ = H





















C

C

. . .

C









































x0

x1

...

xNb−1





















=





















H0,0C H0,1C . . . H0,Nb−1C

H1,0C H1,1C . . . H1,Nb−1C

...
...

...

HNc−1,0C HNc−1,1C . . . HNc−1,Nb−1C









































x0

x1

...

xNb−1





















=





















C

C

. . .

C





















Hx

= 0,

which shows that̃x is also in the null space ofH.

As in the case of cyclic codes, quasi-cyclic codes are of particular interest in practical systems

since there exist linear-time encoders for quasi-cyclic codes that can beimplemented with simple

shift registers [28, 29].

CPA-structured codes:A circulant permutation array (CPA) structure is a special subclass of

QC-LDPC codes and also a generalization of the array codes introducedin Chapter 1. The parity

check matrix of the CPA-structured codes takes the following form:

H =





















Cs0,0 Cs0,1 . . . Cs0,Nb−1

Cs1,0 Cs1,1 . . . Cs1,Nb−1

...
...

...

CsNc−1,0 CsNc−1,1 . . . CsNc−1,Nb−1





















,

whereC is aP × P single downward circulant permutation matrix and each shift valuesi,j is in
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(a) random LDPC code (b) Cyclic LDPC code

(c) CPA-structured LDPC code (d) CPA∗-structured LDPC code

(e) Quasi-cyclic LDPC code

Figure 2.1: Examples of unstructured and structured parity check matrices

{ 0 , 1 , . . . , P − 1 }. The CPA-structured code is regular, and the column weightj and row

weightk are equal toNc andNb, respectively. We will use the notation CPA(Nc, Nb, P ) to denote

such code in the rest of this thesis.

CPA∗-structured codes: A CPA∗structure is a generalization of CPA structure by allowing

P × P all-zero matrices in place of any of the submatrices in the CPA structure.

Figure 2.1 shows some example codes with the structures defined in this section, where white

space represents 0’s while black points or lines represent 1’s in the parity check matrix. The set

diagram in Figure 2.2 illustrates the relationship among these classes of codes.
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Quasi-cyclic

CPA*

Cyclic CPA

Figure 2.2: The relationship among the structured-codes

2.3 ITERATIVE DECODING ALGORITHM

2.3.1 Overview on the Sum-Product Algorithm

The sum-product algorithm is an approximation to an exact marginalization of ajoint probability

density function [30]. We will use a simple example to show how they are related.

Suppose there is a multi-variable function composed of factors shown as

g(x1, . . . , x6) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5), (2.6)

and we want to compute the marginal functiong3(x3) for x3 defined as

g3(x3) =
∑

x1

∑

x2

∑

x4

∑

x5

∑

x6

g(x1, . . . , x6) (2.7)

=
∑

∼x3

g(x1, . . . , x6), (2.8)

where the “not-sum” operator ‘∼’ indicates the variables being excluded in the summation.

By using the fact that each factor involves only some of the variables, we can manipulate
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(a) Factor graph

x x

x
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x

‘1’
‘1’
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(b) Converted graph

Figure 2.3: Example of a factor graph and the corresponding conversion

eq. (2.7) to rewrite it as

g3(x3) =

(

∑

x4

fD(x3, x4)

)

·
(

∑

x5

fE(x3, x5)

)

·
(

∑

x1,x2

fA(x1)fC(x1, x2, x3)

(

∑

x6

fB(x2, x6)

))

,

or equivalently,

g3(x3) =

(

∑

∼x3

fD(x3, x4)

)

·
(

∑

∼x3

fE(x3, x5)

)

·
(

∑

∼x3

fA(x1)fC(x1, x2, x3)

(

∑

∼x2

fB(x2, x6)

))

.

The expression in eq. (2.9) shows the order of computation that can reduce the total number

of operations. In [30], it has been shown that such an expression can be obtained from a graph

representation of the functiong(x1, . . . , x6) in a straight-forward manner. The graph representation

is called afactor graph, and it is a bipartite graph where the variables are mapped to variable nodes,

the factors are mapped to factor nodes, and an edge betweenxi andfj(·) indicates thatfj(·) hasxi

as its argument. The factor graph for eq. (2.7) is shown Figure 2.3a.

Regarding the variablex3 as the root of a tree, the order of the computation can be obtained

by traversing the graph from the leaf nodes to the root node. Each variable node corresponds to

the multiplication of all incoming messages, and each factor node correspondsto the multiplication
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of all incoming messages and the local function (factor) followed by a not-sum operation over the

parent variable node. A message can be regarded as the evaluation of alocal function for all possible

values in the alphabet. The factor graph after this mapping is shown in Figure2.3b.

In summary, the variable-to-factor message that is generated at each variable node can be com-

puted as

πv→f (x) =
∏

f ′∈N (v)\f
πf ′→v, (2.9)

whereN (v) denotes the neighbor nodes of the variable nodev and ‘\’ denotes exclusion. Likewise,

the factor-to-variable message generated at each factor node can be computed as

πf→v(x) =
∑

∼x



f(N (f))
∏

v′∈N (f)\v
πv′→f



 , (2.10)

whereN (f) denotes the neighbor nodes of the variable nodef .

As previously stated, the marginalization for a single variable can be done bysetting it as the

root, and propagating messages from the leaves to the root, as shown in Figure 2.4a. Interestingly,

the marginalization for all variables can be performed simultaneously by propagating messages

from all leaves to all other leaves as shown in Figure 2.4b. In this manner, intermediate results can

be reused.

When the factor graph is cycle-free, as in the previous example, the sum-product algorithm com-

putes the exact marginal function, and the algorithm stops when all messages have propagated from

all leaf nodes to all other leaf nodes, i.e., when all edges have deliveredmessages in both directions.

On the other hand, with cycles in the graph, there is no clear condition for stopping the algorithm,

and the result is not the exact marginal function. However, when the sum-product algorithm is ap-

plied to the decoding of channel codes, it has been empirically shown that, with a sufficiently large

number of iterations, the results can closely approximate the true marginal functions [1].

Let x be the codeword vector andy be the observed channel output. If we apply the symbol-

by-symbol maximum a posteriori (MAP) detection, the optimal decoding is defined as

x̂i = arg max
xi∈{0,1}

p(xi|y), (2.11)
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(a) Marginalization for a single variable
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(b) Marginalization for all variables

Figure 2.4: Propagation of messages in sum-product algorithm

where

p(xi|y) =
∑

∼xi

p(x|y) (2.12)

=
∑

∼xi

p(x)p(y|x)

p(y)
. (2.13)

Under the assumption of equiprobable codewords and memoryless channel, we can make the fol-

lowing substitutions:

p(x) =
1

2k
I(x ∈ C); (2.14)

p(y|x) =
n
∏

i=1

p(yi|xi), (2.15)

whereI(t) is an indicator function which gives1 if the argumentt is true and0 if t is false. Ac-

cordingly,I(x ∈ C) indicates the membership of a vectorx in a set of valid codewordsC.

Now, the function to be marginalized in eq. (2.12) is

g(x) = I(x ∈ C)
n
∏

i=1

p(yi|xi), (2.16)
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1 1 0 0

1 0 1 1

0 1 1 0

1 0

0 0

0 1

(a) Parity check matrix

+++

p(y1|x1) p(y2|x2) p(y3|x3) p(y4|x4) p(y5|x5) p(y6|x6)

1 2 3 4 5 6

(b) Factor graph

Figure 2.5: Example of a code and the corresponding factor graph

where the scaling factors1/2k andp(y) have been dropped since they are constant for a given

observationy.

To show the application of the sum-product algorithm to the decoding of binary linear codes,

consider another example in Figure 2.5. From the parity check matrix in Figure2.5a, the indicator

function can be represented as the product of factors, each of whichcorresponds to a check equation,

i.e.,

I(x ∈ C) = I(x1 + x2 + x5 = 0) · I(x1 + x3 + x4 = 0) · I(x2 + x3 + x6), (2.17)

where the additions are in GF(2). The corresponding factor graph is shown in Figure 2.5b. Note that

the Tanner graph is equivalent to the factor graph except that the factor nodes for the conditional

probabilitiesp(yi|xi)’s are explicitly shown.

For the case of binary codes, the variable nodes are called bit nodes and the factor nodes are

called check nodes. For this special case, the alphabet of the variablesare in GF(2), and the mes-

sages can be represented as the ratio of the value atx = 1 to the valuex = 0. With this simplifica-

tion, the bit(variable) node computation in eq. (2.9) can be written as

Λb→c = ρb

∏

c′∈N (b)\c
Λc′→b, (2.18)
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where the input likelihood ratioρb is defined as

ρb =
p(yi|xi = 1)

p(yi|xi = 0)
.

Likewise, the check (factor) node operation in eq. (2.10) can be simplifiedas

Λc→b =
⊕

b′∈N (c)\b
Λb′→c, (2.19)

where
⊕

denotes a repetitive application of the special binary operator⊕, which is defined for

eq. (2.19) as

a⊕ b =
a+ b

1 + ab

With a further simplification of representing messages in log-likelihood domain, i.e., λ = log Λ

andµ = log ρ, the bit node operation can be represented as

λb→c = µb +
∑

c′∈N (b)\c
λc′→b, (2.20)

and the check node operation can be expressed as

λc→b = F
(

⊕

b′∈N (c)\b
F (λb′→c)

)

, (2.21)

where
⊕

denotes a repetitive application of the operator⊕, which isredefinedfor eq. (2.21) as

a⊕ b = sgn(a)sgn(b)(|a|+ |b|), (2.22)

and thesgn(x) is the sign ofx as1 or−1. The functionF (λ) is defined as

F (λ) = sgn(λ) log
e|λ| + 1

e|λ| − 1
,

and is shown in Figure 2.6.
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Figure 2.6: The functionF (x)

2.3.2 Min-Sum Algorithm

The min-sum (MS) algorithm in the log-likelihood ratio (LLR) domain is an approximation of

the SP algorithm [30]. First, note thatF (x) has the following properties:

|F (x)| = F (|x|);

F (F (x)) = x.

For check node computation, if we assume one of terms in the summation in eq. (2.21) is dominantly

large, the absolute value of the LHS can be approximated as follows:

|λc→b| = F
(

∣

∣

∣

∣

∣

∣

⊕

b′∈N (c)\b
F (λb′→c)

∣

∣

∣

∣

∣

∣

)

≈ F

(

max
b′∈N (c)\b

|F (λb′→c)|
)

= F

(

max
b′∈N (c)\b

F (|λb′→c|)
)

= F

(

F ( min
b′∈N (c)\b

|λb′→c|)
)

= min
b′∈N (c)\b

|λb′→c|
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Accordingly, the MS algorithm does not require theF (·) function, and the bit and check node

operation can be written as

λb→c = µb +
∑

c′∈N (b)\c
λc′→b (2.23)

and

λc→b =
⊙

b′∈N (c)\b
λb′→c, (2.24)

respectively, where
⊙

denotes a repetitive application of the special binary operation⊙ defined as

a⊙ b = sgn(a)sgn(b)min(|a|, |b|).

The MS algorithm is known to require fewer quantization levels than the SP algorithm. It is also

known that the performance of the MS algorithm can be improved by scaling the soft information

after each iteration [31]. This variant is called modified min-sum (MMS) algorithm, and it has been

shown that it can perform as well as the SP algorithm with 6-bit quantization [32]. In [31], a scaling

factor of0.8 was found to be optimal for (j = 3, k = 6) codes. Since the latest FPGAs contain a

large number of dedicated multipliers, most of which are not utilized, we used multipliers to do the

scaling. In a situation where multipliers are costly resource, an approximatedvalue can be used to

replace the multipliers with adders with a little performance degradation, e.g.,0.75 instead of0.8.

2.4 LDPC CODE CONSTRUCTION

2.4.1 Original Gallager Construction

When Gallager proposed LDPC codes, he used a pseudorandom construction method based on

random permutation of predefined columns. For a givenj, the parity check matrix of sizepj × pk

is constructed withj vertically stackedp × pk matrices. The submatrix on the top has 1’s fixed

at certain positions by the following rule: Thei-th row, 1 ≤ i ≤ p, has ones at the columns

(ik−k+1, ik−k+2, . . . , ik), making the submatrix (1, k)-regular. For the rest of the submatrices,

the columns of the top submatrix are copied and randomly permuted, making the parity check matrix
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Figure 2.7: An example of Gallager construction

(j, k)-regular. An example of Gallager construction is shown in Figure 2.7.

In his work, Gallager used the ensemble of randomly permuted codes to showthat such a con-

struction provides capacity-approaching codes asN → ∞ [18]. Such a construction by itself

does not provide a mechanism to prevent4-cycles and the actual code construction should rely on

computer search to choose suitable permutations to avoid4-cycles. Later, very long codes were

constructed and shown to closely approach the Shannon limit [1, 24].

2.4.2 Finite-Geometry Codes

There are a class of codes that are algebraically constructed based upon the underlying struc-

ture of finite geometries. Examples of such codes include Euclidean-geometry (EG) codes and

Projection-geometry (PG) codes [3, 4]. In this section, we describe the EG code.

Consider anm-dimensional vector spaceV over GF(2s). It contains allm-tuples of the el-

ements in GF(2s). Accordingly, there are2ms vectors inV . The spaceV is known to form an

m-dimensional finite Euclidean geometry, which is called EG(m, 2s). Eachm-tuple in the vector

space is regarded as a point in the geometry. Aline is defined as the set of points given as

{x0 + ax |a ∈ GF(2s)}. (2.25)
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The line passes through the origin if and only ifx0 andx are linearly dependent. Two different lines

either do not meet or intersect on exactly one point.

As a multi-dimensional generalization of lines, aµ-flat is defined as the set of points

{x0 + a1x1 + · · ·+ aµxµ|a1, . . . , aµ ∈ GF(2s)}, (2.26)

wherex1, . . . ,xµ are linearly independent. If theµ+1 vectors, includingx0, are linearly dependent,

theµ-flat contains the origin. As in the case of lines, two differentµ flats either do not meet or

intersect on exactly one (µ− 1)-flat.

The elements of EG(m, 2s) are also known to form finite field GF(2ms). There is a one-to-one

mapping between an element in the geometry and an element in the field. For example, we can

define a mappingT fromG=EG(2, 2s) to F=GF(22s) as

T : G → F (2.27)

x → T (x), (2.28)

and defineT as

T ((x0, x1)) = x0 + αx1, (2.29)

whereα is the primitive element ofF . The vector componentsx0 andx1 are in GF(2s) and they

are also inF since GF(2s) is a subfield of GF(22s). All of the points inG, or equivalently all of the

elements inF can be expressed as0 or the power ofα, i.e., the set of all points is

{0, α0, α1, . . . , αN−2}, (2.30)

whereN = 2ms is the total number of points inG.

Based upon the underlying geometry EG(m, 2s), we can form an incidence vector

hi = (hi,0, hi,1, . . . , hi,N−1), (2.31)

wherehi,j indicates that a linei is incident on thej-th point in eq. (2.30). By collecting all of the

incident vectorshi, i = 0, . . . , N − 1, we can form a parity check matrixH. More generally, if we
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use the incident vectors of (µ+ 1)-flats,µ ≥ 0, it is called a (µ, s)-th order EG code of length2ms.

An interesting property in this structure is that, if we remove the origin and all lines passing through

it, theH-matrix becomes circulant. Thus, the corresponding code becomes cyclic.

If we chooseµ = 0, the number of 1’s in any two rows is either 0 or 1, which prevents 4-cycles

in the parity check matrix. By choosingm ≥ 2 ands ≥ 2, the density of 1’s in the codes can be

lowered. Such codes are called a (0, s)-th order cyclic LDPC code of length22s − 1, and known to

have the following properties:

N = 2ms − 1, (2.32)

M =
(2(m−1)s − 1)(2ms − 1)

2s − 1
, (2.33)

j =
2ms − 1

2s − 1
, (2.34)

k = 2s. (2.35)

For the special case ofm = 2, the minimum Hamming distancedmin is exactlyj + 1, while dmin

is lower bounded byj + 1 in general for regular LDPC codes with girth6 or greater. Furthermore,

whenµ = m− 2, the number of information bitsK is given by

K = 2ms −
(

m+ 1

m

)s

. (2.36)

The class of finite-geometry LDPC codes encompass a relatively large number of codes corre-

sponding to the parametersm, s andµ, and they are known to give reasonably good or very good

performance [3, 4]. Also, there are methods to extend or shorten existingfinite-geometry codes

to generate new parity check matrices using the techniques known as column or row splitting [4].

Some of the long extended codes have been shown to perform within a few tenths of decibel away

from the Shannon limit. The performance comparison of (0,s)-th cyclic EG-LDPC codes of length

22s − 1 with CPA-structured codes will be provided in Section 5.5.
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s00

-s03

(a) Compact Tanner graph

s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

(b) S-matrix

Figure 2.8: Example: A 6-cycle on the compact Tanner graph andS-matrix

2.4.3 Finding the girth of CPA-Structured Codes

We can use a compact representation for the parity check matrix of the CPA-structured codes in

eq. (2.6) by using anNc × Nb matrix that contains the powers ofC. This matrix will be denoted

asS-matrix. Since the pseudorandom generation of CPA-structured codes isessentially a computer

search for high girth codes, it relies on a fast method for finding girth, which works on theS-

matrix. Fan showed in [9] that, for an array structure with (not necessarily circulant) permutation

submatrices, the girth can be found by examining the product ofHij submatrices along a given

cycle in the block matrix form ofH, and for circular permutation submatrices, by checking the sum

of the entries in theS-matrix along a cycle in theS-matrix.

We will show by an example how the girth can be found in a CPA(Nc, Nb, P )-structured code. In

the Tanner graphG, the check nodes are divided intoNc check partitionsCi = (ciP , ciP+1, . . . , ciP+P−1),

i = 0, . . . , Nc−1, and the bit nodes are divided intoNb partitionsBj = (bjP , bjP+1, . . . , bjP+P−1),

j = 0, . . . , Nb − 1. We can visualize the connections between partitions using a compact Tanner

graphG′ in Figure 2.8a. InG′, each bit (check) supernode corresponds to a bit (check) partition,

and an edge between a check supernode and a bit supernode inG′ representsP edges inG. For a

bit nodeb in Bj , denote the index of the bit nodeb within Bj asψ(b). Likewise, the index ofc in
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Ci is denoted asψ(c). Then, the indices ofb andc are related by the following formulae:

ψ(c) = ψ(b) + Sij ; (2.37)

ψ(b) = ψ(c)− Sij , (2.38)

where the operations ‘+’ and ‘-’ are defined as modulo-P addition and subtraction, respectively.

Now, consider a cycle of length6 in G′, traversing the dotted line in Figure 2.8a, which visits

the partitions in the following sequence :

B0 → C0 → B3 → C2 → B2 → C1 → B0. (2.39)

If we arbitrarily choose a bit nodeb(0) in B0 and follow the partition sequence in eq. (2.39), the

6-cycle inG′ maps to a path of length7 in G, going through exactly one node in each partition. If

we label the nodes asb(0), c(1), . . . , b(6) in the order in the path, we obtain the following path:

b(0) → c(1) → b(2) → c(3) → b(4) → c(5) → b(6). (2.40)

This path is a cycle inG if and only if ψ(b(0)) = ψ(b(6)). This condition can be checked by

calculatingψ(b(6)) using the formulae in eq. (2.37) and (2.38), i.e.,

ψ(b(6)) = ψ(b(0)) + s00 − s03 + s23 − s22 + s12 − s10.

Accordingly, the path in eq. (2.40) is a cycle inG if and only if the cumulative shift value∆S is 0,

i.e.,

∆S = s00 − s03 + s23 − s22 + s12 − s10 = 0. (2.41)

Thus, the existence of a cycle of lengthg in G can be determined by examining all cycles of

lengthg inG′ (or equivalently examining all cycles of lengthg in S-matrix composed of alternating

horizontal and vertical edges), and checking the condition in eq. (2.41).

Tanner showed that an array structure withNc = j ≥ 2 andNb = k ≥ 3 with a group of

submatrices homomorphic to a cyclic group cannot have a girth larger than12 [12]. Consider the

12-cycle shown in Figure 2.9 which involves6 shift values(a, b, c, d, e, f). The corresponding
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a c

e f

b

d

Figure 2.9: A cycle of length 12 inS-matrix

cumulative shift value is

a− b+ e− f + c− a+ d− e+ b− c+ f − d = 0, (2.42)

which evaluates to 0 regardless of the actual values of(a, b, . . . , f). This shows that, for a CPA

structure withNc = j ≥ 2 andNb = k ≥ 3, the maximum girth is12, which arises from the

commutativity of the shift values under modulo-P additions.

2.4.4 Extension to the GPA Structure

One natural generalization of the CPA structure is to allow a more general set of permutations

as the submatrices of the array-structured parity check matrix. We begin byconsidering the case

in which the submatricesHij in eq. (2.5) can be any permutation matrices, and describe how the

girth-finding problem can be simplified by choosing a particular kind of permutation.

Arbitrary permutations: Using the example in Figure 2.8a, consider a cycle of length6 in

the compact Tanner graphG′. By the first edge connectingB0 andC0, the bit nodes inB0 are

connected to the check nodes inC0 by the permutationH00. Denote theP nodes inB0 as vectorb

and theP nodes inC0 as vectorc, i.e.,

c = [c0, c1, . . . , cP−1]
T ;b = [b0, b1, . . . , bP−1]

T , (2.43)

wherecm(bn) indicates themth(nth) node in partitionC0(B0). If we use the notationcm = bn to

denote the existence of a path frombn to cm along the chosen cycle inG′, the connection from the
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bit nodes inB0 to the check nodes inC0 can be collectively represented as

c = H0,0 · b. (2.44)

Similarly, to represent the connection fromC0 toB3, we can use the following equation.

b = H−1
0,3 · c. (2.45)

After traversing all of the edges along the dotted line in Figure 2.8a, we obtainthe cumulative

permutation∆H as the following:

∆H = H−1
1,0 ·H1,2 ·H−1

2,2 ·H2,3 ·H−1
0,3 ·H0,0 (2.46)

If any of theP diagonal elements inH is 1, there is a closed path inG that corresponds to the

cycle inG′. Therefore, in general, cycle detection involves multiplications ofP × P matrices.

Permutations from regular representations:

Consider a groupGP of sizeP defined over multiplication. If we choose an ordering of the

elements ofGP , i.e.,R = (g1, . . . , gP ), then for anyg ∈ G, gR = (gg1, . . . , ggp) is a permutation

of R. This can be shown by the group property as follows. IfgR is not a permutation ofR, there

are at least two distinct elementsgi andgj satisfyingggi = ggj . By premultiplying both sides with

g−1 we getgi = gj , which violates the assumption.

Now, we can define aP × P permutation matrixφ(g) which is determined by the permutation

incurred bygR, i.e.,

(gg1, gg2, . . . , ggP )T = φ(g)(g1, g2, . . . , gP )T. (2.47)

The set of all possibleφ(g)’s gives a group of permutations

φ(GP ) = {φ(g) : g ∈ GP }. (2.48)

The mappingφ(g) from G toφ(G) preserves the group structure by group isomorphism. Hence,

the operation on the elements ofφ(GP ) can be replaced by the operation on the elements ofGP .

The representationφ(g) is called regular representationin group theory, and it has a well-
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known property thatφ(g) has a fixed point if and only ifg = 1. This implies that the product of

the permutation matrices chosen fromφ(Gp) cannot have a nonzero diagonal entry unless it is an

identity matrix. This can be shown by the following. Suppose there is a nonzero diagonal entryhii

in φ(g), whereg is not an identity. From eq. (2.47), this means thatggi = gi. This contradicts the

assumption thatg is not an identity.

Using this property, if we use the elements of theGp as the entries in theS-matrix, the existence

of a cycle in the Tanner graph of the correspondingH-matrix can be detected by checking if the

product of the group elements in theS-matrix along a cycle is an identity. The idea for this simplified

checking was initially given in [9].

By using the regular representations of a group to form the parity check matrix, we can construct

a new class of array-structured LDPC codes, which we will call group permutation array (GPA)

structured codes. It can be noticed that the CPA-structured code is merely a special case of GPA

where we choose a cyclic group of sizeP as the underlying group. However, we will use GPA to

denote the permutation matrices based on non-cyclic group for the rest of the thesis.

One direct benefit of GPA over CPA is that, by choosing a non-commutativegroup,the limitation

of girth 12 does not apply. Thus, it is expected to achieve a higher girth. The GPA structure is not

quasi-cyclic, thus it is more “random” than the CPA-structured codes. Whether it would be possible

to devise an efficient encoding algorithm or a efficient hardware decoder architecture remains to be

seen and entirely dependent on the underlying group structure.

2.5 A NONPARAMETRIC TEST

In Chapter 5, we discuss the effect of diameter on the performance. To remove the artifact of

explicit efforts to generate codes with large diameters, we use a large number of codes uniformly

sampled from the code space of CPA-structured codes. From the observations made on the error

performance of codes with different diameters, statistical significance willbe calculated based on

nonparametric hypothesis testing. In this section, we introduce the statistical tools that will be used
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in Chapter 5.

2.5.1 Ranking Statistics

For hypothesis testing or estimation problems using samples obtained from an unknown dis-

tribution or multiple distributions, it is often necessary to rely on distribution-free statistics whose

distribution remains unchanged over the underlying distribution of the random variables being as-

sessed. One of common techniques to construct distribution-free statistics isthe ranking of sample

observations. We will briefly discuss the basic properties of ranks.

LetX = (X1, . . . , XN ) denote the vector of random samples, each independently drawn from

the same but unknown continuous distribution with cumulative distribution function F (x). Let

R = (R1, . . . , RN ) be the vector of the ranks ofX, i.e.,Ri denotes the rank ofXi in X. ThenR

takes any one of all possible permutations of(1, . . . , N) with equal probability, i.e.,

P (R = r) = P (R1 = r1, . . . , Rn = rN ) , (2.49)

wherer = (r1, . . . , rN ) is any permutation of(1, . . . , N). With the continuity assumption onXi,

we can disregard the possibility of obtaining a tie in the ranks. From this property in eq. (2.49), it

follow that

P (Ri = r) =











1
N , r ∈ {1, . . . , N}

0, otherwise,
(2.50)

and fori 6= j,

P (Ri = r,Rj = s) =











1
N(N−1) , r, s ∈ {1, . . . , N}, r 6= s

0, otherwise.
(2.51)

From eq. (2.50) and (2.51), the mean, variance and covariance also follow as

E[Ri] =
N
∑

r=1

rP (Ri = r)

=
N + 1

2
,
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V ar[Ri] = E[R2
i ]− E[Ri]

2

=
N
∑

r=1

r2P (Ri = r)− (N + 1)2

4

=
(N + 1)(N − 1)

12
,

and fori 6= j,

Cov[Ri, Rj ] = E[RiRj ]− E[Ri]
2

=
∑

r

∑

s 6=r

rs

N(N − 1)
− (N + 1)2

4

= −N + 1

12
.

A test statisticT (R(X)), which is dependent uponX only throughR, has a distribution indepen-

dent of the distribution ofX, and is called a rank statistic.

2.5.2 Mann-Whitney-Wilcoxon Test

We show the use of the rank statistic in a distribution-free hypothesis test forthe two-sample lo-

cation problem. Suppose you have two vectors of independent random samples,X = (X1, . . . , Xm)

andY = (Y1, . . . , Yn), drawn from continuous distributions with distribution functionsF (x) and

F (x− θ), respectively, that is, two identical distribution functions with an unknown shift of θ. We

want to test the hypothesis that the two sample vectors come from the same distribution, i.e.,

H0 : θ = 0

H1 : θ > 0.

We combineX andY to form the vectorZ = (X1, . . . , Xm, Y1, . . . , Yn) of lengthN = m+n. Let

Q = (Q1, . . . , Qm) andR = (R1, . . . , Rn) denote the ranks ofX ′
is andY ′

j s in the combined vector

Z, respectively. Under the null hypothesisH0, the combined rank vector(Q1, . . . , Qm, R1, . . . , Rn)

follows the properties in the previous section.

Now, we construct a test statistic based upon the ranks. We consider the sum of the ranks ofYi’s
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in R, calledranksum, i.e.,

W =
n
∑

i=1

Ri,

which was proposed by Wilcoxon [33]. We can also use an equivalent statistic suggested by Mann

and Whitney [34], which is given by

U =
m
∑

i=1

n
∑

j=1

I(Yj −Xi)

= W − n(n+ 1)

2
,

whereI(t) is the step function defined as

I(t) =











1, t > 0

0, t ≤ 0.

SinceU differs fromW only by a constant, we choose to useW for the discussion.

Under the null hypothesis (H0 : θ = 0), the discrete random variableW has the following

distribution.

P (W = w|H0) =











tN,n(w)

(N
n)

, w = n(n+1)
2 , n(n+1)

2 + 1, . . . , n(N+n+1)
2

0, otherwise,

wheretN,n(w) is the number of unordered subsets ofn numbers taken from{1, . . . , N} whose

sum isw. This indicates that the ranksumW is distribution-free under the null hypothesis for the

unknown distributionF (x). The value oftN,n(w) can be found by enumerating all
(

N
n

)

combina-

tions and counting those that sum tow, and the values are tabulated forN ≤ 20 in the literature

(see [35]).

It is also known that, underH0, the mean ofW is

E[W |H0] =
n(n+m+ 1)

2
(2.52)

and

V ar[W |H0] =
nm(n+m+ 1)

12
. (2.53)
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Using eq. (2.52), the null mean and null variance ofU can be calculated as the following:

E[U |H0] = E[W |H0]−
n(n+ 1)

2
=
mn

2
, (2.54)

V ar[U |H0] = V ar[W |H0] =
mn(m+ n+ 1)

12
. (2.55)

For larger values ofN , a Gaussian approximation is known to provide accurate results, i.e.,U

follows the normal distribution with the mean and variance in eq. (2.54) and eq.(2.55), respectively.

Given a data pointu calculated from the observationX andY , we can compute the probability of

observing a value ofU that is at least as extreme asu, i.e.,

p = P (U ≥ u|H0) = Q





u− mn
2

√

mn(m+n+1)
12



 , (2.56)

whereQ(x) =
∫∞
x

1√
2π
e−x2/2 dx.

The probabilityp in eq. (2.56) is calledp-value, and used as an indicator of the statistical signif-

icance of the observed data under the null hypothesis. A small value ofp makes the null hypothesis

unlikely. Usually it is compared with a predefined significance levelα, and the null hypothesis is

rejected ifp is smaller or equal toα. In other words, the null hypothesis is rejected if the observed

value ofU is greater than equal to the thresholdu0(α), which is defined as the upper100α-th per-

centile point in the distribution ofU , i.e.,P (U ≥ u0(α)|H0) = α. Thus, the significance levelα is

the probability of falsely rejecting the null hypothesis when it is true.

This test is called Mann-Whitney U test, Mann-Whitney-Wilcoxon test or Wilcoxon ranksum

test. The form ofp in eq. (2.56) is for one-sided test. The modification for two-sided test is straight-

forward. To test the hypothesis

H0 : θ = 0

H1 : θ > 0 or θ < 0,

thep-value is calculated by considering both tails of the Gaussian distribution, i.e., itis the value of
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p that satisfies

P (U ≥ u|H0) =
p

2
(2.57)

for a given observed data pointu.



CHAPTER 3

ANALYSIS OF QC-LDPCCODES: GIRTH AND
DIAMETER

Girth and diameter are important graph parameters that can potentially affectthe performance of

LDPC codes [12, 18] In Chapter 5, we will explore the effect of the two parameters on LDPC

code performance. In general, the problem of finding cycles up to lengthg has complexity of

O
(

N(jk)g/2
)

, wherej andk are the column and row weights, respectively, andN is the codeword

length. The problem of finding the diameter has complexity ofO(N3). Thus, it can be too time-

consuming to calculate girth and diameter even for moderately long codes (1000 ≤ N ≤ 10000).

However, for structured codes, we can expect to find much more efficient algorithms to calculate

girth and diameter, if the underlying structure is properly exploited.

In Section 2.4.3, we have shown that, for CPA-structured codes, it is possible to efficiently

find the girth by examining cycles in theS-matrix, which is a very compact representation of the

correspondingH-matrix. This algorithm has a runtime ofO
(

Nb(jk)
g/2
)

, thus reducing the number

of operations by a factor ofP . This is helpful for CPA-structured codes where the girth is limited

by 12 andj andk are typically small constants. However, this method can be too costly for CPA∗-

structured codes which may have larger girth.

In this section, we will introduce two new algorithms for general QC-LDPC codes: a girth-

finding algorithm with runtime ofO(jNbNg) and a diameter-finding algorithm with a runtime

of O
(

(Nb +Nc)
3P 2

)

. These algorithms can also be used for any subclass of QC-LDPC codes,

36
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(a) TheH-matrix

0,1 0 -1 3,5

5 -1 3 7

(b) The corresponding extendedS-matrix

Figure 3.1: An example of QC(2,4,8) LDPC code

including CPA and CPA∗structured codes. We will begin with a discussion of QC-LDPC code

representation and then provide the details of the algorithms.

3.1 QC-LDPC CODE REPRESENTATION

In Chapter 1, we introduced theS-matrix representation for the CPA-structured LDPC codes.

It cannot be used for QC-LDPC codes since there can be more than one1’s in each column (or

row) in theP × P submatrices of the parity check matrix. For a given QC-LDPC code, the parity

check matrixH can be put into an array form, i.e., an array ofP × P circulant submatricesHi,j ,

i = 0, . . . , Nc − 1, j = 0, . . . , Nb − 1. Due to the property of circulant matrices, each submatrix

is either the sum of one or more circulant permutation matrices or aP × P all-zero matrix. With

a slight abuse of theS-matrix representation, the parity check matrix can be represented in the

extendedS-matrix form, in which multiple shift values can be specified in each entry. For example,

a QC-LDPC code withNc = 2, Nb = 4 andP = 8 and the corresponding extendedS-matrix are

shown in Figure 3.1a and 3.1b, respectively.

3.2 FINDING GIRTH

The array structure of a QC-LDPC code provides natural partitioning ofthe bit nodes intoNb

partitions and the check nodes intoNc partitions. Consider a compact Tanner graph consisting of
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Nb bit nodes andNc check nodes where thei-th (j-th) bit (check) supernode in this compact graph

representsP bit (check) nodes in the original Tanner graph. Then, for each of thenonnegative

element in the extendedS-matrix, there is an edge in the compact Tanner graph. First, we denote

the nonnegative shift values in the extendedS-matrix assk, k = 0, . . . Ns − 1, whereNs is the

total number of nonnegative shift values in the extendedS-matrix, and the edge corresponding to

sk asek. If there is a cycle of lengthn in the Tanner graph, there is a sequence of shift values

{s(1), . . . , s(n)} in the corresponding cycle on the compact Tanner graph that satisfies thefollowing

condition:

s(1) − s(2) + · · · − s(n) mod P = 0, . (3.1)

Now, consider the setR of all possible remainder polynomials of order less thanP over integer

Z, i.e.,

R = {c0 + c1X + · · ·+ cP−1X
P−1|ci ∈ Z}. (3.2)

Now, we define the addition and multiplication using the mod-(XP − 1) arithmetic as follows:

g(X)⊕ h(X) = g(X) + h(X) mod (XP − 1);

g(X) ∗ h(X) = g(X)h(X) mod (XP − 1),

wherea(X)mod b(X) indicates the remainder of the polynomial division ofa(X) by b(X).

The set and the operators(R,⊕, ∗) form a ring. The subset ofR, {1, X,X2, . . . , XP−1} forms

a cyclic group of sizeP under multiplication ‘∗’, and thus isomorphic to the additive groupS of all

possible shift values. If we map a shift values to the elementXs in R, the condition in eq. (3.1) is

equivalent to

Xs(1) ·X−s(2) · · · · ·X−s(n) = 1, . (3.3)

The problem of finding a cycle of lengthn in the original Tanner graph is equivalent to finding

a cycle in the compact Tanner graph that satisfies the condition in eq. (3.3).This can be efficiently

done by simulating the message passing in the compact Tanner graph that works similar to the sum-

product algorithm. In this method, we regard the compact Tanner graph asa circuit, where each
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edgeek has a storage element called messageλk(X) and a gainGk(X) = Xsk . An edge is in fact

bidirectional, so we will use the notationλk(X) andGk(X) when messages flow from bit nodes

to check nodes, and use the alternative notationλ̄k(X) andḠk(X) = X−sk when messages flow

from check nodes to bit nodes. The messages are represented as the elements ofR, and they can be

added and multiplied according to the mod-(XP − 1) rule.

The algorithm runs by propagating messages along the edges in the compactTanner graph,

starting with an outgoing message from a chosen bit nodec∗. When multiple edges{e1, e2, .., en}

are incident on a node, the messageλm throughem is computed as the sum of the incoming message

in all of the incident edges exceptem, multiplied by the gainGm(X). In this way, multiple paths

with the same cumulative shift values are merged.

When the message passing algorithm is running, a messageλk(X) at timet takes the following

general form

λk(X) =
P−1
∑

i=0

aiX
i, (3.4)

whereXi denotes the product of gains that a message has gone through from the beginning of

simulation up to timet, andai denotes the number of messages with a cumulative gain ofXi.

In this way, not only the girth but also the cycle distribution in the compact Tanner graph can be

obtained.

At time t, whent is even, the messages coming back to the starting nodeb∗ are summed up,

and the coefficient of theX0 term in the sum is examined. This coefficient indicates the number of

cycles of lengtht involving the nodeb∗ that satisfies the condition in eq. (3.3). If the first occurrence

of a nonzero coefficient ofX0 occurs at timet, it is the shortest of the all cycles that containsb∗,

i.e., the node girth ofb∗. If the algorithm runs up tot = g for the starting nodeb∗, the coefficient

a0 for t = 0, 1, . . . , g is the distribution of cycles for the nodeb∗. If the algorithm runs for the girth

detection only, it can be stopped at the fist occurrence of the nonzeroa0. For the girth of the whole

graph, this algorithm should run for all starting nodesbj , i = 0, .., Nb. The minimum of the node

girths is the girth of the graph.
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To make a valid cycle, the message coming out of the edgee is not allowed to go into the same

edgee. As a result, the message passing algorithm is very similar to the sum-product algorithm. We

will use the notatione to denote an edge index, andE(b) (E(c)) to denote the indices of the edges

incident to bit (check) nodeb (c). We describe the details of the algorithm below.

• Initialization: At time t = 0, for the starting nodeb∗,

∀e ∈ E(b∗), λe(X) = Ge(X). (3.5)

• Bit node operation:At time t = 2, 4, . . . , for each bit nodeb,

First, compute the sum
∑

e′∈E(b) λ̄e′(X) and check the coefficient ofX0. If nonzero, stop

here for girth only. Continue for cycle distribution.

∀e ∈ E(b), λe(X) = Ge(X)
∑

e′∈E(b)\e
λ̄e′(X) (3.6)

• Check node operation:At time t = 1, 3, 5, . . . , for each check nodec,

∀e ∈ E(c), λ̄e(X) = Ḡe(X)
∑

e′∈E(c)\e
λe′(X). (3.7)

Now we compute the runtime of this algorithm, assuming a regular code. During thebit node

iteration, since there areNb nodes with degree up toj, jNb polynomial additions are necessary,

resulting injNbP operations to be performed. Since there arejNb edges,jNb multiplications with

a single-term gainXsk are performed, again resulting injNbP operations. Thus, the number of

operations in a single time step is2jNbP . With jNb = kNc, the same number of operations are

required in the check node iteration. Since the algorithm runs forg iterations for each of theNb

starting bit nodes, the runtime for the detection of girths up tog isO(jN2
b Pg) orO(jNbNg), which

is linear in both girth and column weight.



3.3 FINDING DIAMETER 41

3.3 FINDING DIAMETER

Another important combinatorial property of an LDPC code isdiameter, which is defined as the

maximum, over all pairs of nodes, of the length of the shortest path between them. If the diameter

is large compared to the girth, it is conjectured to adversely affect the performance since potentially

useful statistically independent messages will be blurred before they propagate to the neighbor node

by the dependent messages passing around the short cycles [12].

To determine the diameter of a given graph, we need to find the minimum distance between all

pairs of nodes. A straight-forward way to do this is to use the Floyd-Warshall (FW) algorithm with

a runtime ofTheta(N3), whereN is the number of the nodes. To apply the FW algorithm to the

Tanner graph, we first relabel the nodes in the Tanner graph such that the indices{0, 1, . . . , PNb−1}

denote the bit nodes and the indices{PNb, PNb +1, . . . , P (Nb +Nc)−1} denote the check nodes.

Then theN ×N cost matrixC can be initialized as follows:

C[i][j] =



















































0, if i = j

1, if PNb ≤ i < P (Nb +Nc), 0 ≤ j < PNb, andH[i− PNb][j] = 1

1, if 0 ≤ i < PNb, PNb ≤ j < P (Nb +Nc), andH[j − PNb][i] = 1

∞, otherwise

,

whereN = P (Nb +Nc) for CPA structure.

An example of a parity check matrix and the corresponding cost matrix is shown in Figure 3.2.

In Figure 3.2a, a gray square indicates ‘1’ and white area indicate ‘0’s.In Figure 3.2b, a gray square

indicates ‘1’, a white square indicates ‘0’, and the remaining white area arefilled with −∞. Note

that the initialC matrix is symmetric since the Tanner graph is undirected. It is also an array of

circulant matrices, but it is not circulant as a whole.

Now, the FW algorithm can be implemented by the simple triple loop structure written in Matlab

in Figure 3.3 [36]. Although there exists a faster implementation of the algorithm that gives a speed-
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(a) Parity check matrixH (b) Cost matrixC

Figure 3.2: A parity check matrix and the corresponding cost matrix.

// standard FW algorithm
function FW(C, N)

for k=1:N
for i=1:N

for j=1:N
C[i][j] = min(C[i][j], C[i][k]+C[k][j]);

Figure 3.3: Standard FW algorithm.

up of up to 10 times with adaptive software techniques utilizing cache blocking,loop unrolling and

vectorization [37], it is still too slow to be used for finding codes with lengths of practical concern

(1000 to 10000). However, by exploiting the structure in theH-matrix, we developed a fast all-pairs

shortest path algorithm that can be used when the weight matrix is an array of circulant matrices.

With this algorithm, we can reduce the number of computations toO
(

(Nb+Nc)
3P 2

)

, which is faster

than the original algorithm by a factor ofP . The initial step of the new algorithm is the application

of the tiled FW algorithm developed in [38, 39]. We will give a description of the algorithm with

some details omitted.

We begin by defining a generalized version of FW as in Figure 3.4, which was introduced

in [39]. It is clear that FWG(C,C,C,N ) is the same as FW(C,N ). However, the FWG can take
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// generalized FW algorithm
function FWG(A, B, C, N)

for k=1:N
for i=1:N

for j=1:N
C[i][j] = min(C[i][j], A[i][k]+B[k][j]);

Figure 3.4: Generalized FW algorithm.

different input matrices, and is used as a subroutine in the tiled version of FW shown in Figure 3.5.

// tiled FW algorithm (FWT)
// tile size: P x P
function FWT(C, N, P)

// C_ij: P x P submatrix (i,j) of C, i.e.,
// C[(i-1)*P:i*P-1][(j-1)*P:j*P-1];
M = N/P;
for k=0:1:M-1
// Phase 1
FWG(C_kk, C_kk, C_kk, P);
// Phase 2
for i=0:1:M-1, i!=k

FWG(C_ik, C_kk, C_ik, P);
// Phase 3
for j=0:1:M-1, j!=k

FWG(C_kk, C_kj, C_kj, P);
// Phase 4
for i=0:1:M-1, i!=k
for j=0:1:M-1, j!=k

FWG(C_ik, C_kj, C_ij, P);

Figure 3.5: Tiled FW algorithm. (P divides N.)

In [38, 39], it was proved that the FWT(C,N, P ) generates the same result as FW(C,N ). The

FWT was originally developed for blocking a large weight matrix for better cache performance, but

we use it for a different purpose. First, we apply the FWT to the weight matrix. This blocking

decomposes the original problem into a sequence of subproblems where the input matrices are

circulant. We can show that, for FWG, if all inputs are circulant, the output is also circulant. Since

each submatrix Cij in Figure 3.5 is circulant before and after the execution of FWG, we needto

store only the first row of each submatrix, which reduces the storage requirement by a factor ofP ,

fromN2 to PNcNb. For the phase 1, since the FWG takes three identical matrices Ckk, it can be

replaced with the modified Dijkstra’s algorithm shown in Figure 3.6, which computes the shortest

distance from the first source node to all destination nodes, i.e., the first row of the FWG result.

For phase 2, when the second input matrix is different from the other two,we can apply

DIJK CBC, a slightly different version of Dijkstra’s algorithm, shown in Figure 3.7. A variation of
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function DIJK_CCC(c, P)
// c: P x 1 vector where
// c[i] denotes the distance from node c_0 to node c_i
// W: set of permanently labeled nodes
W = {0};
for i=1:1:P-1
x = argmin c[j] for all j not in W
Add x to W
for all j not in W

c[j] = MIN(c[j], c[x] + c[(j-x+P)%P]);

Figure 3.6: Modified Dijkstra’s algorithm for phase 1.

Dijkstra’s algorithm for phase 3 can be similarly derived (not shown).

function DIJK_CBC(b, c, P)
// b: P x 1 vector where
// b[i] denotes the distance from node b_0 to node b_i
// c: P x 1 vector where
// c[i] denotes the distance from node c_0 to node b_i
// W: set of permanently labeled nodes
W = {};
for i=0:1:P-1
x = argmin c[j] for all j not in W
Add x to W
for all j not in W

c[j] = MIN(c[j], c[x] + b[(j-x+P)%P]);

Figure 3.7: Modified Dijkstra’s algorithm for phase 2.

Finally, for phase 4 where all input matrices are different, we can apply DIJK ABC shown in

Figure 3.6.

function DIJK_ABC(a, b, c, P)
// a: P x 1 vector where
// a[i] denotes the distance from node a_0 to node c_i
// b: P x 1 vector where
// b[i] denotes the distance from node c_0 to node b_i
// c: P x 1 vector where
// c[i] denotes the distance from node a_0 to node b_i
// W: set of permanently labeled nodes
for i=0:1:P-1
for j=0:1:P-1

c[j] = MIN(c[j], a[i] + b[(j-i+P)%P]);

Figure 3.8: Modified Dijkstra’s algorithm for phase 4.

By replacing the FWG subroutines in Figure 3.5 by the corresponding Dijkstra routines, we

have derived a fast all-pairs shortest path algorithm for a circulant-array weight matrix.
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3.4 CPA CONSTRUCTION WITH GIRTH AND DIAMETER

We showed that, for CPA-structured codes, the girth can be found by examining cycles in the

shift matrixS, and the diameter can be found by running a modified Dijkstra’s algorithm. We incor-

porated a diameter constraint into the pseudorandom generation algorithm based on girth proposed

in [15]. We briefly describe the algorithm for a CPA structure without all-zero matrices as follows:

1. Initialize the first row and the first column of theS-matrix as 0 without loss of generality

(since every CPA-structured matrix can be converted to this form with row and column per-

mutations).

2. Set one of the emptyS entries to a randomly generated numbers from 0 toP − 1. Record

this number.

3. Check the girth and diameter. If there is no violation, repeat step 2.

4. If the girth or diameter constraint has been violated, try a differents value. If a predefined

limit has been reached, empty the currentS-matrix entry and backtrack to the previously

determinedS-matrix entry by repeating step 2.

With this simple algorithm, we could generate several codes with the same code parameters but

with different girths and diameters. The performance of the generated codes will be discussed in

Chapter 5.



CHAPTER 4

LDPC DECODERIMPLEMENTATION

4.1 INTRODUCTION

While the powerful error correction capability of the LDPC codes has drawn a lot of research

interests in the aspect of code performance, the availability of the highly parallelizable decoding

algorithm has brought as much interest to the design of efficient hardware implementation. Besides

the use of the decoding hardware for the deployment in practical systems,another important usage

is to evaluate a given code, usually as part of the design process.

Although there exists an approximate analytical method called density evolution topredict the

performance of LDPC code with iterative decoding algorithm, it has to rely onthe assumption that

the codeword length tends to infinity to make the graph essentially cycle-free [24, 26]. Also, the

analytical methods for predicting the waterfall-region performance of finite-length codes in [27] do

not consider the error floor. With no analytical methods known to exist thatcan predict the error

performance of a given finite-length LDPC code with finite-precision decoding algorithm, the per-

formance evaluation is often carried out by resorting to Monte-Carlo simulation. Accordingly, the

primary goal of a hardware-based implementation for evaluation purposesis the ability to evaluate

a given code at much higher speed than is reachable by software-based simulation, which would be

critical to exploring the performance in a very low BER regime or for evaluating a large number

of codes for design purposes. In addition, the decoder architecture must be flexible with respect to

code parameters so as to evaluate a large class of codes.

46
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The execution of the sum-product algorithm involves the generation of bit messages and check

messages in multiple iterations. Each iteration consists of two steps: bit node operation and check

node operation. For the bit node operation, the outgoing bit messages from each bit node are com-

puted from the incoming check messages. Similarly, the check node operationis to compute out-

going check messages from each check node. The number of bit or check messages to be produced

and consumed in each iteration is the same as the number of 1’s in the parity check matrix. The mes-

sages in a given iteration are computed from the messages in the previous iteration, which makes it

possible to choose any order of processing within the same iteration without affecting the result.

The parallelism in the sum-product algorithm is inherently favorable to hardware implemen-

tation. Using multiple computation units working in parallel, the hardware implementations with

medium-capacity FPGAs are often faster than software simulation using general-purpose CPUs by

at least one or two orders of magnitude. While a higher degree of parallelism increases the through-

put of the decoder, it also incurs a larger overhead for the interconnection between memory elements

and computation units. For example, the highest degree of parallelism can beachieved by a fully

parallel architecture in which all of the messages are processed at the same time; however, it results

in a very costly implementation in terms of the routing and storage resource. Theother extreme,

a fully serial architecture in which one message is processed at a time, is justtoo slow for practi-

cal purposes. Accordingly, most practical implementations employ a partially parallel architecture,

where the degree of parallelism and the scheduling of the computation are chosen for a proper

performance-resource tradeoff.

In general, for structured LDPC codes, the interconnection problem in the decoders can be

greatly simplified if the bus connections are designed to match the structure of the code. Accord-

ingly, the fastest decoders tend to put more restrictions on the structure ofthe supported codes.

However, for certain applications such as wireless communication, the codeparameters should be

flexible to adapt to varying channel conditions.

In this section, we propose a hardware decoder for array-structured LDPC codes. The decoder

has been designed for scalability in terms of the computational power and the resource usage, that is,
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major architectural parameters such as the number of computational units, thenumber and the depth

of the memory blocks can be set by the user before the synthesis. These architectural parameters can

be chosen independently from the code parameters unlike other throughput-oriented architectures

in which the two sets of parameters are closely coupled. In fact, in our proposed architecture, the

actual code parameters can be changed on the fly while the decoder is running.

4.2 DECODERARCHITECTURES INL ITERATURE

A fully parallel architecture can achieve the highest throughput by mapping each bit and check

node in the Tanner graph to a separate computation unit and processing allof the data that are

involved in an iteration in parallel. This type of architecture can be seen in [40], where the decoder

has been implemented in 0.16µm CMOS process. Besides the high implementation cost, this

architecture has bus connections that are directly associated with a specific code structure, making it

very difficult to support a set of different codes. On the other hand,any software-based decoder can

be regarded as a fully serial architecture. Since the parallelism is poorly utilized in this architecture,

the performance is limited by the clock frequency of the processor in the system, which is often too

slow even with the fastest processors available. However, since only a very small number of data

need to be fetched from and written back to memory, there is no memory conflictproblem and the

scheduling of operations is trivial.

Between these two extremes lies the category of partially parallel architectures, where a reason-

ably small number of data are processed at a time and the computation units are reused over time.

In order to fully utilize the potential throughput provided by a large number ofcomputation units,

the data to be processed should be accessible at the same time, which requires the data involved

to be stored in separate memory blocks. While small memory elements can be implemented with

flipflops, they are far less efficient than memory blocks in storing a large amount of data. For VLSI

design, it is desirable to have a smaller number of larger memory blocks since alarger memory

is more efficient in terms of the area per bit. For FPGAs, there is a limited number of dedicated
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(a)H-matrix for a CPA(3,4,4) code (b) Memory-CU bus connections

Figure 4.1: CPA(3,4,4) code and the corresponding memory architecture

memory blocks called block RAMs that can be simultaneously accessed. Accordingly, a main goal

in FPGA architectural design is to maximize the utilization of the computation units while keeping

the number of memory blocks reasonably low.

For array-structured codes, a majority of the decoders employ bus connections and operation

scheduling that match the array structure of the parity check matrix. In this architecture, (Nc ×

Nb) memory blocks are used for (Nc, Nb, P )-structured CPA codes. The data buses are connected

horizontally and vertically to provide memory access toNc check computation units (CCUs) and

Nb bit computation units (BCUs). For example, Figure 4.1 shows the memory architecture for

CPA(3,4,4), where the messages corresponding to a submatrix (i, j) in Figure 4.1a is stored in a

single memory blockMij in Figure 4.1b. Sun used a similar memory architecture in [41] where

multiple memory blocks were used for each submatrix to support a more general class of array-

structured LDPC codes, where each submatrix can be any regular (i.e., uniform column weight)

matrix .

The degree of parallelism can be multiplied by a factor ofs by usings · Nc CCUs ands · Nb

BCUs. While this normally requiress memory blocks for each submatrix, the number of memory

blocks need not increase if multiple messages are stored in a single memory address. In [32],

s = 16 is implemented by putting8 messages in each memory address and utilizing the two ports

of the Xilinx dual-port block RAMs. However, this technique also puts a serious limit in the code
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structure. To guarantee that anys/2 messages in a single access are in the same memory address, it

is required that the shift values in aS-matrix are multiples ofs/2.

With an array-style memory architecture as described above, the operands for each check or bit

computation can be accessed in a single cycle since the operands belong to different memory blocks.

To utilize this memory bandwidth, a BCU (or CCU) is usually designed as a multi-operand adder

that can process all of the messages in the same column (or row) in a single cycle. However, as the

number of operands increases, the long combinational path created by theadders may deteriorate the

maximum operating clock frequency. Although there was no such effect in[32, 41], such designs are

not scalable forH matrices with large column or row weights. Another potential problem of such

designs is that, as the BCU and CCU are individually designed for a different number of operands,

they cannot be time-shared.

Some of the implementations with the array-style memory architecture can be parameterized for

a different CPA structure, that is, they can be synthesized for differentNc,Nb, orP . However, due

to the fact that the architecture is closely related with the code structure, the decoding throughput

and the amount of required resource is also determined by the code parameters. These architectures

cannot be flexibly parameterized for a various performance-resource tradeoff.

There are another category of implementations with a focus on flexibility. A flexible architec-

ture based on communication network in [42] can be parameterized for any number of processing

elements. The decoder can be also reprogrammed on the fly for any arbitrary parity check matrix

by changing the routing among the processing elements and the memory blocks.However, since

it does not utilize the structure of the array structure, there is a large overhead for the bus connec-

tions. The throughput to area ratio (TAR) of [42] is reported to be largerthan that of code-specific

solutions by an order of magnitude.
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4.3 RECONFIGURABLE AND REPROGRAMMABLE DECODER

In this section, we propose a novel hardware decoder architecture for array-structured LDPC

codes. While the architecture has been designed to utilize the array structure, it is not very tightly

correlated with the specific code parameters such asNc, Nb, p, j, or k. Before synthesis, the

number of computation units can be specified for a target throughput, and the depth of the memory

blocks can be specified for the maximum values of the code parameters that can be supported. This

decoder supports any QC-LDPC code, and the code parameters can bechanged by software when

the hardware is running.

4.3.1 Decoder Overview

The decoder consists of the input memory to store the input LLR data, computation units to

perform bit/check node operations, the message memory to store the messages, the output memory

to store the decoder output, and the error counter. In addition, there is a register block for commu-

nication with an external device. In our FPGA implementation, we use an embedded processor to

give commands and fetch results through the register block. The overall block diagram is shown in

Figure 4.2.

The pre-synthesis parameters that determine the amount of logic and memory used for the de-

coder are as follows.

• Algorithm: the SP or MS/MMS algorithm

• Data precision for message representation (integer part and fractionalpart)

• The parallelization factorV (even)

• The maximum possible values forNc,Nb, P , j, andk

• The maximum possible value for⌈P/V ⌉+ 1

• The maximum possible value for codeword lengthN
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Figure 4.2: Overall block diagram of the decoder

• The maximum possible value for the number of check equationsM

• The maximum possible value for the number ofNph, where

Nph = max
(

(largest column weight) ∗Nb, (largest row weight) ∗Nc

)

• The maximum possible value for the number of nonnegative elements in the extendedS-

matrixNs

• The depth of each input and output memory blocksIOMd

• The depth of each message memory blocksMMd

• The maximum number of message bit errors per codeword that can be countedNerr

• The maximum number of iterationsNiter

• Total number of intermediate checkpointsNcp (to see the decoding results at different number

of iterations)
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While the pre-synthesis parameters define a range of code parameters that can be supported

by the synthesized hardware, the actual code parameters can be reprogrammed by writing to the

register block. The post-synthesis parameters that can be modified at runtime are as follows.

• The number of iterations

• Whether to enable early stopping when a valid codeword is found

• Code parametersNc,Nb, p, j andk

• The shift values for the extendedS-matrix

• The coefficients of the look-up table for theF () transform function block (for SP only)

• Scaling factor for the check node output (for MMS algorithm only)

• A list of intermediate checkpoints

4.3.2 Shared Bit/Check Computation Units

In our proposed decoder, either the SP algorithm or the MS/MMS algorithm can be chosen

before synthesis.

The computation unit (CU) for the SP algorithm performs additions and calculates theF (·)

function, which has been implemented by a piecewise linear interpolator that uses a look-up table.

For the MS/MMS algorithm, the CU performs additions, minimum operations, and scaling. In this

section, we describe the design of the computation units for both algorithms.

As mentioned in the previous section, most speed-oriented decoders perform a check or bit

node operation in a single clock by using multi-operand adders. Since the number of operands is

determined by the column and row weight of the code, such an architecture cannot be reprogrammed

to support codes with different row/column weights. Also, despite the similaritybetween the bit and

check node operations, the bit computation unit (BCU) and the check computation unit (CCU) are

separately designed due to the large difference in the number of operands involved in bit and check

node operations.
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In the proposed decoder, however, each check or bit node operation is performed in a sequential

manner, i.e., one operand is processed at a time. This scheme makes the design of the computa-

tion units independent from the actual code parameters since any larger weight can be supported

by increasing the number of clock cycles for each bit or check node operation. Also, since the

computation unit is not designed for a specific number of operands, it is possible to design a shared

bit/check computation unit that works as a BCU during the first half iteration and as a CCU during

the second half iteration. In the rest of this section, we provide the details ofthe CU operation for

each mode.

Sum-product algorithm: A direct implementation of the equations (2.20) and (2.21) would

require twoF (x) units in each shared CU. These units would be idle for bit node operations and

also cause longer pipeline depth for the check node operation. This problem can be solved by

pre-applying theF (·) to the bit node output, i.e.,

λ̄b→c = F
(

µb +
∑

c′∈N (b)\c
λc′→b

)

(4.1)

and

λc→b = F
(

⊕

b′∈N (c)\b
λ̄b′→c

)

. (4.2)

With this modification, the bit and check node operations are identical exceptfor the difference in

the additions.

For the sequential processing, the sum is computed first, and the outgoing message is computed

by subtracting each of the incoming message from the sum. The SP algorithm can be described as

follows.

• Bit node operation:At time t = 0, 2, 4, . . ., for each bit nodeb

step 1: λb(t) =











µb, t = 0

µb +
∑

c∈N (b) λc→b(t− 1), otherwise
(4.3)

step 2: ∀c ∈ N (b), λ̄b→c(t) = F
(

λb(t)− λc→b(t− 1)
)

, (4.4)
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whereλb(t) is the decoder output for bitb if decoding stops at the iterationt.

• Check node operation:At time t = 1, 3, 5, . . ., for each check nodec

step 1: λ̄c(t) =
⊕

b∈N (c) λ̄b→c(t− 1) (4.5)

step 2: ∀b ∈ N (c), λc→b(t) = F
(

λ̄c(t)⊖ λ̄b→c(t− 1)
)

, (4.6)

where the operation⊖ is defined as

a⊖ b = sgn(a)sgn(b)(|a| − |b|) (4.7)

At step 1 of both bit and check node operations, the incoming messages areaccumulated in

an accumulator. At step 2, the outgoing message is created by subtracting each incoming message

from the sum. Because the step 2 operations can be performed only after the step 1 operations

are complete, the incoming messages should not be discarded until they are reused in step 2. In

the proposed architecture, the step 1 and 2 are pipelined, and the incoming messages are stored

in a FIFO with depthmax(j, k). The area overhead incurred by the FIFO’s makes the proposed

design less efficient than the array-style memory architecture, but a partof the inefficiency can be

amortized by the use of the shared bit/check CU’s and the elimination of multi-operand adders. The

CU for the SP algorithm is shown in Figure 4.3. The adder and the subtracterperform ordinary

signed addition and subtraction, respectively, in BCU mode. When in CCU mode, they perform the

special⊕ and⊖ operations defined in equations 2.22 and 4.7, respectively.

MS/MMS algorithm: The bit and check node computations take place in a sequential manner

as was the case with the SP algorithm. While the bit node operation is identical to that of the

SP algorithm, the check node operation requires a fairly different processing. As can be seen in

eq. (2.24), the magnitude of a check-to-bit message is always one of the two possible values: the

smallest and the second smallest, among all of the incoming bit-to-check messages. The former is

taken except when the bit-to-check message with the smallest magnitude is excluded. The sequential

processing for the MS or MMS algorithm can be described as follows.
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Figure 4.3: Computation unit for the SP algorithm

• Bit node operation:At time t = 0, 2, 4, . . ., for each bit nodeb

step 1: λb(t) =











µb, t = 0

µb +
∑

c∈N (b) λc→b(t− 1), otherwise
(4.8)

step 2: ∀c ∈ N (b), λb→c(t) = λb(t)− λc→b(t− 1), (4.9)

whereλb(t) is the decoder output for bitb if decoding stops at the iterationt.

• Check node operation:At time t = 1, 3, 5, . . ., for each check nodec

step 1: λc(t) =
⊙

b∈N (c)

λb→c(t− 1) (4.10)

b∗ = arg min
b∈N (c)

|λb→c(t− 1)| (4.11)

λ′c(t) =
⊙

b∈N (c)\b∗
λb→c(t− 1) (4.12)

step 2: ∀b ∈ N (c), (4.13)

λc→b(t) =











α sgn
(

λb→c(t− 1)
)

sgn
(

λc(t)
)

|λc(t)|, b 6= b∗

α sgn
(

λb→c(t− 1)
)

sgn
(

λc(t)
)

|λ′c(t)|, b = b∗,
(4.14)

whereα is the scaling factor for the MMS algorithm.
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Although the bit node and check node operations seem quite different, theshared CU for the

MS algorithm can still be implemented using two adders. The two adders, used inthe step 1 and

2 for bit mode operation, work as comparators in the step 1 of the check modeoperation. The first

comparator is used to find the magnitude and the index of the incoming message withthe smallest

magnitude in eq. (4.10) and (4.11). This can be done sequentially by comparing the magnitude of

the incoming message with the previously found minimum and keeping the smaller of the two. The

second smallest magnitude in eq. (4.12) is found by the following operations:

• If a new minimum magnitude is found, the previously stored second minimum is replaced by

the new minimum.

• Otherwise, the larger of the two operands of the first comparator is compared with the previ-

ously found second minimum and the smaller of the two is stored as a new secondminimum.

Accordingly, the two comparators work at the same time, as opposed to the pipelined manner. For

the magnitude scaling in the MMS algorithm, a multiplier or a third adder should be used. The CU

for MS/MMS algorithm is shown if Figure 4.4.

4.3.3 Memory Assignment and Bus Connection

For a hardware-based LDPC decoder, a high throughput can be achieved by deploying a large

number of computation units that work simultaneously. For a higher utilization of the available

computation units, the memory assignment should ensure that the messages to beprocessed together

are stored in different memory banks so that they can be accessed at thesame clock cycle. In

the array-style memory/bus architecture (see Section 4.2), this is accomplished by mapping each

submatrix of the parity check matrix to a separate memory block and processingno more than one

message in each submatrix. Thus, the number of message that can be accessed simultaneously is

j · Nb. Accordingly, the throughput is determined by the code parameters, and the architecture

cannot be reconfigured at run time to support a different set of codeparameters.

In this thesis, we take a different approach for the memory allocation and scheduling to provide
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Figure 4.4: Computation unit for the MS/MMS algorithm

a flexible architecture that can support any (Nc, Nb, P, j, k) parameters within the maximum limit

imposed by the allocated resource. To design an architecture that is weaklyrelated to the code

parameters, we seek to achieve a high degree of parallelism by processing multiple messages within

each submatrix of the parity check matrix in parallel, rather than processing multiple messages in

the same column or row of the parity check matrix. In this architecture, the degree of parallelism is

determined by the pre-synthesis parameterV , which can be decided solely by the desired decoding

throughput and the amount of resource available but independently from the code parameters. The

number of CUs isV , and there are also as many message memory (MM) banks. Thus, the objective

of the memory assignment is to assign each message to one of theV memory banks.

In an iteration of the decoding process for a QC-LDPC code,P ·Ns bit-to-check messages and

as many check-to-bit messages are produced and consumed, whereNs is the number of nonnegative

shift values in the extendedS-matrix. The bit and check node computations can be performed in-

place, i.e., the messagesλbj→ci andλci→bj , both of which correspond to the matrix elementhij
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of H, can be stored in the same memory location. Therefore, onlyP · Ns memory locations are

needed.

We can use linear indices to denote theNs S-matrix elements, i.e.,sm denotes them-th ele-

ment. Since theP messages for corresponding tosm,m = 0, . . . Ns − 1, are to be stored inV

memory banks, it would be sufficient to useNs⌈P/V ⌉memory locations in each bank. To simplify

the address generation logic, each bank has been designed to take upNs contiguous equal-sized

partitions, the size of which is the smallest 2-power number not less than⌈P/V ⌉.

Now, we consider the mapping of theP messages forsm to them-th partitions inV memory

banks. Reassigning bit and check node indices within the correspondingsubmatrix, the shift value

specifies the connections between bit nodesb0, b1, . . . , bP−1 and check nodesc0, c1, . . . , cP−1. De-

noting the message in columnj asλj , j = 0, . . . , P − 1, the messageλj is assigned to a memory

location as follows:

φ(j) = (⌊j/V ⌋, j mod V ), (4.15)

where(x, y) denotes the addressx of the banky. With this mapping, each message is assigned

to one of theV memory banks in a round-robin manner An example of the bank assignment for a

10× 10 submatrix withV = 4 is shown in Figure 4.5.

During the bit node computation, normallyV contiguous bit nodes are processed at a time,

starting from index0; however, there can be less thanV bit nodes involved whenV does not divide

P . The vectorbk, the set of bit nodes processed at timek, takes the following form:

bk =











(bV k, bV k+1, . . . , bV k+V −1), 0 ≤ k ≤ ⌈P/V ⌉ − 2

(bV k, bV k+1, . . . , bV k+(P mod V )−1), k = ⌈P/V ⌉ − 1

Since the bit node index is the same as the message index, the memory location assignment of

the message associated withbj can be written as

φb(j) = φ(j).

With this mapping, anyV consecutive data in bit indices are stored inV different memory banks so
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that they can be accessed by theV computation units simultaneously.

Similarly, during the check node computation, the vectorck containing the check nodes to be

processed at timek takes the following form:

ck =











(cV k, cV k+1, . . . , cV k+V −1), 0 ≤ k ≤ ⌈P/V ⌉ − 2

(cV k, cV k+1, . . . , cV k+(P mod V )−1), k = ⌈P/V ⌉ − 1

The check node indexi can be converted to the message indexj by the following:

j = i− s mod P,

wheres is the shift value of them-th S-matrix element. Thus, the memory location assignment for

the message associated withci is

φc(i) = φ(i− s mod P ). (4.16)

However, with this assignment,V consecutive data in check indices are not always in inV dif-

ferent banks, which results from the discontinuity in the index caused by the ‘ mod ’ operation in

eq. (4.16). For example, in Figure 4.5, the four messages(λ5, λ6, λ7, λ8) corresponding to check

indices (0,1,2,3) are in different memory banks. However, the messages(λ9, λ0, λ1, λ2) correspond-

ing to the check indices (4,5,6,7) are not, i.e., the messagesλ1 andλ9 are in the same memory bank

1.

To overcome this memory conflict problem, which arises whenP is not a multiple ofV , we

perform a special processing called “copy phase” at the end of eachbit or check node operation,

i.e., we keep a redundant copy of the messages beyond the boundary set byP to provide contiguous

bank assignment. For this, we use extra cycles to copy the first portion of the memory to the last

portion after bit node (half) iteration, and copy the last to the first after check node (half) iteration.

The details of the copy phase operations are as follows:

• Determine the number of messages to copy:

r = (V ⌊P/V ⌋ − s mod P ) mod V,
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(a) Message indexing form-th S-matrix element (b) Memory allocation in them-th partition

Figure 4.5: Memory block assignment for one submatrix withP = 10 andV = 4.

• Copyr messages after bit mode iteration:

(M[φ(P )],M[φ(P + 1)], . . . ,M[φ(P + r − 1)])

← (M[0, 0],M[0, 1], . . . ,M[0, r − 1]),

whereM[i, j] denotes the memory location at the addressj of the banki, ‘←’ denotes a copy

operation from right to left.

• Copyr messages after check mode iteration:

(M[0, 0],M[0, 1], . . . ,M[0, r − 1])

← (M[φ(P )],M[φ(P + 1)], . . . ,M[φ(P + r − 1)])

With the copy phase, it is guaranteed that anyV consecutive check messages in eq. (4.16) are in

V different memory banks by determining the bank and address of the first messageλi by eq. (4.16)

and the rest by taking the “next” positions in the message memory, i.e.,

φc(i+ n) = φ
(

(i− s mod P ) + n
)

,

where0 ≤ n ≤ V − 1. This operation is best illustrated by an example. In Figure 4.6, the contents

of them-th partition of the message memory is shown for each step of the bit and checkiteration.
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(a) After bit node iteration (b) After bit node copy phase

(c) After check node iteration (d) After check node copy phase

Figure 4.6: Message memory contents for an iteration. Duplicated messages are shown in gray.
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Parameter Value

Algorithm MS/MMS
Data Precision Integer = 4 bit, Fractional = 2 bit
V 2, 12, 24, 36, 48
Max value for(Nc, Nb, P, j, k) (32, 32, 2048, 32, 32)
Max value for⌈P/V ⌉+ 1 512
MaxN 16384
MaxM 8192
MaxNph 256
MaxNs 128
Max IOMd 512
MaxMMd 2048
MaxNerr 256
MaxNiter 1024
MaxNcp 8

Table 4.1: Example: Pre-synthesis parameter set.

Figure 4.6a shows the memory contents after the bit mode iteration is completed. Inthe bit mode

copy phase, three messages are copied from the beginning to the end, asshown in Figure 4.6b. Now,

we can see the messages(λ9, λ0, λ1, λ2) corresponding to check indices (4,5,6,7) are in different

memory banks, using the duplicated messages. During the check mode iterationin Figure 4.6c, the

messages are modified using the addressing in eq. (4.17). Finally, in Figure4.6d, the three messages

at the end are copied back to the beginning to ensure thatV messages are in different banks when

the next bit node iteration begins.

The copy phase requires2Ns clock cycles per iteration. Since the total number of clock cycles

for an iteration without the copy phase is2Ns⌈P/V ⌉, this overhead becomes negligibly small when

P is large compared to V. WhenV dividesP , the copy phase is not necessary.

4.3.4 Synthesis Results

The hardware-based evaluation system including the proposed decoder has been implemented

on the Xilinx Virtex-II Pro XC2VP30 FPGA. Each FPGA contains two embedded PowerPC pro-

cessors, 13,696 slices, 136 18k-bit BRAMs, and 136 18×18-bit multipliers. One of the processors

is used for downloading code parameters and recording the decoded results, but is not used by the

decoder.
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Figure 4.7: Chip utilization for MMS decoder

In order to demonstrate the flexibility of the proposed architecture in the resource usage and

throughput, the evaluation system has been synthesized with a wide range of parallelization factors

for the decoder. The pre-synthesis parameters used for the decoderare shown in Table 4.1. The re-

source utilization with respect to the parallelization factor is given in Figure 4.7, where the resource

usage is shown for the entire FPGA chip including the decoder, the randomnumber generator, and

the peripherals for the embedded processor. By increasingV until the FPGA is fully utilized, we

could utilize 100% of slices and 94% of BRAMs.

The decoding complexity of a given LDPC code with the SP algorithm is directly proportional

to the number of edges in the Tanner graph. In [43], the required processing powerPc,req was
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ParallelizationV

2 12 24 36 48 total

Area [slices] 886 2967 5233 8130 10466 13696
Block RAM 14 34 58 82 114 136
Multiplier 6 16 28 40 52 136
Max frequency [MHz] 71.56 69.19 67.03 67.18 66.78
PeakPc [edges/cycle] 1 6 12 18 24
PeakPs [M edges/sec] 72 415 804 1209 1603
PAR [edges/sec/ 1000 slices] 81 140 154 149 153

Table 4.2: Decoder-only area and throughput results with parameters in Table 4.1.

defined as the number of edges to be processed per cycle, which can bederived as

Pc,req =
εimaxD

KfCLK
[edges/cycle], (4.17)

whereε is the number of edges in the Tanner graph,imax is the maximum number of iterations,

D is the desired information throughput,K is the number of information bits per codeword, and

fCLK is the clock frequency of the decoder. For a given implementation,processing powerPc, the

actual number of edges that are processed per cycle, can be used asa measure of parallelism. Since

each edge corresponds to two messages (bit-to-check and check-to-bit) and each CU is capable of

processing one message per clock, the peak processing power of the proposed architecture is simply

Pc = V/2. However, whenV does not divideP , the actual processing power depends on the code

parameters due to the copy phase, and can be derived as follows.

Pc =
NsP [edges/codeword]

2Ns(⌈P/V ⌉+ 1) [cycles/codeword]
(4.18)

=
P

2(⌈P/V ⌉+ 1)
[edges/cycle]. (4.19)

In order to make a comparison across different LDPC decoder implementations, we can define

processing ratePs as the number of edges processed per second, which is given by

Ps = Pc · fCLK [edges/sec]. (4.20)

As a metric for of area efficiency, we will useprocessing rate to area ratio(PAR), which gives

the processing rate per unit area.
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The resource usage and peak processing power of the proposed architecture synthesized with

the parameters in Table 4.1 are shown in Table 4.2, where the resource usage is for the decoder only.

The table shows that the maximum clock frequency deteriorates only slightly withincreasingV due

to the sequential processing structure. In addition, the table shows that thePAR is almost constant

for sufficiently large parallelization factors.

4.3.5 Architecture Comparison

Due to the lack of a standard framework to compare different LDPC decoder implementations,

it is a difficult task to carry out fair comparisons, especially with differences in the code parameters

and the implementation technology. For example, the TAR in [42] cannot be used for comparing

decoders designed for different code rates since it is computed from throughput in bits per second,

which is often reported in literature as a part of the synthesis results. In thisthesis, we will use

processing ratePs defined in Section 4.3.4 to quantify the computational capability, because the

decoders to be compared are based on the SP or MS algorithm and for these algorithms the number

of edges correctly represents the decoding complexity of a given LDPC code. Accordingly, we will

use PAR to compare the area efficiency of different decoder implementations.

In Table 4.3, three FPGA decoder implementations in the literature with array-style memory ar-

chitectures are compared with the proposed architecture when the code being decoded has a regular

CPA structure. While the proposed decoder has run-time reconfigurability, the other decoders are

synthesized for a specific array structure of LDPC codes. As a result,the resource usage including

the number of CUs and memory blocks and the processing power are closelylinked to the structural

parameter such asNb or j. On the other hand, the memory usage of the proposed decoder is only

related with the parameterV , which is independent of the code structure. The processing powerPc

is weakly related withP , and becomes irrelevant asP/V increases.

The throughput, processing power, and area efficiency are compared in Table 4.4. A code has

been chosen from each of the architectures in Table 4.2 and the corresponding throughput and area

are taken for comparison as shown in Table 4.4a. Since it is a common practicein the literature
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Author

Sun [41] Karkooti [32] Zhang [44]
Proposed

Architecture

Flexibility

Supported codes array of regular CPA(3,6,P ) CPA QC-LDPC

submatrices P = 2θ

Parallelization scalability No Yes No Yes

Precision flexibility Yes Yes Yes Yes

Run-time reconfigurability No No No Yes

Algorithm MS MMS SP SP/MS/MMS

Resource and Computational Power

Number of input memory blocks Nb sNb Nb V

Number of message memory blocksjNb sjNb 2Nb V

Number of CUs (BCU,CCU) Nb, Nc sNb, sNc Nb, Nc V (SCU)

CU processing power (BCU,CCU) j/2, k/2 j/2, k/2 1/2, 1/2 1/2

[edges/cyc]

Table 4.3: Architecture comparison of LDPC decoders.
(BCU: bit computation unit, CCU: check computation unit, SCU: shared computation unit)

to report the throughput in bits per second, thePc andPs have been calculated from the reported

throughput using eq. (4.17) and (4.20), respectively. If the proposed decoder is synthesized by the

parameters in Table 4.1, the three codes considered in Table 4.4a can be decoded by the same im-

plementation. The throughput of the proposed decoder for four codesincluding the aforementioned

three are shown in Table 4.4b.

It can be seen from the PAR (Ps/Area) that the architectures designed for a specific array struc-

ture process between 2.9 and 8.1 times more edges per second with the same amount of hardware

resource than the proposed architecture, from which we can see the overhead incurred by the run-

time reconfigurability. To understand how much overhead is reasonable for the flexibility, the results

in [42] may be helpful, where a network-on-chip decoder for any kind of LDPC codes with run-time

reconfigurability is compared with more code-specific solutions implemented in application-specific

integrated circuit (ASIC). In this work, it has been shown that a fully parallel solution and a partially

parallel solution have 22 and 17 times higher area efficiency than the flexiblesolution, respectively.
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It is also notable that, despite the large difference in PAR between the proposed decoder and

Sun’s decoder in [41], the difference in the throughput in bits per second (D) is only a factor of two.

This is because of the pre-synthesis flexibility of the proposed architecture that allows the highest

resource utilization independently from the code parameters.
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Author

Parameter Sun [41] Karkooti [32] Zhang [44]

Code DDS(j = 3, N = 4923) CPA(3,6,256) CPA(6,32,64)

Algorithm MS MMS SP

Precision 6 bit 5 bit 6 bit

ε 14769 4608 12288

imax 1 20 1

D[Mbps] 832 63.5 195

K[bits] 4376 768 1664

fCLK [MHz] 208 121 100

Area [slices] 2571 11352 7320

Pc [edges/cycle] 13.5 62.98 14.4

Ps [edges/sec] 2.81× 109 7.62× 109 1.44× 109

PAR [edges/sec/slice] 1090× 103 671× 103 197× 103

(a) Code-specific architectures in the literature

Code

Parameter DDS(j = 3, N = 4923) CPA(3,6,256) CPA(6,32,64) CPA(3,9,500)

Algorithm MMS

Precision 6 bit

ε 14769 4608 12288 13500

imax 1 20 1 10

D[Mbps] 412 11.6 188 30.9

K[bits] 4376 768 1664 3000

fCLK [MHz] 66.67

Area [slices] 10466

Pc [edges/cycle] 21.0 18.3 10.7 20.83

Ps [edges/sec] 1.40× 109 1.22× 109 0.71× 109 1.39× 109

PAR [edges/sec/slice] 134× 103 116× 103 67.9× 103 133× 103

(b) Proposed architecture withV = 48 for different codes

Table 4.4: Throughput and area efficiency comparison.



CHAPTER 5

PERFORMANCESTUDY

5.1 INTRODUCTION

The pseudorandom construction of the CPA-structured LDPC codes has a number of advantages

over the other types of constructions. First, the size of theS-matrix and the submatrix sizeP can be

arbitrarily chosen, which makes it possible to design a code for a desired code rate and codeword

length in a very flexible manner. Also, the girth of the code can be directly incorporated in the

design process to allow better performance with the iterative decoding algorithm. The inherent

graph partitioning in the CPA-structure also facilitates a highly parallel decoder architecture with

simple bus connections, resulting in a much more area-efficient decoder than the more general class

of QC-LDPC codes. However, the performance of the pseudorandomCPA-structured codes (PR-

CPA) depends on the actualS-matrix elements chosen by a computer search. Due to the random

nature, two codes with the sameS-matrix dimension and the same girth can have very different

performance.

Accordingly, a natural question would be whether it would be possible to find a good code

by examining the structural properties of the code. In this chapter, we study by simulation the

effect of the structural parameters of CPA-structured codes on the error performance. For this

purpose, we construct CPA-structured LDPC codes by using the pseudorandom method described in

Chapter 3. Another point of interest is to find out how the PR-CPA LDPC codes compare with other

construction methods. For this, we compare the performance of pseudorandomly constructed CPA

70
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codes with well-known deterministically generated codes. For the simulation results in this chapter,

we used the FPGA decoder described in Chapter 4, synthesized for the MMS algorithm with 6-bit

LLR quantization. The performance was measured after 50 iterations withoutearly stopping.

5.2 HARDWARE-BASED NOISE GENERATION

A correct implementation of a random number generator (RNG) plays an integral role in ob-

taining accurate results from the simulation. We designed a Gaussian noise generator based on the

well-known Box-Muller method [45] that converts two uniformly distributed random variables over

the interval[0, 1) to two samples of Gaussian distributionN (0, 1)., i.e.,

f(u1) =
√

− ln(u1) (5.1)

g1(u2) =
√

2 sin(2πu2) (5.2)

g2(u2) =
√

2 cos(2πu2) (5.3)

y1 = f(u1)g1(u2) (5.4)

y2 = f(u1)g2(u2). (5.5)

The hardware design is based on [46] as shown in Fig. 5.1, but we replaced the uniform random

number generator with the Mersenne Twister (MT) 19937 that provides anextremely long period of

219937 − 1 of 32-bit numbers using relatively small hardware resource [47].

A high-dimensional uniformity is also regarded as one of the desired properties of good RNGs.

An RNG with periodP is said to bek-distributive tov-bit if, when a set ofkv-bit vectors is formed

by collectingv most significant bits fromk consecutive numbers starting from each ofP numbers,

each possible bit vector occurs the same number of times in the set, except for the all-zero vector

that occurs once less often. In such a test, with the largest possiblek for a givenv, the RNG is said

to bek(v)-dimensionally equidistributed withv-bit accuracy. The MT 19937 has a very largek(v)

for v = 1, 2, . . . , 32, having 623-dimensional equidistribution with 32-bit accuracy.

The hardware MT 19937 has been designed based upon the parallelization idea in [48], support-
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Figure 5.1: Gaussian noise generator

ing any even parallelization factor that divides624. With this flexibility, the RNG can be configured

to keep up with the speed of the decoder.

The currently designed RNG is good enough for BER=2.5 × 10−9 when we collect 100 bit

error samples in the sense that the probability of any sample from a populationof 4×1010 Gaussian

samples exceeding the maximum representable value is less than0.5. More recently, Lee proposed

a hardware Gaussian RNG with much higher accuracy that can be used to explore for BER as low

as10−12 or 10−13 [49]. Although our Gaussian conversion unit has not been designed with such

high accuracy, our RNG has been shown to have a sufficient accuracy to obtain correct results with

our fixed-point hardware decoder. We have measured the performance of a selected set of codes

by replacing our RNG with that in [49] that the authors kindly provided, andfound no noticeable

differences down to the BER of10−11.
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5.3 PSEUDO-RANDOMLY GENERATED CPA-STRUCTUREDCODE

5.3.1 Effect of Girth

To see how the girth affects the performance, we have constructed two sets of codes of different

code rate, with various girths but similar diameters.

• Code rate=2/3: CPA(3,9,100) and CPA(3,9,500)

• Code rate=1/2: CPA(3,6,150), CPA(3,6,750) and CPA(4,8,1023)

The performance of the codes with code rate2/3 is shown in Figure 5.2. For bothN = 900

(Figure 5.2a) andN = 4500 (Figure 5.2b), it can be seen that the girth has a major effect on the

performance in the error floor region, which justifies the code search to enlarge the girth. The

performance of the codes with code rate1
2 in Figure 5.3 shows a similar trend with an exception of

the girth-6 and girth-8 codes in Figure 5.3a. The cycle distribution of the two codes was checked

but the difference was not large enough to explain the higher error floor of the code with the higher

girth. On the other hand, for the CPA(4,8,1023) in Figure 5.3c, the girths make little difference in

the entire SNR region. This is probably because the error floor did not occur within the simulated

SNR region. In both plots, the girths do not make difference in the performance of the waterfall

region but it is evident that higher girths lower error floors.

5.3.2 Effect of Diameter

To demonstrate the effect of diameter on the performance, a number of CPA(4, 8, 1023) codes

with different diameters have been generated using the method described inChapter 3. While the

largest possible diameter is infinity, it would simply mean that the correspondingTanner graph is

not connected, effectively shortening the code length. Excluding this trivial case, the largest finite

diameter found with a reasonable amount of search efforts was62. From the performance shown in

Figure 5.4, the diameter has a direct influence on the performance in the whole SNR range under

consideration; the code with a smaller diameter has a steeper slope in the waterfall region.
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Figure 5.2: The effect of girth on the performance (code rate =2
3 ) (g:girth, d:diameter)
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Figure 5.3: The effect of girth on the performance (code rate =1
2 ) (g:girth, d:diameter)
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Figure 5.3: The effect of girth on the performance (code rate = 1/2, cont’d) (g:girth, d:diameter)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
(dB)

B
E

R

g=6, d=62
g=8, d=24
g=6, d=20
g=6, d=9
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Figure 5.5: The distribution of uniformly sampled CPA(3,6,384) codes

Although increasing the diameter results in deteriorated performance, a pseudorandom gener-

ation based only on the girth results in very low diameters, which are only slightlylarger than the

lowest diameter that can be obtained by explicit efforts to reduce it in the search process. In addi-

tion, in the search space of PR-CPA codes, the codes with a very high (but finite) diameter seem

to be very rare, and can be found only after a time-consuming search. Inthe search process for a

high-diameter code, a newS-matrix entry is chosen to maximize the diameter while keeping already

determinedS-matrix entries . With the rarity of the high-diameter codes, it might be suspectedthat

the bad performance is the artifact of the search process, rather than the effect of the high diameter.

To demonstrate that high diameters are a reliable indicator of bad performance in the space of

CPA-structured codes, a test with uniform sampling was conducted, in which 10 million CPA(3,6,384)

codes were generated by randomly choosing theS-matrix elements without any efforts to control

the girth or diameter. The number of sampled codes for each (girth, diameter)pair is shown in

log scale in Figure 5.5. To measure the effect of diameter on the performance, we formed8 sets
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Figure 5.6: The performance of uniformly sampled CPA(3,6,384) codes withgirth 6

of codes, each of which contains up to100 codes of girth6 and diameters ranging from9 to 16,

respectively. We will denote asS(d) the set of the codes with diameterd. Each set contains100

codes except forS(16) that contains only 85 codes. The BER of the codes are measured at the SNR

of 2.3 dB, and the minimum, mean, median, and maximum of the BER are shown in Figure 5.6.

To investigate statistical significance of the observed difference in BER performance, we can

regard the BER of each code setS(d) as a random variable. Due to our lack of knowledge of

the actual distribution of the BER random variable, we used the nonparametric hypothesis testing

introduced in Section 2.5.

First, we define random variablesX(d), d = 9, . . . , 16 as the BER of a code inS(d), respectively.

We perform the one-sided Mann-Whitney-Wilcoxon test for each pair (X(d1), X(d2)) to testH0:

both variables have the same distribution againstH1: both have different distributions. The test

measures thep-value, i.e., the probability that we will obtain the observed result when in reality the

two variablesX(i) andX(j) have the same distribution.
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d1\d2 9 10 11 12 13 14 15 16

9 0.50 0.78 0.46 2.6× 10−10 1.3× 10−34 1.3× 10−34 1.3× 10−34 5.7× 10−32

10 0.22 0.50 0.34 1.6× 10−9 4.7× 10−32 1.3× 10−32 1.5× 10−33 1.1× 10−31

11 0.54 0.65 0.50 4.8× 10−7 1.5× 10−29 2.4× 10−32 2.8× 10−34 5.7× 10−32

12 1.00 1.00 1.00 0.50 4.3× 10−24 8.1× 10−30 1.7× 10−32 5.7× 10−31

13 1.00 1.00 1.00 1.00 0.50 4.3× 10−12 1.0× 10−22 1.5× 10−26

14 1.00 1.00 1.00 1.00 1.00 0.50 1.5× 10−13 9.3× 10−22

15 1.00 1.00 1.00 1.00 1.00 1.00 0.50 2.6× 10−10

16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50

Table 5.1:p-value from the Wilcoxon test for diameterd1 and diameterd2.

The test results are shown in Table 5.1. For diameters up to11, these is no statistical relation

between diameter and BER. However, for diameters11 and above, any difference in diameters

makes a statistically meaningful difference in the BER, as indicated by very small p-values in the

upper diagonal portion of the table. For anyd1 andd2 that satisfy11 < d1 < d2, we draw the

conclusion that the codes with diameterd2 have higher BER than the codes with diameterd1. Due

to the extremely smallp-values in the corresponding results, the conclusion will not change forany

significance level down toα = 4.8 × 10−7. For two-sided tests, the newp-valuep′ can be simply

computed by the following formula:

p′ =











2p, p < 0.5

2(1− p), p ≥ 0.5.
(5.6)

In the distribution of uniformly sampled codes shown in Figure 5.5, the codes with diameter

greater than11 make up1.72% of the all codes with girth6. This indicates that, even though the

random construction generates good CPA codes in terms of diameter with highprobability, there

is still a nonnegligible probability that bad codes will be chosen. Thus, this result justifies the

incorporation of diameters in the CPA code construction.

5.3.3 Effect of Column Weight

The column weight of LDPC codes determine the number edges per coded bitand directly

affects the decoding complexity of a given code when the iterative decoding algorithm is used. In



5.3 PSEUDO-RANDOMLY GENERATED CPA-STRUCTUREDCODE 80

2 2.5 3 3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
(dB)

B
E

R

CPA(2,4,144), j = 2
CPA(3,6,96),  j = 3
CPA(4,8,72),  j = 4
CPA(5,10,57), j = 5
CPA(6,12,48), j = 6

(a) N=576

Figure 5.7: The effect of column weight on the performance

general, a higher column weight can provide a strong error correction capability since there are

more check equations that involve each bit. However, a high column weight also generates a large

number of short cycles in the Tanner graph, having a detrimental effecton the performance with the

SP algorithm. The performance of half-rate PR-CPA codes with the column weight j = 2, 3, 4, 5, 6

are shown Figure 5.7. The plots are shown for the code lengthN = 576, 1152, 2304, and the size

of the submatrixP has been appropriately adjusted to maintain the code length. For all three cases,

the codes withj = 3 have the best result within the simulated range of SNR with the exception for

N = 576 where the code withj = 3 shows a higher error floor. It can be seen that a higher column

weight does not always lead to better BER performance although the lowerbound on the minimum

is an increasing function of the column weight as shown in eq. (1.3).

Also, the codes withj = 2 exhibit a very flat BER curve, showing a substantially high error rate

in the entire SNR region.
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Figure 5.7: The effect of column weight on the performance (cont’d)
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5.3.4 Effect of Submatrix SizeP

With the CPA-structured codes, reducing the submatrix sizeP with the number of checks fixed

increases the column weight by the relationP = M/Nc andj = Nc. On the other hand, with

the CPA∗ structure, the column weight can be maintained by replacing some of the submatrices by

all-zero matrices. To see if the submatrix sizeP has any influence on the performance, several half-

rate CPA∗ codes with differentP are compared with a CPA(3,6,384) code, where all tested codes

have the same rate, length, and column weight. The codes do not show any noticeable difference

as shown in Figure 5.8. However, when designing a code with a very long code length, it would be

more advantageous to use CPA∗ structure with a smallerP than to use CPA structure with a larger

P since the CPA∗ structure allows the girth to be increased beyond 12 with a sufficiently largeP

while the CPA structure has the limitation ofg ≤ 12 regardless ofP .
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5.4 ARRAY CODE

The array code array(j, P ), using the notation introduced in Section 1.1, has a CPA(j, P, P )

structure whereP is a prime andj < P . They are guaranteed to have a girth of6 by the algebraic

construction. It has been also found that they have diameter of4, which is the lowest possible diam-

eter for CPA-structured codes with girth 6. To compare the performance of array codes with pseu-

dorandomly generated CPA codes, nine array codes array(j, P ) with j = 3, 4, 5 andP = 23, 31, 47

are constructed and compared with PR-CPA codes with the sameNc, Nb andP . As seen in Fig-

ure 5.9a, the array codes withj = 3 show similar performance with their PR-CPA counterparts,

where all codes have the same girth. On the other hand, forP = 31 and47, the pseudorandom

generation could not find CPA codes with girths more than4. Accordingly, in Figure 5.9b, the array

codes withj = 4 outperform the PR-CPA codes due to the higher error floor in the PR-CPA codes.

However, the array codes are on par with their respective CPA counterparts before the error floor

occurs. Finally, for the case ofj = 5 shown in Figure 5.9c, the array codes show similar perfor-

mance with PR-CPA, probably because the error floor of the CPA codes did not occur within the

simulated SNR range.

5.5 FINITE GEOMETRY CODE

In this section, we evaluate the performance of the two-dimensional type-I (0,s)th-order EG-

LDPC codes fors = 2, 3, 4, 5. For this class of codes, the parity check matrix is a(22s−1)×(22s−1)

square matrix with column and row weightj = k = 2s, forming a QC(1, 1, 22s−1) structure. Since

Nc = Nb = 1, the codes are cyclic. The performance of EG-LDPC codes are shownin Figure 5.10.

To compare EG-LDPC codes with the pseudorandomly generated CPA codes, PR-CPA codes

with j = 3, 4, 5 have been constructed where theS-matrix parameters(Nc, Nb, P ) have been chosen

to make the code rate and codeword length close to those of the EG counterparts. Figure 5.11a shows

that the (0,4)-th order EG code outperforms the CPA counterparts. The steep slope of the EG code

in the waterfall region seems to be caused by the column weightj = 16, which is much higher
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Figure 5.9: Comparison of array code and PR-CPA

than the CPA codes. However, it should be also noted that the CPA code withj = 4 has only0.2

dB difference at the BER of10−6 from the EG code while it has much lower decoding complexity.

Another observation is that, unlike the case with half rate in Section 5.3.3, the column weight affects

the slope of the BER curve.

The same comparison is made for the (0,5)-th order EG, as shown in Figure 5.11b. In this case,

all CPA codes except for the one withj = 3 outperforms the EG-LDPC code within the simulated

range. Although the EG-LDPC is expected to eventually outperform the CPAcodes at very low

BER due to the steeper curve, the short cycles generated by the high column weight ofj = 32

seems to adversely affect the performance at the relatively high BER range. This implies that, for

applications where the BER requirement is not very stringent such as wireless communication, the

CPA-structured codes provide larger coding gain than the EG-LDPC code while they require less

processing power at the decoder.
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Figure 5.9: Comparison of array code and PR-CPA (cont’d)
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Figure 5.10: Comparison of EG and CPA codes

5.6 802.16E LDPC CODE

In the IEEE 802.16e standards for wireless metropolitan area network, theCPA∗-structured

LDPC codes have been adopted as an option for channel coding [16].In the standards, the codes

take the form of CPA∗(Nc, Nb, P ), whereNb = 12 andNc ∈ {12, 8, 6, 4} to support code rates

1/2, 2/3, 3/4, and5/6. The submatrix sizeP is a multiple of4 in the range from24 and96, which

corresponds to the codeword lengths betweenN = 576 andN = 2304 at the multiples of96 bits.

TheS-matrix elements are specified for submatrix sizeP = 96, one representation for each of the

rates1/2 and5/6, and two representations for each of the rates2/3 and3/4 (called type A and B).

TheS-matrix elements for smallerP are derived by proportional scaling for code rates1/2, 3/4

(type A and B),2/3 (type B) and5/6, i.e.,

Si,j(P ) =











Si,j(96), Si,j(96) < 0

⌈Si,j(96) P
96⌉, otherwise
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Figure 5.11: Comparison of type-I EG and CPA
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Figure 5.12:S-matrix for 802.16e half-rate code forP = 96

or by modulo operation for code rate2/3 (type A), i.e.,

Si,j(P ) =











Si,j(96), Si,j(96) < 0

Si,j(96) mod P, otherwise

The S-matrix representation for a half-rate code withP = 96 is shown in Figure 5.12. The

S-matrices in the standards are partitioned into two parts,S = [SiSp], whereSi is composed of the

left Nb − Nc columns of the originalS-matrix andSp contains the rest. In the encoding process,

theSi corresponds to the information bits and theSp corresponds to parity bits, andSi has higher

column weights thanSp. Due to this irregularity, the information bits are involved in more check

equations, and are thus better protected than the parity bits.

The 802.16e half-rate code is compared with a regular PR-CPA code withj = 3 in Figure 5.13,

shown for the shortest (P = 24, N = 576) and longest (P = 96, N = 2304) codeword length.

For N = 576, the regular PR-CPA code outperforms the 802.16e counterpart for in the entire

SNR region. ForN = 2304, the 802.16e code shows larger coding gain for BER less than10−6

although it shows a higher error floor at around BER=10−6. Considering that the target operating

BER specified in the standards is10−6, it seems reasonable to use irregular codes to get better

performance at the specific BER.



5.6 802.16E LDPC CODE 89

2 2.5 3 3.5 4
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
(dB)

B
E

R

PR−CPA(3,6,96), g=6, d=8
802−CPA*(12,24,24), g=6, d=8
PR−CPA(3,6,384), g=6, d=10
802−CPA*(12,24,96), g=6, d=10

Figure 5.13: Comparison of half-rate 802.16e and PR-CPA codes

To better see the effect of nonuniform column weights, CPA∗-structured codes have been con-

structed from the regular PR-CPA codes CPA(12,24,96) and CPA(8,24,96) by eliminating some of

the nonnegativeS-matrix entries, i.e., replacing them by−1. The elimination is arranged to give two

different column weights, larger forSi and smaller forSp. The performance of the CPA∗-structured

codes including the 802.16e code and the regular CPA-structured code are shown in Figure 5.14.

For the half-rate codes in Figure 5.14a, the 802.16e codes are outperformed at BER=10−6 by some

of the PR-CPA codes including the regularj = 3 codes. Irregular codes outperform the regular

code whenj = 3. On the other hand, for rate2/3 codes, the 802.16e code outperformed the regular

code withj = 4. It is also observed that the irregular code withj = (4, 2) gives a slightly larger

coding gain than the 802.16e code.

As a further comparison between the 802.16e codes and the PR-CPA codes, the performance

of the codes at the BER of10−5, 10−6 and10−7 have been measured for all codeword lengths

defined in the standards. The result is shown in Figure 5.15. For code rate = 1/2 (Figure 5.15a),
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Figure 5.14: The performance comparison of regular/irregular column weights
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as previously noticed, the regular CPA codes provides the SNR gain of between0.1 and0.5 dB at

the target BER of10−6 over the 802.16e codes. The gain becomes substantially larger for the BER

of 10−7 although it would not be helpful for the wireless application. It is also noteworthy that the

regular codes show a smooth increase in the coding gain as the codeword length increases while

the 802.16e codes have fluctuations. For code rate = 2/3 (Figure 5.15b),the regular codes still tend

to perform better than the 802.16e codes for shorter codes (N < 1000), but the opposite is true

for longer codes (N > 1000). However, the PR-CPA∗codes withj = (4, 2), chosen based on the

result in Figure 5.14b, slightly outperformed the 802.16e codes forN ≥ 1152 with an exception at

N = 1344.

5.7 GPA-STRUCTUREDLDPC CODE

As described in Section 2.4.4, GPA-structured codes have the potential to achieve larger girths

than CPA structured codes, since they do not have the limitation of girth12 that the CPA-structured

codes have. Also, they are expected to be able to achieve large girths without a substantial increase

in the codeword length, which is the case with the CPA∗-structured codes. The search for good GPA-

structured codes heavily relies on the existence of good non-abelian groups suitable for constructing

large-girth codes. Once such group is found, a computer-based search should be conducted to check

if a high girth code can be constructed with the elements in the chosen group. For this purpose, a

search has been conducted using the GAP computer algebra system [50], which provides a library

of all groups of order up to1000. Due to the enormous number of groups and the considerable

search time, the search space has been reduced by considering only thefollowing two classes of

groups:

groupGwith ordern = pq, p : prime, p | (q − 1) (5.7)

where ‘|’ denotes ‘divides’ and

groupGwith ordern = pqr, p : prime, p | (q − 1), r ∤
q − 1

p
,G = Cpr : Cq, (5.8)
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Figure 5.15: Comparison between 802.16e and regular/irregular PR-CPAcodes
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(Nc, Nb) (2, 4) (3, 4) (3, 6) (3, 9) (4, 8)
CPA,GPA1 CPA,GPA1,GPA2 CPA,GPA1,GPA2 CPA,GPA1,GPA2 CPA,GPA1,GPA2

g = 6 5, 10 7, 10, 28 8, 10, 28 10, 10, 28 11, 14, 28
g = 8 5, 10 10, 10, 28 18, 21, 28 35, 38, 44 59, 74, 76
g = 10 13, 20 39, 39, 44 111, 111, 117 367, 417, 412 754, 831, 873
g = 12 13, 20 73, 93, 92 366, 543, 412 −,−,− −,−,−
g = 14 −, 55 −, 305, 549 −,−,− −,−,− −,−,−
g = 16 −, 55 −,−,− −,−,− −,−,− −,−,−
g = 18 −, 205 −,−,− −,−,− −,−,− −,−,−
g = 20 −, 205 −,−,− −,−,− −,−,− −,−,−

Table 5.2: Smallest group order for each target girthg (’-’ indicates that no codes have been found.)

whereCn is a cyclic group of ordern and “:” denotes semidirect product. The GPA codes based on

the groups in eq. (5.7) and eq. (5.8) will henceforth be referred to as GPA1 and GPA2, respectively.

In the search process, for each of the groups belonging to GPA1 or GPA2, the GPA codes are

constructed using the same sequential filling method as used by the CPA construction to find a

code that has a target girth ranging from6 to 20. From the search results for severalS-matrix

sizes, the smallest group ordern (which is also the submatrix sizeP in the GPA-structured codes)

for each target girth is shown in Table 5.2. The search results for CPA-structured codes are also

included here for comparison purposes. With the groups considered, the GPA-structured codes tend

to require higher group order than the CPA-structured codes. While a dramatic increase in the girth

from 12 to 20 could be achieved with a GPA(2,4,205) code, it was difficult to find GPA-structured

codes having girths more than12 for j ≥ 3. The only such case found is GPA(3,4,305) with girth

14 compared to CPA(3,4,305) code with girth12.

Since the GPA-structured codes are not quasi-cyclic, they cannot be simulated by the imple-

mented hardware decoder. The result obtained from software simulation isshown in Figure 5.16.

The GPA(2,4,205) code does not show a noticeable performance improvement over the CPA(2,4,205)

code in spite of the large difference in the girth, which seems to have been caused by the patholog-

ical behavior of codes with column weight2. On the other hand, the GPA(3,4,305) code shows a

considerable performance improvement with a much steeper slope in the waterfall region than the

CPA(3,4,305). Such large improvement with only an increase of 2 in the girth has not been seen in
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the experiments with CPA codes and makes further research on this class ofcodes very promising.



CHAPTER 6

CONCLUSIONS ANDFUTURE WORK

6.1 CONCLUSIONS

The primary goals of this thesis are the design of a flexible decoder for QC-LDPC codes and the

investigation of the performance of QC-LDPC codes with a focus on pseudorandom construction of

circulant permutation arrays. The main results of this research can be summarized as the following:

1. The design of a highly flexible decoder:This thesis presents a generalized QC-LDPC de-

coder architecture designed with a priority placed on flexibility. The proposed decoder is

capable of supporting a wide range of array-structured codes in the selected set of codes

under investigation.

• Flexibly parameterizable architecture: Unlike throughput-oriented architectures, this

architecture decouples the degree of parallelism and resource utilization from the code

parameters. This is accomplished by a new approach in which parallelism is achieved

within submatrices rather than across submatrices. As a result, the decodercan be syn-

thesized for a user-defined processing power and resource usage.

• Run-time reconfigurability: As a benefit of the flexible architecture, the entire set

of code parameters of QC-LDPC codes can be changed while the hardware is run-

ning. These parameters include the dimension of the array structure (Nc, Nb, P ), the

96
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column/row weights (j, k), and the actual shift values of circulants in the parity check

matrix.

• Architecture comparison: The designed decoder has been implemented in FPGA, and

the synthesis results have been compared with a selection of decoder architectures in the

literature in terms of processing rate to area ratio (PAR). The area efficiency indicated

by the PAR shows that the proposed architecture uses between2.9 and8.1 more area re-

source to generate the same processing power than more code-specific architectures. We

believe that the order of the difference is reasonable considering the degree of flexibility

provided by this architecture.

2. Analysis tools for QC-LDPC codes:This thesis presents new methods of finding the girth

and the diameter of QC-LDPC codes.

• Girth-finding algorithm: Finding the girths of a QC-LDPC decoder is more compli-

cated than the CPA-structured codes. The proposed algorithm finds the cycle distribu-

tion of given codes by propagating messages in a compact form of Tanner graph where

a node represents a group of actual nodes. The messages are represented as polynomi-

als inX to keep track of the shift value differences. The presence of true cycles in the

original Tanner graph can be detected by examining the coefficient of thetermX0. This

algorithm is linear in the girth and the column/row weights.

• Diameter-finding algorithm: Based on the observation that the input cost matrix for

all-pairs shortest-path (APSP) algorithm for QC-LDPC codes is an arrayof circulants

but not a circulant as a whole, a blocked version of APSP is applied to convert the

original problem to subproblems where the input cost matrices are circulants. Within

each subproblem, the APSP algorithm is replaced by modified versions of Dijkstra’s

algorithm to best exploit the circulant property. The runtime of the resulting algorithm

is O(N2), whereN is the codeword length while the direct application of the Floyd-

Warshall algorithm has a runtime ofTheta(N3).
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3. Performance study of CPA-structured codes:The performance of a large selection of CPA-

structured codes have been evaluated for the investigation of the followingitems.

• Effect of girth: The effect of the girth on the BER performance was shown by con-

structing CPA-structured codes with the different girths. It has been observed that the

girth does not have a major effect on the performance in the waterfall region but lowers

the error floor. Thus, it justifies the pseudorandom construction of CPA-structured codes

directed toward higher girth which is adopted in many construction methodologies based

on computer search. However, it is not clear from the observed resultswhether this is

a unique trait of CPA-structured codes or a general property of array-structured codes

since no other construction methods provide a wide range of choices for the girth while

keeping the other code parameters constant.

• Effect of diameter: The effect on the diameter on the performance has been quantita-

tively measured by constructing CPA-structured codes with a wide range of diameters.

It has been shown that the high diameter seriously affects the slope of the BER curve. To

construct codes with a desired diameter, both the girth and diameter were incorporated

into the pseudorandom code construction process. To separate the artifact of the explicit

efforts to control the diameter, a large set of codes have been generated by uniform

random sampling. Using the random samples, the Mann-Whitney-Wilcoxon nonpara-

metric test has been conducted. From the test results with uniformly sampled girth-6

CPA(3, 6, 384) codes, it has been shown that every increase in diameter beyond11 has

an adverse effect on the BER performance with very high statistical significance.

• Effect of column weight: The column weight linearly increases the decoding complex-

ity of the sum-product algorithm and provides a lower bound on the minimum distance.

From the observed results from the experiment designed for the column weight effect,

it is seen that the higher column weight increases the BER without an apparent change

in the slope of the BER curve. However, in some other experiments with higherrate,
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it has been noticed that the column weight increased the slope. For the simulated BER

region down to10−9, the column weight of 3 or 4 gave the best results.

4. Performance comparison between pseudorandomly constructedCPA-structured codes

and deterministically constructed codes:The pseudorandom construction of CPA-structured

codes is very flexible in choosing a desired rate or codeword length. Usingthis design flex-

ibility, deterministically constructed codes based on finite-geometry and arithmeticprogres-

sion in powers have been compared with CPA-structured codes with matchingcode rate and

length.

• Finite geometry codes: A selection of (0,s)-th cyclic Euclidean geometry codes of

length22s − 1 have been compared with the CPA-structured codes. Fors = 4, EG

codes gave the best performance, but fors = 5, CPA-structured code with column

weight4, 5 or 6 outperformed the EG with column weight32 at the BER range down

to 10−9. Considering the low column weight of such CPA codes, it shows that the CPA

structure can be a cost-effective solution for certain applications.

• Array codes: Array codes have the same CPA structure with a deterministic arithmetic

progression in the powers. They have a fixed girth of6 and fixed diameter4. When

the pseudorandomly constructed codes have the same girth, no difference in the per-

formance is observed. However, forS-matrices with large dimensions, it is not always

possible for CPA codes to achieve girth6. When there is a girth difference, the array

codes have better performance due to the higher error floor of the pseudorandomly con-

structed counterparts with girth 4. It can be seen that, for a high rate CPA-structure, the

array codes are a better choice than the pseudorandom construction in that the girth of

6 is guaranteed. Conversely, for low-rate codes with smallerS-matrix dimensions, the

pseudorandom construction can yield better codes by enlarging the girth.

• 802.16e codes:The LDPC codes in the 802.16e are derived from a fixed baseS-matrix.

They have unbalanced column weights for the information bits and the parity bits. In the
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experiments with half-rate codes, it has been shown that a regular CPA codes outperform

the 802.16e codes by between 0.1dB and 0.5dB at the target BER of10−6. For code

rate2/3, the 802.16e codes outperform the regular CPA codes, but give comparable

performance to the pseudorandomly constructed irregular codes.

• GPA-structured codes: The underlying group structure of the GPA-structured codes

is not cyclic and thus the limitation of girth12 does not apply to these codes. In the

computer search for GPA-structured codes with a selection of group structures, it has

been observed that GPA codes tend to require large submatrix sizeP to attain the same

girth and GPA codes with higher girths than12 are very difficult to find. However, the

GPA(3,4,305) code gave a performance improvement of0.8 dB at the BER of10−6 with

a much steeper BER curve.

6.2 FUTURE WORK

The possible directions of the future research are as follows:

• Pseudorandom construction methods for QC-LDPC codes:The QC-LDPC code struc-

ture encompasses a much larger code space than the CPA structure while having the same

encoding complexity as the CPA-structured codes. Since many good algebraic codes have a

QC structure, a pseudorandom construction method of QC-LDPC codes will provide a very

flexible design tool for more powerful LDPC codes that can compete with any other deter-

ministically generated codes.

• Search for other graph parameters that affect the performance: Even though the girth

and diameter have been shown to have major effects on the performance ofa code, they are

by no means sufficient to predict the superiority of a given code to others. For example, in the

uniform random sampling test in Chapter 5.3.2, a large difference betweenthe best code and

the worst code has been observed within the set of codes with the same girthand diameter.

If other graph parameters that affect the performance can be found,they can be incorpo-



6.2 FUTURE WORK 101

rated into the pseudorandom code construction process. One possibility isthe use of cycle

distribution that can already be obtained using our girth-finding algorithm. Another possibil-

ity is the incorporation of trapping set (or pseudo-codewords) analysisinto the construction

process, which has been developed to explain and analyze the error floor [51, 52]. With the

cyclic-symmetry in the QC-LDPC codes, an efficient method for trapping setanalysis can be

expected to exist.

• Computer search for more GPA-structured codes:The GPA-structured codes with high

girth are hard to find, but it has been shown that they bring a considerable improvement to

performance. If a sufficiently large number of GPA codes can be found, it will form a new

class of very good structured codes.

• Hardware support for GPA-structured codes: While GPA-structured codes may bring a

major improvement in the performance, they do not belong to the class of the QC-LDPC

codes. It will be crucial to find ways to exploit the structure of the GPA-structured codes in

order to design efficient encoders and decoders that can be used in practical systems.
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