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ABSTRACT

The low density parity check (LDPC) codes designed by a pseudarandostruction, as pro-
posed in Gallager’s original work, have been shown to perform viergecto the Shannon limit
(when constructed as very long codes); however, the lack of steugtisuch codes makes them
unsuitable for practical applications due to high encoding complexity anly cdexoder implemen-
tations. These difficulties have lead to numerous works on the structurB€ldodes, especially
array-structured codes with quasi-cyclic property.

Among the array-structured codes, those with an array of cyclic pernutagtrices have been
of particular interest due to the balanced edge partitioning inherent in tfeduste that simplifies the
implementation of highly parallel decoders. While many construction methodseaveproposed
for this circulant permutation array (CPA) structure, the performantiesofodes has been reported
to a very limited extent. Especially, the effect on the performance by the &quittrol of graph
parameters has not been provided despite the fact their importance isstrephia the construction
process.

In the decoder design for quasi-cyclic LDPC codes, the primary caoris¢o exploit the array
structure for efficient implementation. Fast hardware-based decodersnedium-capacity FPGA
are often faster than the software implementation by at least one or twe @ieragnitude, and
thus important for both actual deployment in practical systems and evalwdgoror performance.
As a large number of high-throughput decoders in the literature arergbsigr specific array
dimensions and the bus and memory connections are simplified using the tanctyre of the
code, the degree of parallelism in the decoders is dependent on thepaaeters, making it
difficult to parameterize the hardware to use a desired amount of hardesource. Furthermore,
such architectures cannot support a large class of array-strdctades with very different array
dimensions.

In this thesis, we present a generalized hardware decoder thatsuapy kind of quasi-cyclic



LDPC codes including CPA-structured codes. The decoder has lesegmdd with a priority on
high flexibility. In the synthesis step, the degree of parallelism can be ghodependently from
the code parameters. Thus, for FPGA implementation, the decoder camameeperized to fully
utilize a given amount of hardware resource. Also, it supports run-tenenfiguration of code
parameters, i.e., different codes can be supported by changing registents without a new syn-
thesis. In wireless applications, such flexibility makes it possible to chookarmel code based
on the varying channel condition. When used for performance evatuaticposes for a large set
of codes, it saves a considerable amount of time by eliminating the needg$gntigesis for each
code.

Using the FPGA implementation of the proposed decoder, we characteriperfbemance of
array-structured LDPC codes, with a primary focus on pseudorandmnbtructed CPA-structured
codes. Based on the obtained simulation results, we show the effect ofraiortal parameters
(girth, diameter and column weight) on the error performance. The psmudiam construction
is also compared with algebraic construction, and with the codes specified IEBE 802.16e

standards.
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CHAPTER1

INTRODUCTION

One of the key underlying technologies in our increasingly connecteldiveothe method for ef-
ficiently communicating discretized information over a physical medium suchegshtme lines,
optical cables, radio links, or magnetic storages. Channel coding phaiygegyral role in provid-
ing a reliable communication method that can overcome signal degradatiorcticakrahannels.
Turbo codes, invented by Berrou, Glavieux and Thitimajshim in 1993, aréirst known capacity-
approaching error correction code that provides a powerful eawection capability when decoded
by an iterative decoding algorithm. More recently, research effortsrtbeearching for lower com-
plexity codes and iterative decoding led to the rediscovery of low densiity peheck (LDPC)
code, which was originally proposed by Gallager in 1960 and was laterglzed as MacKay-
Neal code [1]. The LDPC codes have been shown to achieve ngarabperformance in additive
white Gaussian noise channels when decoded with the sum-productg8fthan [2].

LDPC codes have several advantages over turbo codes. While it calllifé apply parallelism
in the decoding of turbo code due to the sequential nature of the decddorgtan, LDPC decod-
ing can be performed with a high degree of parallelism to achieve a verydkiggding throughput.
LDPC codes do not require a long interleaver, which causes a largg iddgiarbo codes. LDPC
codes can be directly designed for a desired code rate while turbo, ¢bdeare based on convolu-

tional codes, require other techniques such as puncturing to get heddese.



While LDPC codes designed by a pseudorandom construction, assgapoGallager’s orig-
inal work, have been shown to perform very close to the Shannon limgrfwlonstructed as very
long codes), the lack of structure leads to very costly decoder implemerstatidéorse yet, the
encoding complexity that is quadratic in the codeword length puts LDPC @ideserious disad-
vantage over turbo codes that has linear encoding complexity.

To overcome the difficulty in practical implementations, various methods havegreposed
to introduce structure in the parity check matrix. Kou, Lin and Fossorierdotred algebraic con-
structions based on finite geometries in [3, 4]. Other constructions basszhtbinatorics include
disjoint difference sets (DDS) codes by Johnson and Weller [5] amg,30u and Kumar [6] and
balanced incomplete block design (BIBD) codes by Ammar, Honary, Kawanifl Lin [7] and Vasic
and Milenkovic [8]. Many of the codes designed by algebraic or combiigtoonstruction have
certain desirable characteristics such as cyclic or quasi-cyclic praoptréelead to linear-time en-
coding and a guarantee that two rows in the parity check have less tharstimatie common bit
positions to help the sum-product algorithm perform better.

The parity check matri¥ of a code with quasi-cyclic property can be put into an array of
circulant matrices with column and row rearrangements. The LDPC codegheithuasi-cyclic
property are called QC-LDPC codes. Because of its practical importarast of the LDPC decoder
architectures in the literature have been designed for QC-LDPC codksssabclass, in which the
array structure can be exploited for more efficient implementation.

Among various array-structured LDPC codes, a class of codes ohwhedI-matrix is an array
of cyclic permutation matrices have been of particular interest since thecedlgartitioning of 1's
into submatrices facilitates the design of a highly parallelized decoders. haghef this chapter,
we give a brief overview on the structure and the code construction methiotee LDPC codes

based on the cyclic permutation array, and state the goals of this thesis.
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1.1 CrcLic PERMUTATION ARRAY (CPA) STRUCTURE

Initially, Fan proposed in [9] to use a binaayray codeto construct an LDPC code. Aarray
codein this context is a general class of algebraic codes defined as a twosiimaharray of code
symbols that lie in Galois rings, and should not be confused with the artatte in parity check
representation. These originaifray codesare discussed in [10,11]. He showed that the parity
check matrixH of an array codeis a two-dimensional array aP x P submatrices that form a

particular series of powers of a single cyclic permutation matrix, i.e.,

I I .. I
I C cpr-1

H= , (1.2)
I Cr! cr=1n(Fr-1)

where
1
1
C= , (1.2)
1

and it was shown that the code is cyclic with an odd prifandr < P. Henceforth, this con-
struction was also termed “array code”, which is in fact a special casieedarray codein the
original context of [10, 11]. It was also named “lattice code” in [8]. Téiigicture will be denoted
as arrayf, P) in Chapter 5.

A more general notion of an array code was given in [8, 9] where thenatrices can be any
permutation matrices, to facilitate the cycle analysis of the array code rathetahatroduce a
new family of codes. Tanner in [12] and Milenkovic in [13] also generalifee array code by
considering other series of powers, but still based on algebraic ootistr. More recently, Lu,
Moura and Niesen proposed pseudorandom construction of the ard@ywhere the submatrices

can be any cyclic permutations [14]. Later, Lu extended the idea by alloslivagro submatrices
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H= |1 0 1 1 0 0| c
01 1 0 1 1/¢; by b, b; by bs bg
(a) Parity check matrix representation (b) Tanner graph representation

Figure 1.1: A parity check matrix and a Tanner graph

in the array in his Ph.D. thesis [15]. This structure has also been chasie structure of the
LDPC codes in the IEEE 802.16e (Mobile WIMAX) standards [16]. To awmdfusion with the
array codes used in the narrower sense to denote a particular [gogresthe powers, we will
refer to the more general structure consisting of any circulant permutatibices as the circulant

permutation array (CPA) structure in the rest of this thesis.

1.2 CONSTRUCTION OF THECPA-STRUCTUREDLDPC CODES

A parity check matrix can be graphically represented by a Tanner gvélhh is a bipartite
graph with a set of check nodes on top and a set of bit nodes on bottoen 8theck equation in
theH-matrix checks a particular code bit, there lies an edge between the acordisg check node
and bit node. Figure 1.1 shows a simple parity check matrix and the condiggoranner graph.

The performance of the SP algorithm is known to degrade if there exigtstutes in the Tanner
graph [17]. One intuitive explanation was given by Gallager in [18] byshg that the number of
independent decoding iterationsis determined byn = [g/4] — 1, wheregirth g is defined as the
length of the shortest cycle. In addition, Tanner derived a lower boarttie minimum distance of
aregular LDPC code as an increasing functiog of [19], i.e.,

2((-1)7/4-1)

. , g/2 : even
> Jj—2
dmin > i(G—1)lo/4] 2 (1.3)
T -2 9/2 : odd

wherej is the column weight of the parity check matrix. For these reasons, it hasdb@eimary
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concern in LDPC code construction to avoid short cycles in the Tanaphgr

Most of the codes based on algebraic or combinatorial constructioneaigngéd to avoid 4-
cycles (i.e., cycles of length 4), which is the shortest possible length fartiigographs. While
none of them have direct methods to achieve a girth greater than 6, tierbden indirect methods
to enlarge the girth by selectively eliminating columns in the parity check matrixpgeardorandom
constructions, there have been explicit efforts to find codes with a larde & heuristic method
called “bit-filling” tries to construct the parity check matrix column by column whilantaning
the target girth and the predefined column weight [20]. In another ligwafgproach, they search for
a good LDPC code based on the average girth, where the girth is retlafireenode girth, i.e., the
length of the shortest cycle that passes through each node [21]. Eheeddbitrary constructions, a
hardware-based decoding for these codes can be prohibitively.d0stihe other hand, Lu showed
that a pseudorandom search on the CPA structure based on the gsthdoticodes while allowing

a simple decoder architecture [15].

1.3 THESISGOAL

As indicated above, general CPA-structured LDPC codes encomasadiclass of algebraic
and pseudorandom construction methods. The performance of soosopmedomly constructed
codes was given in [15], but a direct comparison with other algebraistnactions were not pro-
vided. In addition, since most of the results in the literature are obtaineddodmvare simulation,
the performance of CPA-structured codes have been usually exgloledown to the bit error rate
(BER) range betweetD ¢ and10~8. The performance at very low BER cannot be simply extrapo-
lated from that of the medium BER range due to the error floor, which is agshenon in which a
code exhibits a sudden saturation in the BER curve at sufficiently high Sbisome applications
that require extremely reliable signalling schemes such as magnetic stochgateallite communi-
cation systems, it is important to choose a code that does not have an@sratfiery low BERs

(10~ to 10719),
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A fast hardware-based simulation environment can extend the simulagach far beyond the
limit of a software-based simulation. A large number of high-throughputvaare-based decoders
in the literature are designed for specific array dimensions, and the Humemory connections
are simplified using the array structure of the code. As a result, the defpeallelism in the
decoders is dependent on the code parameters, making it difficult tmetdze the hardware to
use a desired amount of hardware resource. Furthermore, siniteaiares cannot support a large
class of array-structured codes with very different array dimensions

In this thesis, we pursue broadening our understanding of the amattsed LDPC codes with
a primary focus on pseudorandomly constructed CPA-structured.cbdesnain objectives include
the design of a highly flexible hardware-based decoder and perfegr@saluation by means of
simulation using this flexible decoder.

Hardware simulation environment: We present a hardware simulation environment includ-
ing a Gaussian noise generator and a general decoder for amayusdd LDPC codes. The decoder
has been designed to serve the purpose of this research; it suppodsde in the family of QC-
LDPC codes including the subclass of the CPA structures, and exploitsthastural property to
simplify the implementation. Unlike most of the decoder architectures in the literddatrare de-
signed for high throughput, the proposed decoder has been desigtheal priority on flexibility.
The degree of parallelism in the decoder is independent of the codat@ra, making it possible
to fully utilize the given hardware resource regardless of the columnamaveights or the size of
the permutation matrix. Moreover, the architecture supports run-time reaaatfigjty, i.e., the pa-
rameter of the code to be decoded can be changed simply by modifying tmaqiar values stored
in registers without a new synthesis of the decoder. In wireless applisatfos architecture makes
it possible to flexibly choose a channel code under varying channelitgans. When hardware de-
coders implemented in field programmable gate array (FPGA) are usedforpance evaluation
purposes, this run-time flexibility can save a considerable amount of time by atingrthe need
for re-synthesis for each code to be tested.

Investigation of the effect of code parameters and combinatoriametrics: With the hard-
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ware simulator, we will investigate the effect of code parameters (columrhtyeigde length, and
code rate) on the performance, and evaluate the influence of combihatetiics (girth and di-
ameter) on performance, towards a better design methodology of CRAus&d codes. We will
also compare pseudorandom construction methods and the algebraioctiors of CPA-structured
LDPC codes. Besides the CPA structure, the error performance otextlignite-geometry codes
will be measured and compared with the CPA-structured codes.

Study of extension of CPA structure: We also introduce a more general array structure to
find codes with larger girths than the CPA-structured codes. Althoughhbwed in [15] that an
array-structured code can be constructed to have an arbitrary girgcbysively replacing the 1's
in the H-matrix of CPA-structured codes by permutation matrices and the 0’s byrallrzatrices,
this procedure tends to result in very long codes, and hence it is noblsuita the construction
of the codes with moderate lengths. Our extension will take a differenbapprin that we allow
non-cyclic permutations as submatrices, which will be denoted as grouputsion array (GPA)

structure.

1.4 THESISORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides naatmmhdefinitions to
be used in this thesis, reviews previous works on LDPC code constrasttbdecoding algorithm,
and introduces a nonparametric hypothesis test that will be used in Chapgiérapter 3 presents
new methods to find the girth and the diameter of QC-LDPC codes. Chaptevidgsdhe details
of the proposed flexible decoder for QC-LDPC codes and a companigbra selection of other
decoder architectures. In Chapter 5, we present the performanciasimuesults obtained using
the FPGA-based simulator and study the effect of structural parametérs performance of CPA-

structured codes. Finally, Chapter 6 summarizes the thesis and disautssesvork.



CHAPTERZ2

BACKGROUND

2.1 ABRIEF HISTORY OFLDPC CODES

Any information sent over a practical channel is subject to errors tieataused by various
physical impairments such as thermal noise, attenuation, multi-path wavdiosffealistortion
from previously transmitted signals, interference from other transmitteénspmarfect timing recov-
ery at the receiver. Until the late 1940’s, a commonly held belief was the¢ tha rate-reliability
tradeoff in communication over noisy channels, i.e., to reduce the erroreichinnel, either
the transmission power has to be increased or the message information leasetat bepeatedly.
Shannon’s work in 1948 disproved this belief by showing that there istoreliability tradeoff if
the information rate is below an information-theoretic limit caltdgghnnel capacitywhich is the
maximum average number of information bits that can be reliably (i.e., with agpgraall error)
transmitted per second for a given transmission bandwidth and signalse+atio (SNR).

Although Shannon showed the existence of good codes that achigwgetibapacity by using a
“random code”, such code is not realizable due to its intractable encddiuwgding complexity. As
a result, research efforts have been focused on finding codes withfgingpstructure to ensure a
good minimum distance property rather than more random-like codes enddigrighannon. For
45 years, researchers developed many new coding techniques witim @o ind codes that are
good (close to Shannon'’s limit) and also practical, but none of them wecessful in approaching

capacity, with the best practical code being away from the Shannon’s §ngitd5 dB..
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In 1993, a significant breakthrough was achieved by turbo codésybkh reached the BER of
10~° at SNRs withinl dB of the Shannon’s limit. While many of the coding techniques developed
earlier were based upon delicate algebraic structures, the interleageirugirbo code incorpo-
rated a certain degree of “random-like” nature in the code constructidthoudgh there was no
mathematical justification for the performance of turbo codes when theyfingrpresented, many
researchers investigated the underlying principles of turbo codingalitthted the significance of
the invention.

LDPC codes form another class of “random-like” codes that appesatife Shannon’s limit,
and date back to Gallager’s doctoral dissertation in 1961 [18], whichmnesh earlier than turbo
codes. In 1981, Tanner generalized LDPC codes with a graphicadsepation, now called a
Tanner graph [19]. In spite of the excellent performance of LDPCGespthese previous works
had not drawn much attention probably because the encoding and dgpeast® computationally
intensive with the hardware technology at that time. LDPC codes beganmeéodgnized as a strong
competitor to turbo codes in late 1990’'s when MacKay, Luby, and othdisaevered LDPC codes
and showed that they have excellent theoretical performance [2, 23].

The asymptotic performance of LDPC codes, when the codeword length tennfinity, has
been studied using analytical techniques called density evolution or Gaaggieoximation [24—
26]. Very recently, it has been also shown that the error performartte waterfall region under

binary input memoryless symmetric channels can be predicted by analyticaldeg#7].

2.2 LDPC ODE STRUCTURE

In this section, we provide the formal definition of general LDPC coddgiafine several array

structures to be discussed in the thesis. We confine the discussion tolbierancodes.

2.2.1 Definition of an LDPC Code and Other Notations

An (N, K) linear block code is defined as a set of codewords that forrASdimensional

subspace in atV-dimensional vector space over GF(2). The usual convention toseqtra linear
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block code is either as the row space of a generator matrix, i.e.,
C = {x:x=uG,vuc GF(2QM}, (2.1)
or as the null space of a parity check matrix, i.e.,
C={x:Hx=0} (2.2)

A (j, k)-regular LDPC codas defined as the null space of\& x IV parity check matrixH that

has the following structural properties:

1. Each row contain 1's.
2. Each column containgl’s.

3. Bothj andk are small compared to the number of columns and the number of rows in the

H-matrix.

4. The number of 1's common to any two rows is 0 or 1.

This definition is sometimes referred to as “LDPC code in narrow sense” tigilene without
the last condition is called “LDPC code in wide sense”. The last conditiomchwis sometimes
called row-column (RC) constraint, ensures that there are no 4-cyclhe torresponding Tanner
graph. The column weight and row weightc denote the number of 1's in each column and row,
respectively. The length of the codewords\isand there ar@/ parity check equations. If the rank
of theH-matrix isr, K = N — r message bits can be transmitted per codeword. Accordingly, the
code rate is given by

N-M

= >
R Z N

==

where the equality holds when alf rows are linearly independent.
For regular LDPC codes as defined above, the total number of 1's H thatrix isj N = kM.

If the column weight or row weight is not uniform, it is called an irregular LD&bde.
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2.2.2 LDPC Codes with Array Structure

There are particular properties of codes that result in useful amagtsres in the parity check
matrix. This section will provide formal definitions of the structures.

Cyclic codes:A linear codeC is calledcyclic if every cyclic shift of a codeword i is also in
C. The parity check matrix of a cyclic code can be put into the form of a sqeieculant matrix. It
is easy to check that the null space of a circulEhtorms a cyclic code. SuppoddisaN x N
circulant matrix with redundant rows to have a nonzero code ratex beta codeword i€ defined
as the null space @, i.e., Hx = 0. Denoting a single downward cyclic shift afasx, it can be
expressed as = Cx, whereC isaN x N single cyclic permutation matrix as defined in eq. (1.2).

SinceC andH are both circulantHC = CH. Multiplying x with H yields
Hx = HCx = CHx = 0, (2.3)

which shows thak is still in the null space oH. By applying this property multiple times, it is
readily noticed that shifting by any number of symbol positions yields a valigéword.

Cyclic codes form an important class of linear codes since the encodmnplexity is linear in
codeword length and can be implemented with a simple linear shift register.

Quasi-cyclic codesA linear codeC is calledquasi-cyclicif a codeword inC cyclically shifted
by a fixed numbes of bit positions is also ir€. In other words, itx™ = (zg,21,...,zy_1) iS a
codewordx™ = (zy_s, TN _s_1,...,TN_1,T0, 21, -, TN_s_1) IS another valid codeword. If we
rearrange the bit indices by repositioningry,,+; at the indexPi + m, where0 <m < P — 1,

0 <i<s—1landP = N/s, thex before and after the shift take the following form:
X = (20, Ts,- - 733(P71)s‘x17x5+1; e 733(P71)s+1’ S E R T P 7$(P71)s+571)7
X = (x(P—l)saxOv'”7x(P—2)s|x(P—1)s+17x17'-~7$(P—2)s+1|
‘x(P—l)s—&—s—l’ Ls—1y- x(P—Q)s-l—s—l)v (24)

which indicates that a cyclic shift bypositions in the original indices is equivalent to a single shift

in each of thes subvectors in the rearranged indices.
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The parity check matrix of a quasi-cyclic code can be rewritten as anafriculant matrices.
To check that the null space of such parity check matrix forms a quabk¢-cptle, consider a code

whose parity check matrix is aN. x N, array of P x P submatrices, i.e.,

Hy Ho:1 ... Ho n,—1
Hi o Hi, ... Hyn-
; (2.5)
Hy,—10 Hy.—11 ... Hn.—1n,-1

where each submatrid; ; is a circulant matrix. If we represent a codeword in the form

X0

X1

XNy—1
wherex; denotes thé-th subvector of the, a new codewor& made by a single downward cyclic

shift in each subvector of can be represented as

CXO

CX1

H
I

Cxn,—1
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Multiplying x by H yields

C X0
C X1
Hx = H
C XN, -1
HO’QC H07lc ce Hobe_lc X0
- HLQC Hmc e Hl,Nb—lc X1
Hy,-10C Hp,-12C ... Hn,1n,-1C XN,—1
C
C
= Hx
C
= 0,

which shows thak is also in the null space d.

As in the case of cyclic codes, quasi-cyclic codes are of particular stter@ractical systems
since there exist linear-time encoders for quasi-cyclic codes that canpbemented with simple
shift registers [28, 29].

CPA-structured codes: A circulant permutation array (CPA) structure is a special subclass of
QC-LDPC codes and also a generalization of the array codes introcdu€thpter 1. The parity

check matrix of the CPA-structured codes takes the following form:

CSO,O CSO,1 . CSO,Nb—l
Cs1,0 Cs1a . Csl,Nb—l
H= ,
CSNe-1,0 (CSNe—1,1 . (CSNe-1,Np-1

whereC is aP x P single downward circulant permutation matrix and each shift vaJyes in
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Figure 2.1: Examples of unstructured and structured parity check matrices

{0,1, ..., P — 1}. The CPA-structured code is regular, and the column wejgird row
weightk are equal taV, and NV, respectively. We will use the notation CR¥(, N,, P) to denote
such code in the rest of this thesis.

CPA*-structured codes: A CPA*structure is a generalization of CPA structure by allowing
P x P all-zero matrices in place of any of the submatrices in the CPA structure.

Figure 2.1 shows some example codes with the structures defined in this settere white
space represents 0’s while black points or lines represent 1's in titg pheck matrix. The set

diagram in Figure 2.2 illustrates the relationship among these classes of codes
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Quasi-cyclic

Figure 2.2: The relationship among the structured-codes

2.3 ITERATIVE DECODING ALGORITHM

2.3.1 Overview on the Sum-Product Algorithm

The sum-product algorithm is an approximation to an exact marginalizatiojoioft@robability
density function [30]. We will use a simple example to show how they are related

Suppose there is a multi-variable function composed of factors shown as

g(x1,...,w6) = fa(x1)fB(22) fo (w1, 22, 23) fD (23, 24) fE(23, T5), (2.6)

and we want to compute the marginal functignizs) for z3 defined as

gs(xz3) = ZZZZZg(ml,...,xﬁ) (2.7)

1 X2 T4 Ts T6

= Zg(l‘l’"'axﬁ)v (28)

~T3

where the “not-sum” operator”’ indicates the variables being excluded in the summation.

By using the fact that each factor involves only some of the variables, amen@anipulate
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Figure 2.3: Example of a factor graph and the corresponding conmersio

eq. (2.7) to rewrite it as

(Z fD(SU3,JU4)) : <Z fE($3,565))
<Z fa(zr)fo(zr, x2, x3) (ZfB T2, T6 ))

Z1,T2

or equivalently,

(Z fD(9037964)> : (Z fE(x3,x5)>

~T3 ~T3

(ZfA z1) fo(z1, x2, x3) (ZfB T2, T6 ))

~T3 ~T

The expression in eq. (2.9) shows the order of computation that caner¢de total number
of operations. In [30], it has been shown that such an expressiobeabtained from a graph
representation of the functigr{z1, . . ., z¢) in a straight-forward manner. The graph representation
is called &actor graph and it is a bipartite graph where the variables are mapped to variable nodes
the factors are mapped to factor nodes, and an edge betweeu f;(-) indicates thaff;(-) hasz;
as its argument. The factor graph for eq. (2.7) is shown Figure 2.3a.

Regarding the variables as the root of a tree, the order of the computation can be obtained
by traversing the graph from the leaf nodes to the root node. Eactbleanade corresponds to

the multiplication of all incoming messages, and each factor node corresmothdsmultiplication
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of all incoming messages and the local function (factor) followed by a mot-@peration over the
parent variable node. A message can be regarded as the evaluationadffanction for all possible
values in the alphabet. The factor graph after this mapping is shown in Rdilye

In summary, the variable-to-factor message that is generated at e&@thlesaiode can be com-

puted as

7Tv—>f($) = H Tf—uv, (29)
freN(\f
whereN (v) denotes the neighbor nodes of the variable noded *\" denotes exclusion. Likewise,

the factor-to-variable message generated at each factor node campeted as

mr—o(@) =Y [ FNE) ] 7mo—r ] (2.10)
~e VEN{\o

whereN ( f) denotes the neighbor nodes of the variable node

As previously stated, the marginalization for a single variable can be dosetbig it as the
root, and propagating messages from the leaves to the root, as showniie Eiga. Interestingly,
the marginalization for all variables can be performed simultaneously byagating messages
from all leaves to all other leaves as shown in Figure 2.4b. In this mantemyiadiate results can
be reused.

When the factor graph is cycle-free, as in the previous example, the sadugh algorithm com-
putes the exact marginal function, and the algorithm stops when all medsaggepropagated from
all leaf nodes to all other leaf nodes, i.e., when all edges have delim@ssiages in both directions.
On the other hand, with cycles in the graph, there is no clear condition fopistpthe algorithm,
and the result is not the exact marginal function. However, when thepsaduct algorithm is ap-
plied to the decoding of channel codes, it has been empirically shown titlai wufficiently large
number of iterations, the results can closely approximate the true margitibius[1].

Let x be the codeword vector andbe the observed channel output. If we apply the symbol-

by-symbol maximum a posteriori (MAP) detection, the optimal decoding is el fis

- A1), 2.11
& argxirgg)ﬁ}p(w y) (2.11)
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(a) Marginalization for a single variable (b) Marginalization for all variables

Figure 2.4: Propagation of messages in sum-product algorithm

where
plzily) = D p(xly) (2.12)
_ p(x)p(y|x) (2.13)
p(y)

~T;

Under the assumption of equiprobable codewords and memoryless thaarean make the fol-

lowing substitutions:

p(x) = 27,[(}( €C); (2.14)
p(y|x) = [ [ p(vilz:), (2.15)
=1

wherel(t) is an indicator function which gives if the argument is true and) if ¢ is false. Ac-
cordingly,I(x € C) indicates the membership of a vectom a set of valid codewords.

Now, the function to be marginalized in eq. (2.12) is

n

g9(x) = I(x € C) [ [ p(wil:), (2.16)

i=1
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Figure 2.5: Example of a code and the corresponding factor graph

where the scaling factors/2* and p(y) have been dropped since they are constant for a given
observatiory.

To show the application of the sum-product algorithm to the decoding ofybliverar codes,
consider another example in Figure 2.5. From the parity check matrix in Fybee the indicator
function can be represented as the product of factors, each of wini@sponds to a check equation,

i.e.,
IxeC)=I(x1+x2+25=0)-I(x1 + x5+ x4 =0) - I(x2 + x5 + x¢), (2.17)

where the additions are in GB( The corresponding factor graph is shown in Figure 2.5b. Note that
the Tanner graph is equivalent to the factor graph except that the famtes for the conditional
probabilitiesp(y;|x;)’s are explicitly shown.

For the case of binary codes, the variable nodes are called bit nodg¢kefactor nodes are
called check nodes. For this special case, the alphabet of the varables GF2), and the mes-
sages can be represented as the ratio of the value-=at to the valuer = 0. With this simplifica-
tion, the bit(variable) node computation in eq. (2.9) can be written as

Ape = H Ao, (218)
c'eN(b)\c
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where the input likelihood ratip, is defined as

p(yilzi = 1)

Py = .
"7 pyiles = 0)

Likewise, the check (factor) node operation in eq. (2.10) can be simpdified

Ay = @ Ab’—>ca (219)
b'eN (c)\b

where@ denotes a repetitive application of the special binary operatawhich is defined for

eg. (2.19) as

a+b

b
a® 1+ab

With a further simplification of representing messages in log-likelihood domainji-e log A

andy = log p, the bit node operation can be represented as

Ab—e = Hpt Z A¢—b; (2.20)
ceN(b)\c

and the check node operation can be expressed as

Mev = F( D Flw—e)), (2.21)

b'eN(c)\b

whered denotes a repetitive application of the operatowhich isredefinedor eq. (2.21) as
a®b = sgn(a)sgn(b)(|al + |b]), (2.22)
and thesgn(z) is the sign ofr as1 or —1. The functionF'()\) is defined as
el 41

F(\) = ) log ———
(A) sgn(A)log “5r—,

and is shown in Figure 2.6.
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F(x)

Figure 2.6: The functiod’(x)

2.3.2  Min-Sum Algorithm

The min-sum (MS) algorithm in the log-likelihood ratio (LLR) domain is an appr@tion of

the SP algorithm [30]. First, note thatx) has the following properties:

[F ()| = F(|x]);

F(F(z)) = z.

For check node computation, if we assume one of terms in the summation in dgig2l@minantly
large, the absolute value of the LHS can be approximated as follows:
it = (| @ FOu-))
b eN(e)\b

< max |F(Ay_c)|
beN( c)\b

= ( max F( |)\b/Hc|>
b’ eN(c)\b

= ( min  |[Ay_.|)
b eN(c)\b

%

_ Ay
b/eN( o | Ay e
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Accordingly, the MS algorithm does not require th¢-) function, and the bit and check node

operation can be written as

Aboe = Hp+ Z Ao —b (2.23)
ceN(b)\c
and
Aesb = Q A e (224)
b'eN (c)\b

respectively, wheré) denotes a repetitive application of the special binary operatidefined as
a®b = sgn(a)sgn(b) min(|al,|b|).

The MS algorithm is known to require fewer quantization levels than the SHthlgo It is also
known that the performance of the MS algorithm can be improved by scakngath information
after each iteration [31]. This variant is called modified min-sum (MMS) atigar, and it has been
shown that it can perform as well as the SP algorithm with 6-bit quantizat@Inl[83[31], a scaling
factor of 0.8 was found to be optimal forj(= 3,k = 6) codes. Since the latest FPGAs contain a
large number of dedicated multipliers, most of which are not utilized, we uséiphimus to do the
scaling. In a situation where multipliers are costly resource, an approximaligel can be used to

replace the multipliers with adders with a little performance degradationez§.instead of.8.

2.4 LDPC @DE CONSTRUCTION
2.4.1 Original Gallager Construction

When Gallager proposed LDPC codes, he used a pseudorandotrucbos method based on
random permutation of predefined columns. For a giughe parity check matrix of sizej x pk
is constructed withy vertically stacketh x pk matrices. The submatrix on the top has 1's fixed
at certain positions by the following rule: Theth row, 1 < ¢ < p, has ones at the columns
(tk—k+1,ik—k+2,...,ik), making the submatrixi( k)-regular. For the rest of the submatrices,

the columns of the top submatrix are copied and randomly permuted, makingitiyeepack matrix
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Figure 2.7: An example of Gallager construction

(4, k)-regular. An example of Gallager construction is shown in Figure 2.7.

In his work, Gallager used the ensemble of randomly permuted codes tatisabsuch a con-
struction provides capacity-approaching codesVas— oo [18]. Such a construction by itself
does not provide a mechanism to prevértycles and the actual code construction should rely on
computer search to choose suitable permutations to alvoitles. Later, very long codes were

constructed and shown to closely approach the Shannon limit [1, 24].

2.4.2 Finite-Geometry Codes

There are a class of codes that are algebraically constructed basedhepunderlying struc-
ture of finite geometries. Examples of such codes include Euclidean-ggo(B&) codes and
Projection-geometry (PG) codes [3, 4]. In this section, we describe@edde.

Consider anm-dimensional vector spacé over GFQ®). It contains allm-tuples of the el-
ements in GF®). Accordingly, there ar@™ vectors inV/. The spacéd/ is known to form an
m-dimensional finite Euclidean geometry, which is called &GZ°). Eachm-tuple in the vector

space is regarded as a point in the geometrlndis defined as the set of points given as

{x0 + ax |a € GF(2°)}. (2.25)
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The line passes through the origin if and onlyifandx are linearly dependent. Two different lines
either do not meet or intersect on exactly one point.

As a multi-dimensional generalization of linesydlat is defined as the set of points
{x0+a1x1 +--~+auxu]a1,...,a# € GF(QS)}, (2.26)

wherexy, ..., x, are linearly independent. If the+1 vectors, includingy, are linearly dependent,
the u-flat contains the origin. As in the case of lines, two differerlats either do not meet or
intersect on exactly one:(— 1)-flat.

The elements of EGf, 2°) are also known to form finite field GE(**). There is a one-to-one
mapping between an element in the geometry and an element in the field. Forl@examgan

define a mappin@” from G=EG(2, 2°) to F=GF(2?°) as

T:G — F (2.27)
x — T(x), (2.28)

and definel’ as
T ((wo, 1)) = o + w1, (2.29)

where« is the primitive element of". The vector components, andz, are in GF2®) and they
are also inF’ since GF2*) is a subfield of GE(?>*). All of the points inG, or equivalently all of the

elements inF' can be expressed 8or the power oty i.e., the set of all points is
{0,a% at, ... oV "2), (2.30)

whereN = 2™% s the total number of points ify.

Based upon the underlying geometry bB63°), we can form an incidence vector
h; = (hio, R, hiN-1), (2.31)

whereh; ; indicates that a ling is incident on thej-th point in eq. (2.30). By collecting all of the

incident vectorsd,;,i = 0,..., N — 1, we can form a parity check matrBl. More generally, if we
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use the incident vectors ofi(4 1)-flats,u > 0, it is called a {i, s)-th order EG code of lengt?™s.
An interesting property in this structure is that, if we remove the origin and a# [assing through
it, the H-matrix becomes circulant. Thus, the corresponding code becomes cyclic.

If we chooseu = 0, the number of 1's in any two rows is either 0 or 1, which prevents 4-cycles
in the parity check matrix. By choosing > 2 ands > 2, the density of 1's in the codes can be
lowered. Such codes are calledbag)-th order cyclic LDPC code of lengtt?* — 1, and known to

have the following properties:

N = 2m 1, (2.32)
(m—1)s __ ms
_ @ HE™-1) (2.33)
25 —1
» oms _ 1
ko= 2 (2.35)

For the special case of = 2, the minimum Hamming distancg, is exactlyj + 1, while dmin
is lower bounded by + 1 in general for regular LDPC codes with giréror greater. Furthermore,

wheny = m — 2, the number of information bit& is given by

K= oms (m + 1>S. (2.36)

m
The class of finite-geometry LDPC codes encompass a relatively largeemarhbodes corre-
sponding to the parametens, s andy, and they are known to give reasonably good or very good
performance [3,4]. Also, there are methods to extend or shorten exfstitgtgeometry codes
to generate new parity check matrices using the techniques known as caluow splitting [4].
Some of the long extended codes have been shown to perform within arféhs t# decibel away
from the Shannon limit. The performance comparison of (0,s)-th cyclic BB codes of length

225 _ 1 with CPA-structured codes will be provided in Section 5.5.
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Figure 2.8: Example: A 6-cycle on the compact Tanner graphSanmhtrix

2.4.3 Finding the girth of CPA-Structured Codes

We can use a compact representation for the parity check matrix of thes@@iR&ured codes in
eg. (2.6) by using av. x N, matrix that contains the powers @f. This matrix will be denoted
asS-matrix. Since the pseudorandom generation of CPA-structured codssastially a computer
search for high girth codes, it relies on a fast method for finding girtichvivorks on theS-
matrix. Fan showed in [9] that, for an array structure with (not necigganculant) permutation
submatrices, the girth can be found by examining the produdigfsubmatrices along a given
cycle in the block matrix form oH, and for circular permutation submatrices, by checking the sum
of the entries in th&-matrix along a cycle in th8-matrix.

We will show by an example how the girth can be found in a GRA(V,, P)-structured code. In
the Tanner grapty, the check nodes are divided im check partitiong; = (¢;p, ¢ip+1, .-, Cip+pP—-1),
i=0,...,N.—1, andthe bit nodes are divided in¥, partitionsB; = (bjp,b;p+1,--.,bjp+pr-1),
j=0,...,N, — 1. We can visualize the connections between partitions using a compact Tanne
graphG’ in Figure 2.8a. InG’, each bit (check) supernode corresponds to a bit (check) partition,
and an edge between a check supernode and a bit supernGdecipresents® edges inGG. For a

bit nodeb in B;, denote the index of the bit nodewithin B; asi(b). Likewise, the index o in
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C; is denoted ag(c). Then, the indices df andc are related by the following formulae:

p(e) = 9 (b) + Sij; (2.37)

P(b) = ¥(c) — Sij, (2.38)

where the operations ‘+’ and ‘-’ are defined as modil@ddition and subtraction, respectively.
Now, consider a cycle of lengthin G’, traversing the dotted line in Figure 2.8a, which visits

the partitions in the following sequence :
Bo — Co — B3 — CQ — BQ — Cl — Bo. (239)

If we arbitrarily choose a bit nodgg, in By and follow the partition sequence in eq. (2.39), the
6-cycle inG’ maps to a path of lengthin G, going through exactly one node in each partition. If

we label the nodes dg), (1), - - -, bs) in the order in the path, we obtain the following path:
bo) = ¢y = b2y = ¢3) = by = ¢5) = be)- (2.40)

This path is a cycle irG if and only if (b)) = (b)) This condition can be checked by

calculatingy (b(6)) using the formulae in eq. (2.37) and (2.38), i.e.,

V(b)) = ¥ (b(0)) + s00 — S03 + S23 — S22 + S12 — S10-

Accordingly, the path in eq. (2.40) is a cycleGhif and only if the cumulative shift valu&g is O,
ie.,

Ag = 500 — 503 + 523 — S22 + S12 — 510 = 0. (2.41)

Thus, the existence of a cycle of lengthn G can be determined by examining all cycles of
lengthg in G’ (or equivalently examining all cycles of lengghin S-matrix composed of alternating
horizontal and vertical edges), and checking the condition in eq. (2.41)

Tanner showed that an array structure wNh = j > 2 and N, = k£ > 3 with a group of
submatrices homomorphic to a cyclic group cannot have a girth larger thfr2]. Consider the

12-cycle shown in Figure 2.9 which involvésshift values(a, b, c,d, e, f). The corresponding
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Figure 2.9: A cycle of length 12 iB-matrix

cumulative shift value is
a—b+e—f+c—a+d—e+b—c+f—d=0, (2.42)

which evaluates to O regardless of the actual value&df, ..., f). This shows that, for a CPA
structure withN, = j > 2 and N, = k > 3, the maximum girth isl2, which arises from the

commutativity of the shift values under modutbadditions.

2.4.4 Extension to the GPA Structure

One natural generalization of the CPA structure is to allow a more genérmil germutations
as the submatrices of the array-structured parity check matrix. We begiansjdering the case
in which the submatriceH;; in eq. (2.5) can be any permutation matrices, and describe how the
girth-finding problem can be simplified by choosing a particular kind of péatian.

Arbitrary permutations:  Using the example in Figure 2.8a, consider a cycle of lefgth
the compact Tanner graph’. By the first edge connecting, and Cy, the bit nodes inB, are
connected to the check noded(i by the permutatiolg. Denote theP nodes inBy as vectob

and theP nodes inCy as vector, i.e.,
c=[co,c1,...,cp1]"yb = [bo, by, ..., bp_1]", (2.43)

wherec,,(b,,) indicates thenth(nth) node in partitionCy(By). If we use the notation,, = b, to

denote the existence of a path frémto ¢, along the chosen cycle i@@’, the connection from the
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bit nodes inB, to the check nodes iy can be collectively represented as
c=Hoy-b. (2.44)
Similarly, to represent the connection fraify to B3, we can use the following equation.
b=Hg} c. (2.45)

After traversing all of the edges along the dotted line in Figure 2.8a, we dtitaicumulative

permutationA i as the following:
AH =Hjj-Hyy-Hy -Hyg-Hyy - Hog (2.46)

If any of the P diagonal elements iH is 1, there is a closed path @& that corresponds to the
cycle inG'. Therefore, in general, cycle detection involves multiplication®of P matrices.

Permutations from regular representations:

Consider a groug- p of size P defined over multiplication. If we choose an ordering of the
elements of5p, i.e.,R = (g1,...,9p), thenforany € G, gR = (g9g1, - - -, ggp) is a permutation
of R. This can be shown by the group property as followsy Rfis not a permutation oR, there
are at least two distinct elementsandg; satisfyinggg; = gg;. By premultiplying both sides with
g~! we getg; = g;, which violates the assumption.

Now, we can define & x P permutation matrixs(g) which is determined by the permutation

incurred bygR, i.e.,
(gglag927 cee 7ggP)T = ¢(g)(glvg27 v 7gP)T' (247)

The set of all possible(g)’s gives a group of permutations

¢(Gp) ={¢(9) : g € Gp}. (2.48)

The mappings(g) from G to ¢(G) preserves the group structure by group isomorphism. Hence,
the operation on the elements®(fG p) can be replaced by the operation on the elementsof

The representation(g) is calledregular representationn group theory, and it has a well-
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known property that)(g) has a fixed point if and only if = 1. This implies that the product of
the permutation matrices chosen fr@iz,) cannot have a nonzero diagonal entry unless it is an
identity matrix. This can be shown by the following. Suppose there is a nouiiggonal entry;;

in ¢(g), whereg is not an identity. From eq. (2.47), this means that= g;. This contradicts the
assumption thag is not an identity.

Using this property, if we use the elements of theas the entries in thg-matrix, the existence
of a cycle in the Tanner graph of the correspondiignatrix can be detected by checking if the
product of the group elements in tBematrix along a cycle is an identity. The idea for this simplified
checking was initially given in [9].

By using the regular representations of a group to form the parity chettknvee can construct
a new class of array-structured LDPC codes, which we will call graenonptation array (GPA)
structured codes. It can be noticed that the CPA-structured code i$yraespecial case of GPA
where we choose a cyclic group of siZeas the underlying group. However, we will use GPA to
denote the permutation matrices based on non-cyclic group for the rest ibfethis.

One direct benefit of GPA over CPA is that, by choosing a hon-commuibeg,the limitation
of girth 12 does not apply. Thus, it is expected to achieve a higher gitth.GPA structure is not
guasi-cyclic, thus it is more “random” than the CPA-structured codes tiéhd would be possible
to devise an efficient encoding algorithm or a efficient hardware dgar@hitecture remains to be

seen and entirely dependent on the underlying group structure.

2.5 A NONPARAMETRICTEST

In Chapter 5, we discuss the effect of diameter on the performancesniove the artifact of
explicit efforts to generate codes with large diameters, we use a large nofmtedes uniformly
sampled from the code space of CPA-structured codes. From thevatises made on the error
performance of codes with different diameters, statistical significancéowitlalculated based on

nonparametric hypothesis testing. In this section, we introduce the statistitsattiat will be used
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in Chapter 5.

2.5.1 Ranking Statistics

For hypothesis testing or estimation problems using samples obtained fronkiaowmdis-
tribution or multiple distributions, it is often necessary to rely on distributioe-Btatistics whose
distribution remains unchanged over the underlying distribution of the randwiables being as-
sessed. One of common techniques to construct distribution-free statistiesranking of sample
observations. We will briefly discuss the basic properties of ranks.

Let X = (Xy,..., Xn) denote the vector of random samples, each independently drawn from
the same but unknown continuous distribution with cumulative distribution fumdiior). Let
R = (Ry, ..., Ry) be the vector of the ranks of, i.e., R; denotes the rank of; in X. ThenR

takes any one of all possible permutationgof. . . , V) with equal probability, i.e.,
P(R=r)=P(Ry=r1,...,Ry,=7nNn), (2.49)

wherer = (r1,...,ry) is any permutation ofl, ..., N). With the continuity assumption oK,
we can disregard the possibility of obtaining a tie in the ranks. From this pyoipeeq. (2.49), it

follow that

Y re{l,...,N
PR =r)=4 " { I (2.50)
0, otherwise

and fori # j,

m, r,se{l,..., N}, r#s

P(RL =T, Rj = S) = (2.51)

0, otherwise

From eq. (2.50) and (2.51), the mean, variance and covariance 40 &3

N
E[R;] = ZrP(Ri:r)
r=1

N +1
2 )
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Var[R;] = E[R?] — E[R;)?

and fori # j,

CO’U[RZ‘,R]‘] = E[Rz’Rj]_E[Ri]2

B rs (N 41)2
“ggNw1f 4
 N+1

12

A test statisticI’ (R(X)), which is dependent upal only throughR, has a distribution indepen-

dent of the distribution ofX, and is called a rank statistic.

2.5.2 Mann-Whitney-Wilcoxon Test

We show the use of the rank statistic in a distribution-free hypothesis tasiefowo-sample lo-
cation problem. Suppose you have two vectors of independent raradoples X = (X1, ..., X;)
andY = (Y1,...,Y,), drawn from continuous distributions with distribution functiofiéz) and
F(x — 6), respectively, that is, two identical distribution functions with an unknokifi sf 6. We

want to test the hypothesis that the two sample vectors come from the samautigsiribe.,

We combineX andY to form the vectot = (X;,..., X, Y1,...,Y,) oflengthN = m+n. Let
Q= (Q1,...,Qmn)andR = (Ry,..., ;) denote the ranks of /s andY’s in the combined vector
Z, respectively. Under the null hypothegfg, the combined rank vectd@), . .., Q.,, R1, ..., Ry)
follows the properties in the previous section.

Now, we construct a test statistic based upon the ranks. We considentha the ranks of;’s
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in R, calledranksumi.e.,

which was proposed by Wilcoxon [33]. We can also use an equivaiatigtic suggested by Mann

and Whitney [34], which is given by

U = Y > Iy;- X))
i=1 j=1
_ W n(n + 1)’
2
wherel(t) is the step function defined as
1, t>0
I(t) =
0, t<O0.

SinceU differs from W only by a constant, we choose to ugefor the discussion.

Under the null hypothesisH, : # = 0), the discrete random variabl& has the following

distribution.
tN(,,;v()w)’ w— n(nz—&-l)7 n(nQ—‘,—l) 1., n(N—;n+1)
P(W =w|Hy) =
0, otherwise
wherety ,(w) is the number of unordered subsetsrohumbers taken frord1,..., N} whose

sum isw. This indicates that the ranksuW is distribution-free under the null hypothesis for the
unknown distribution'(x). The value oft v ,(w) can be found by enumerating zﬂj{) combina-
tions and counting those that sumu# and the values are tabulated @r < 20 in the literature
(see [35)).

It is also known that, undefly, the mean o#V is

n(n+m+1)

EW|H,] = "

(2.52)

and

1
Var[W|Ho] = 7" J{Qm 1 (2.53)
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Using eq. (2.52), the null mean and null variancé/ofan be calculated as the following:

B[U|H] = B ) - "D (2.54)
VarlU|Ho| = Var[W|H| = m”(m;;" +1) (2.55)

For larger values ofV, a Gaussian approximation is known to provide accurate resultd/i.e.,
follows the normal distribution with the mean and variance in eq. (2.54) an@ &%), respectively.
Given a data point. calculated from the observatioki andY’, we can compute the probability of

observing a value df/ that is at least as extreme asi.e.,

pPW>unQ<u%n), (2.56)

mn(m+n+1)
12

whereQ(z) = [ \/%e—ﬁﬂ dz.

The probabilityp in eq. (2.56) is calleg@-valug and used as an indicator of the statistical signif-
icance of the observed data under the null hypothesis. A small valuenakes the null hypothesis
unlikely. Usually it is compared with a predefined significance leyehnd the null hypothesis is
rejected ifp is smaller or equal tex. In other words, the null hypothesis is rejected if the observed
value ofU is greater than equal to the threshalgd«), which is defined as the upp&d0a-th per-
centile point in the distribution o/, i.e., P (U > ug(«)|Hp) = a. Thus, the significance levelis
the probability of falsely rejecting the null hypothesis when it is true.

This test is called Mann-Whitney U test, Mann-Whitney-Wilcoxon test or Witcoranksum

test. The form op in eq. (2.56) is for one-sided test. The modification for two-sided test ightra

forward. To test the hypothesis

H(): =0

Hi: 6>0 or 6<0,

thep-value is calculated by considering both tails of the Gaussian distribution, isthd value of
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p that satisfies
P
P(U > u|Hy) = 3 (2.57)

for a given observed data point



CHAPTER3

ANALYSIS OF QC-LDPCcODES GIRTH AND
DIAMETER

Girth and diameter are important graph parameters that can potentially theperformance of
LDPC codes [12,18] In Chapter 5, we will explore the effect of the twwoameters on LDPC
code performance. In general, the problem of finding cycles up to lepdtias complexity of
O (N(jk)9/%), where;j andk are the column and row weights, respectively, ahi the codeword
length. The problem of finding the diameter has complexitpoN?). Thus, it can be too time-
consuming to calculate girth and diameter even for moderately long code® € N < 10000).
However, for structured codes, we can expect to find much more effigigorithms to calculate
girth and diameter, if the underlying structure is properly exploited.

In Section 2.4.3, we have shown that, for CPA-structured codes, it silpedo efficiently
find the girth by examining cycles in tH&matrix, which is a very compact representation of the
correspondingI-matrix. This algorithm has a runtime 6f (N,,(jk)9/2), thus reducing the number
of operations by a factor aP. This is helpful for CPA-structured codes where the girth is limited
by 12 andj andk are typically small constants. However, this method can be too costly fof-CPA
structured codes which may have larger girth.

In this section, we will introduce two new algorithms for general QC-LDP@eso a girth-
finding algorithm with runtime ofO(jN,Ng) and a diameter-finding algorithm with a runtime

of O ((Ny + N.)?P?). These algorithms can also be used for any subclass of QC-LDPC, codes

36
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(a) TheH-matrix (b) The corresponding extend8dmatrix

Figure 3.1: An example of QC(2,4,8) LDPC code

including CPA and CPaAstructured codes. We will begin with a discussion of QC-LDPC code

representation and then provide the details of the algorithms.

3.1 QC-LDPC ®DE REPRESENTATION

In Chapter 1, we introduced thH&-matrix representation for the CPA-structured LDPC codes.
It cannot be used for QC-LDPC codes since there can be more that'oimeeach column (or
row) in the P x P submatrices of the parity check matrix. For a given QC-LDPC code, thiy par
check matrixH can be put into an array form, i.e., an arrayfof< P circulant submatrice$l; ;,
i1=20,...,N.—1,7=0,..., N, — 1. Due to the property of circulant matrices, each submatrix
is either the sum of one or more circulant permutation matricesfraP all-zero matrix. With
a slight abuse of th&-matrix representation, the parity check matrix can be represented in the
extended-matrix form, in which multiple shift values can be specified in each entry. xamele,
a QC-LDPC code withV,. = 2, N, = 4 and P = 8 and the corresponding extendg&dnatrix are

shown in Figure 3.1a and 3.1b, respectively.

3.2 HNDING GIRTH

The array structure of a QC-LDPC code provides natural partitionirtgeobit nodes intav,

partitions and the check nodes im@ partitions. Consider a compact Tanner graph consisting of
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Ny, bit nodes andV, check nodes where thieth (j-th) bit (check) supernode in this compact graph
represents” bit (check) nodes in the original Tanner graph. Then, for each ohtmnegative
element in the extende®-matrix, there is an edge in the compact Tanner graph. First, we denote
the nonnegative shift values in the extenddatrix ass;, &k = 0,...N; — 1, where N is the

total number of nonnegative shift values in the exten8edatrix, and the edge corresponding to

s, aseg. If there is a cycle of length in the Tanner graph, there is a sequence of shift values
{s01)-- -+ 5(n)} Inthe corresponding cycle on the compact Tanner graph that satisfifedlteéng
condition:

S(1) —S8@) T~ Sm) mod P =0,. (3.2)

Now, consider the sek of all possible remainder polynomials of order less tiaover integer
Z,i.e.,

R={co+erX+--+cp 1 X' e, € 2L (3.2)

Now, we define the addition and multiplication using the mad-=(— 1) arithmetic as follows:

g(X) @ h(X) = g(X)+ h(X) mod (X —1);

9(X) * h(X) = g(X)h(X) mod (X* —1),

wherea(X) mod b(X) indicates the remainder of the polynomial divisioru¢ ) by b(X).

The set and the operatdiB, @, *) form aring. The subset ok, {1, X, X2, ..., X~1} forms
a cyclic group of size”? under multiplication ', and thus isomorphic to the additive groSpof all
possible shift values. If we map a shift vala¢o the elemeniX® in R, the condition in eq. (3.1) is
equivalent to

X510 . X752 .. ... X 5m =1,. (3.3)

The problem of finding a cycle of lengihin the original Tanner graph is equivalent to finding
a cycle in the compact Tanner graph that satisfies the condition in eq. [&i8)can be efficiently
done by simulating the message passing in the compact Tanner graph tkasimutar to the sum-

product algorithm. In this method, we regard the compact Tanner graplciasuit, where each
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edgee;, has a storage element called messggeX ) and a gairGy(X) = X*+. An edge is in fact
bidirectional, so we will use the notatiox, (X ) andGx(X) when messages flow from bit nodes
to check nodes, and use the alternative notaipiX ) andG(X) = X~ when messages flow
from check nodes to bit nodes. The messages are represented lastbete ofR, and they can be
added and multiplied according to the mad{{ — 1) rule.

The algorithm runs by propagating messages along the edges in the corapaet graph,
starting with an outgoing message from a chosen bit r@d&/hen multiple edgege; , eo, .., e, }
are incident on a node, the messaggthroughe,,, is computed as the sum of the incoming message
in all of the incident edges excepf,, multiplied by the gairnG,,,(X). In this way, multiple paths
with the same cumulative shift values are merged.

When the message passing algorithm is running, a mesgagde at timet takes the following
general form

P—-1
Me(X) =) a X7, (3.4)
=0

where X* denotes the product of gains that a message has gone through froregiheibg of

simulation up to timet, anda; denotes the number of messages with a cumulative gaili; of
In this way, not only the girth but also the cycle distribution in the compact dagraph can be
obtained.

At time ¢, whent is even, the messages coming back to the starting hedee summed up,
and the coefficient of th&® term in the sum is examined. This coefficient indicates the number of
cycles of length involving the nodeéx that satisfies the condition in eq. (3.3). If the first occurrence
of a nonzero coefficient ak® occurs at time, it is the shortest of the all cycles that contalrs
i.e., the node girth ob«. If the algorithm runs up te = ¢ for the starting nodé=x, the coefficient
apfort =0,1,...,gis the distribution of cycles for the node. If the algorithm runs for the girth
detection only, it can be stopped at the fist occurrence of the nongeFer the girth of the whole
graph, this algorithm should run for all starting nodesi = 0, .., N,. The minimum of the node

girths is the girth of the graph.
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To make a valid cycle, the message coming out of the edg@ot allowed to go into the same
edgee. As a result, the message passing algorithm is very similar to the sum-prdgloritian. We
will use the notatiore to denote an edge index, afdb) (£(c)) to denote the indices of the edges

incident to bit (check) node (c). We describe the details of the algorithm below.
e Initialization: At time ¢ = 0, for the starting nodéx,

Ve € E(bx), Ae(X) = Ge(X). (3.5)

e Bit node operationAttimet = 2,4, ..., for each bit nodé,
First, compute the su_ .., A (X) and check the coefficient ot”. If nonzero, stop
here for girth only. Continue for cycle distribution.
Ve € £(0), Ae(X) = Ge(X) > Ae(X) (3.6)
e'eE(b)\e
e Check node operatiomttimet = 1,3,5, ..., for each check node
Ve € £(c), Ae(X) = Ge(X) D Ae(X). (3.7)
e'e€(e)\e
Now we compute the runtime of this algorithm, assuming a regular code. Duridgtthede
iteration, since there ar®), nodes with degree up tg j N, polynomial additions are necessary,
resulting inj N, P operations to be performed. Since there g¥g edges; N, multiplications with
a single-term gainX ¢ are performed, again resulting jiiV, P operations. Thus, the number of
operations in a single time stepagN,P. With jN, = kN,, the same number of operations are
required in the check node iteration. Since the algorithm rung fterations for each of thév,
starting bit nodes, the runtime for the detection of girths upitO(j N2 Pg) or O(j NN g), which

is linear in both girth and column weight.
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3.3 HNDING DIAMETER

Another important combinatorial property of an LDPC coddi@meter which is defined as the
maximum, over all pairs of nodes, of the length of the shortest path between ththe diameter
is large compared to the girth, it is conjectured to adversely affect therpghce since potentially
useful statistically independent messages will be blurred before thpggate to the neighbor node
by the dependent messages passing around the short cycles [12].

To determine the diameter of a given graph, we need to find the minimum distatveedn all
pairs of nodes. A straight-forward way to do this is to use the Floyd-Vedir@RAW) algorithm with
a runtime ofTheta(N?3), whereN is the number of the nodes. To apply the FW algorithm to the
Tanner graph, we first relabel the nodes in the Tanner graph su¢héhadices0, 1, ..., PN,—1}
denote the bit nodes and the indidd3N,, PN, + 1, ..., P(N,+ N.) — 1} denote the check nodes.

Then theN x N cost matrixC' can be initialized as follows:

0, ifi=yj

N , if PNy <i<P(Ny+N,),0<j< PN, andH[i — PN;][j] = 1
Clills] = :
1, if0<i< PNy, PNy, <j<P(Ny+ N.),andH[j — PNy|[i] =1

oo, otherwise

whereN = P(N, + N,) for CPA structure.

An example of a parity check matrix and the corresponding cost matrix isrshmoRigure 3.2.
In Figure 3.2a, a gray square indicates ‘1’ and white area indicatelfORigure 3.2b, a gray square
indicates ‘1’, a white square indicates ‘0’, and the remaining white arefillagbwith —oc. Note
that the initialC matrix is symmetric since the Tanner graph is undirected. It is also an array of
circulant matrices, but it is not circulant as a whole.

Now, the FW algorithm can be implemented by the simple triple loop structure writteatiai

in Figure 3.3 [36]. Although there exists a faster implementation of the algoritatgives a speed-
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(a) Parity check matrifl (b) Cost matrixC

Figure 3.2: A parity check matrix and the corresponding cost matrix.

/1 standard FWal gorithm
function FWC, N
for k=1:N
for i=1:N
for j=1:N
Aillil = mn(qilli], qil[KI+CKI[i]);

Figure 3.3: Standard FW algorithm.

up of up to 10 times with adaptive software techniques utilizing cache blodkiog,unrolling and
vectorization [37], it is still too slow to be used for finding codes with lengthgractical concern
(1000 to 10000). However, by exploiting the structure inEhenatrix, we developed a fast all-pairs
shortest path algorithm that can be used when the weight matrix is an drcagwant matrices.
With this algorithm, we can reduce the number of computatios({aV, +N.)> P?), which is faster
than the original algorithm by a factor &f. The initial step of the new algorithm is the application
of the tiled FW algorithm developed in [38, 39]. We will give a description & #figorithm with
some details omitted.

We begin by defining a generalized version of FW as in Figure 3.4, whichimteoduced

in [39]. Itis clear that FWG(, C, C, N) is the same as FW[, N). However, the FWG can take
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/1 generalized FWal gorithm
function FW A, B, C, N)
for k=1:N
for i=1:N
for j=1:N
Cillil = mn(Cil[i]l, ALIT[KI+BIKI[j]);

Figure 3.4: Generalized FW algorithm.

different input matrices, and is used as a subroutine in the tiled versiow&Hewn in Figure 3.5.

/1 tiled FWal gorithm (FWI)
/] tile size: P x P
function FWI(C, N, P)

/1 Cij: P x P submatrix (i,j) of C i.e.,
/1 (i-1)*Pi*P-1][(j-21)*P:j*P-1];
M= NP,
for k=0:1: M1

// Phase 1

FWE C kk, C kk, C kk, P);

// Phase 2

for i=0:1: M1, i!=k

FWE C ik, CKkk, Cik, P);
/'l Phase 3

for j=0:1: M1, j!=k
FWE C kk, CKkj, Ckj, P);
/] Phase 4
for i=0:1: M1, i!=k
for j=0:1: M1, jl=k
FWEC ik, Ckj, Cij, P);

Figure 3.5: Tiled FW algorithm.R divides N.)

In [38, 39], it was proved that the FWT( N, P) generates the same result as BMY). The
FWT was originally developed for blocking a large weight matrix for bettehegperformance, but
we use it for a different purpose. First, we apply the FWT to the weightixnaithis blocking
decomposes the original problem into a sequence of subproblems wieergptli matrices are
circulant. We can show that, for FWG, if all inputs are circulant, the outpus@s@rculant. Since
each submatrix Gj in Figure 3.5 is circulant before and after the execution of FWG, we need
store only the first row of each submatrix, which reduces the storagéeewent by a factor oP,
from N2 to PN.N,. For the phase 1, since the FWG takes three identical matridés i€can be
replaced with the modified Dijkstra’s algorithm shown in Figure 3.6, which cdegothe shortest
distance from the first source node to all destination nodes, i.e., theofirstfrthe FWG result.

For phase 2, when the second input matrix is different from the other weocan apply

DIJK_CBC, a slightly different version of Dijkstra’s algorithm, shown in Figure. ®#ariation of
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function DIJK CCC(c, P)
/1 c: P x 1 vector where

I c[i] denotes the distance fromnode c¢c_0 to node c_i
/'l W set of permanently | abel ed nodes
W= {0};
for i=1:1:P-1
x = argmin c[j] for all j not in W
Add x to W
for all j not in W

c[il = MN(Cc[j], c[x] + c[(j-x+P)%P]);
Figure 3.6: Modified Dijkstra’s algorithm for phase 1.
Dijkstra’s algorithm for phase 3 can be similarly derived (not shown).

function DIJK CBC(b, ¢, P)
/1l b: P x 1 vector where

/1 b[i] denotes the distance fromnode b_0 to node b_i
/1l c¢c: P x 1 vector where
/1 c[i] denotes the distance fromnode c_0 to node b_i
/'l W set of permanently |abel ed nodes
W= {};
for i=0:1:P-1

x = argmin c[j] for all j not in W

Add x to W

for all j not in W

c[jil = MN(c[j], c[x] + b[(j-x+P)%P]);
Figure 3.7: Modified Dijkstra’s algorithm for phase 2.

Finally, for phase 4 where all input matrices are different, we can appliK [ABC shown in

Figure 3.6.

function DIJK _ABC(a, b, c, P)
/1 a: P x 1 vector where
I a[i] denotes the distance fromnode a_0 to node c_i
/1 b: P x 1 vector where
/1 b[i] denotes the distance fromnode c_0 to node b_i
/1 c: P x 1 vector where
/1 c[i] denotes the distance fromnode a_0 to node b_i
/1l W set of permanently |abel ed nodes
for i=0:1:P-1
for j=0:1:P-1
clil] = MN(c[j]., a[i] + b[(j-i+P)%]);

Figure 3.8: Modified Dijkstra’s algorithm for phase 4.

By replacing the FWG subroutines in Figure 3.5 by the corresponding Gijketrtines, we

have derived a fast all-pairs shortest path algorithm for a circulaay-areight matrix.
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3.4 CPA (ONSTRUCTION WITH GIRTH AND DIAMETER

We showed that, for CPA-structured codes, the girth can be founddayiaing cycles in the
shift matrixS, and the diameter can be found by running a modified Dijkstra’s algorithm. ¥de-in
porated a diameter constraint into the pseudorandom generation algoasiet dn girth proposed

in [15]. We briefly describe the algorithm for a CPA structure without atbzeatrices as follows:

1. Initialize the first row and the first column of ti8matrix as 0 without loss of generality

(since every CPA-structured matrix can be converted to this form with rmcalumn per-

mutations).

2. Set one of the empt§ entries to a randomly generated numbdrom 0 to P — 1. Record

this number.
3. Check the girth and diameter. If there is no violation, repeat step 2.

4. If the girth or diameter constraint has been violated, try a diffesaratiue. If a predefined

limit has been reached, empty the curr8aimatrix entry and backtrack to the previously

determineds-matrix entry by repeating step 2.

With this simple algorithm, we could generate several codes with the same caaegpers but

with different girths and diameters. The performance of the generatbebanill be discussed in

Chapter 5.



CHAPTER4

LDPC DECODERIMPLEMENTATION

4.1 INTRODUCTION

While the powerful error correction capability of the LDPC codes hawudra lot of research
interests in the aspect of code performance, the availability of the highillg@arable decoding
algorithm has brought as much interest to the design of efficient haedm@tementation. Besides
the use of the decoding hardware for the deployment in practical systewthier important usage
is to evaluate a given code, usually as part of the design process.

Although there exists an approximate analytical method called density evolutpedet the
performance of LDPC code with iterative decoding algorithm, it has to rebhemssumption that
the codeword length tends to infinity to make the graph essentially cycleZd@6]. Also, the
analytical methods for predicting the waterfall-region performance of flaitgth codes in [27] do
not consider the error floor. With no analytical methods known to existdd@atpredict the error
performance of a given finite-length LDPC code with finite-precision dempalgorithm, the per-
formance evaluation is often carried out by resorting to Monte-Carlo simulafiocordingly, the
primary goal of a hardware-based implementation for evaluation puro#es ability to evaluate
a given code at much higher speed than is reachable by software $iaséation, which would be
critical to exploring the performance in a very low BER regime or for evalgatidarge number
of codes for design purposes. In addition, the decoder architectisebadilexible with respect to

code parameters so as to evaluate a large class of codes.
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The execution of the sum-product algorithm involves the generation of isages and check
messages in multiple iterations. Each iteration consists of two steps: bit noddiopend check
node operation. For the bit node operation, the outgoing bit messageséch bit node are com-
puted from the incoming check messages. Similarly, the check node opdsatibnompute out-
going check messages from each check node. The number of bitak wlessages to be produced
and consumed in each iteration is the same as the number of 1's in the parkywdieix. The mes-
sages in a given iteration are computed from the messages in the previatientexhich makes it
possible to choose any order of processing within the same iteration wittiectid the result.

The parallelism in the sum-product algorithm is inherently favorable to henelwnplemen-
tation. Using multiple computation units working in parallel, the hardware implemensatich
medium-capacity FPGAs are often faster than software simulation usingadigepose CPUs by
at least one or two orders of magnitude. While a higher degree of pamallieicseases the through-
put of the decoder, it also incurs a larger overhead for the interctiondoetween memaory elements
and computation units. For example, the highest degree of parallelism ahimeed by a fully
parallel architecture in which all of the messages are processed ahibdisae; however, it results
in a very costly implementation in terms of the routing and storage resourceotfieeextreme,
a fully serial architecture in which one message is processed at a time, isqusbw for practi-
cal purposes. Accordingly, most practical implementations employ a parteiiel architecture,
where the degree of parallelism and the scheduling of the computation @serclfor a proper
performance-resource tradeoff.

In general, for structured LDPC codes, the interconnection problemeirdéitoders can be
greatly simplified if the bus connections are designed to match the structure cbdle. Accord-
ingly, the fastest decoders tend to put more restrictions on the structtihe supported codes.
However, for certain applications such as wireless communication, thepewdmeters should be
flexible to adapt to varying channel conditions.

In this section, we propose a hardware decoder for array-stractlb®C codes. The decoder

has been designed for scalability in terms of the computational power aresthéce usage, that is,
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major architectural parameters such as the number of computational unitanther and the depth
of the memory blocks can be set by the user before the synthesis. The#edural parameters can
be chosen independently from the code parameters unlike other thrdtayignted architectures
in which the two sets of parameters are closely coupled. In fact, in ouopeaparchitecture, the

actual code parameters can be changed on the fly while the decodemirsgrun

4.2 DECODERARCHITECTURES INLITERATURE

A fully parallel architecture can achieve the highest throughput by mgpmach bit and check
node in the Tanner graph to a separate computation unit and processofgtadl data that are
involved in an iteration in parallel. This type of architecture can be seen [nyAre the decoder
has been implemented in 0.16n CMOS process. Besides the high implementation cost, this
architecture has bus connections that are directly associated with acspeddistructure, making it
very difficult to support a set of different codes. On the other hang software-based decoder can
be regarded as a fully serial architecture. Since the parallelism is pddized in this architecture,
the performance is limited by the clock frequency of the processor in thersywhich is often too
slow even with the fastest processors available. However, since omgyamall number of data
need to be fetched from and written back to memory, there is no memory camélldem and the
scheduling of operations is trivial.

Between these two extremes lies the category of partially parallel architecivrere a reason-
ably small number of data are processed at a time and the computation unéssed over time.
In order to fully utilize the potential throughput provided by a large numbeoofiputation units,
the data to be processed should be accessible at the same time, whichsréguidata involved
to be stored in separate memory blocks. While small memory elements can be impkmithte
flipflops, they are far less efficient than memory blocks in storing a largeiatad data. For VLSI
design, it is desirable to have a smaller number of larger memory blocks silacgea memory

is more efficient in terms of the area per bit. For FPGAs, there is a limited nunilokerdacated
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Figure 4.1: CPA(3,4,4) code and the corresponding memory architecture

memory blocks called block RAMs that can be simultaneously accessedrdiugly, a main goal
in FPGA architectural design is to maximize the utilization of the computation units widpikg
the number of memory blocks reasonably low.

For array-structured codes, a majority of the decoders employ bugcioms and operation
scheduling that match the array structure of the parity check matrix. In tbistecture, (V. x
Np) memory blocks are used foM, NV, P)-structured CPA codes. The data buses are connected
horizontally and vertically to provide memory accessMpcheck computation units (CCUs) and
Ny bit computation units (BCUs). For example, Figure 4.1 shows the memory ancindefor
CPA(3,4,4), where the messages corresponding to a submati)xirf Figure 4.1a is stored in a
single memory blockl/;; in Figure 4.1b. Sun used a similar memory architecture in [41] where
multiple memory blocks were used for each submatrix to support a more ¢efesss of array-
structured LDPC codes, where each submatrix can be any regular fifernu column weight)
matrix .

The degree of parallelism can be multiplied by a factog by usings - N. CCUs ands - N,
BCUs. While this normally requires memory blocks for each submatrix, the number of memory
blocks need not increase if multiple messages are stored in a single memoegsadth [32],

s = 16 is implemented by puttin§ messages in each memory address and utilizing the two ports

of the Xilinx dual-port block RAMs. However, this technique also puts @oserlimit in the code
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structure. To guarantee that as)2 messages in a single access are in the same memory address, it
is required that the shift values infSamatrix are multiples of /2.

With an array-style memory architecture as described above, the opdaar@hch check or bit
computation can be accessed in a single cycle since the operands belifegdatdinemory blocks.
To utilize this memory bandwidth, a BCU (or CCU) is usually designed as a multaogdeadder
that can process all of the messages in the same column (or row) in a siogletdgwever, as the
number of operands increases, the long combinational path createddudéms may deteriorate the
maximum operating clock frequency. Although there was no such eff§@2j4 1], such designs are
not scalable folH matrices with large column or row weights. Another potential problem of such
designs is that, as the BCU and CCU are individually designed for a diffatenber of operands,
they cannot be time-shared.

Some of the implementations with the array-style memory architecture can be penaetefor
a different CPA structure, that is, they can be synthesized for diftévg, NV, or P. However, due
to the fact that the architecture is closely related with the code structureetioelidg throughput
and the amount of required resource is also determined by the code permri@ese architectures
cannot be flexibly parameterized for a various performance-resdadeoff.

There are another category of implementations with a focus on flexibility. Abfearchitec-
ture based on communication network in [42] can be parameterized forwemliger of processing
elements. The decoder can be also reprogrammed on the fly for anyrgrparédy check matrix
by changing the routing among the processing elements and the memory bimkever, since
it does not utilize the structure of the array structure, there is a largbeagfor the bus connec-
tions. The throughput to area ratio (TAR) of [42] is reported to be lattyem that of code-specific

solutions by an order of magnitude.
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4.3 RECONFIGURABLE AND REPROGRAMMABLE DECODER

In this section, we propose a novel hardware decoder architectueserfy-structured LDPC
codes. While the architecture has been designed to utilize the array stuttsmot very tightly
correlated with the specific code parameters suctNgsN,, p, j, or k. Before synthesis, the
number of computation units can be specified for a target throughput, antkfth of the memory
blocks can be specified for the maximum values of the code parameteraihad supported. This
decoder supports any QC-LDPC code, and the code parameters chartged by software when

the hardware is running.

4.3.1 Decoder Overview

The decoder consists of the input memory to store the input LLR data, cotioputeits to
perform bit/check node operations, the message memory to store the nsesisageitput memory
to store the decoder output, and the error counter. In addition, theredgster block for commu-
nication with an external device. In our FPGA implementation, we use an ermtgutdcessor to
give commands and fetch results through the register block. The ovkraltl iagram is shown in
Figure 4.2.

The pre-synthesis parameters that determine the amount of logic and mesadrfouthe de-

coder are as follows.

e Algorithm: the SP or MS/MMS algorithm

Data precision for message representation (integer part and fraqtizmpl

The parallelization factov” (even)

The maximum possible values fdf., Ny, P, 7, andk

The maximum possible value foP/V] + 1

The maximum possible value for codeword length
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Figure 4.2: Overall block diagram of the decoder

e The maximum possible value for the number of check equatiéns
e The maximum possible value for the number\gf,, where

Npp = max ((largest column weight« Ny, (largest row weights N.)

e The maximum possible value for the number of nonnegative elements in theledi®n

matrix NV
e The depth of each input and output memory blo£ks\/,;
e The depth of each message memory blokka/,
e The maximum number of message bit errors per codeword that can bieeddgn,
e The maximum number of iteratiods;;.,

¢ Total number of intermediate checkpoin¥s, (to see the decoding results at different number

of iterations)
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While the pre-synthesis parameters define a range of code parametetartize supported
by the synthesized hardware, the actual code parameters can bgraemmed by writing to the

register block. The post-synthesis parameters that can be modifiedtaheuare as follows.

e The number of iterations

e Whether to enable early stopping when a valid codeword is found

e Code parameterd,., N, p, j andk

e The shift values for the extend&dmatrix

e The coefficients of the look-up table for ti#&) transform function block (for SP only)
e Scaling factor for the check node output (for MMS algorithm only)

e Alist of intermediate checkpoints

4.3.2 Shared Bit/Check Computation Units

In our proposed decoder, either the SP algorithm or the MS/MMS algorigmmbe chosen
before synthesis.

The computation unit (CU) for the SP algorithm performs additions and céésutheF'(-)
function, which has been implemented by a piecewise linear interpolator #afusok-up table.
For the MS/MMS algorithm, the CU performs additions, minimum operations, althgc In this
section, we describe the design of the computation units for both algorithms.

As mentioned in the previous section, most speed-oriented decodeosnpexfcheck or bit
node operation in a single clock by using multi-operand adders. Since thieemwof operands is
determined by the column and row weight of the code, such an architeaenumetdbe reprogrammed
to support codes with different row/column weights. Also, despite the similaeityeen the bit and
check node operations, the bit computation unit (BCU) and the check d¢atigyuunit (CCU) are
separately designed due to the large difference in the number of opéraoted in bit and check

node operations.
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In the proposed decoder, however, each check or bit node opeiaperformed in a sequential
manner, i.e., one operand is processed at a time. This scheme makes theofl&séggcomputa-
tion units independent from the actual code parameters since any laeggrtwan be supported
by increasing the number of clock cycles for each bit or check nodeatipe. Also, since the
computation unit is not designed for a specific number of operands, isg&hgde to design a shared
bit/check computation unit that works as a BCU during the first half iteratiolheara CCU during
the second half iteration. In the rest of this section, we provide the detaie @@U operation for
each mode.

Sum-product algorithm: A direct implementation of the equations (2.20) and (2.21) would
require twoF'(z) units in each shared CU. These units would be idle for bit node operatiwhs a
also cause longer pipeline depth for the check node operation. Thiepraian be solved by
pre-applying ther’(-) to the bit node output, i.e.,

5‘b—>c = /Lb + Z Ae Hb (41)
' eN(b)\c

and
A = F( @ AH) (42)
beN(c
With this modification, the bit and check node operations are identical efmetbte difference in
the additions.
For the sequential processing, the sum is computed first, and the outgaeggeeas computed
by subtracting each of the incoming message from the sum. The SP algorithime ckescribed as

follows.

e Bit node operationAttimet =0, 2,4, ..., for each bit nodé

I t — 0
step1: A() =4 (4.3)

[y + D cen(n) Ae—b(t — 1), oOtherwise
step2: Ve e N(b), Apoelt) = F(Np(t) — Aep(t — 1)), (4.4)
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where\,(t) is the decoder output for bitif decoding stops at the iteratian
e Check node operatiomttimet =1, 3,5, .. ., for each check node

step 1: Ac(t) = Bpen(e) Mo—elt — 1) (4.5)

step 2: Vb € N(c), Aemb(t) = F(Ae(t) © Aot — 1)), (4.6)
where the operatiom is defined as

a©b = sgn(a)sgn(d)(|al —10]) 4.7)

At step 1 of both bit and check node operations, the incoming messagasammulated in
an accumulator. At step 2, the outgoing message is created by subtradimimeaming message
from the sum. Because the step 2 operations can be performed only aftsiefhl operations
are complete, the incoming messages should not be discarded until theyuseel iin step 2. In
the proposed architecture, the step 1 and 2 are pipelined, and the incormssggee are stored
in a FIFO with depthmax(j, k). The area overhead incurred by the FIFO’s makes the proposed
design less efficient than the array-style memory architecture, but afphe inefficiency can be
amortized by the use of the shared bit/check CU’s and the elimination of mul@ogedders. The
CU for the SP algorithm is shown in Figure 4.3. The adder and the subtgeterm ordinary
signed addition and subtraction, respectively, in BCU mode. When in CClg ntioely perform the
speciakp andS operations defined in equations 2.22 and 4.7, respectively.

MS/MMS algorithm: The bit and check node computations take place in a sequential manner
as was the case with the SP algorithm. While the bit node operation is identicalt tof ttiee
SP algorithm, the check node operation requires a fairly different psotg As can be seen in
eg. (2.24), the magnitude of a check-to-bit message is always one of dhgosgible values: the
smallest and the second smallest, among all of the incoming bit-to-check mes$agdormer is
taken except when the bit-to-check message with the smallest magnitude theekcline sequential

processing for the MS or MMS algorithm can be described as follows.
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Figure 4.3: Computation unit for the SP algorithm

e Bit node operationAttimet =0,2,4, ..., for each bit nodé

’ t - 0
step 1: \p(t) = e (4.8)

I+ D cen(n) Ae—b(t — 1), otherwise
step 2: Ve e N(b), Mp—el(t) = Mp(t) — Aemp(t — 1), 4.9)

where);(t) is the decoder output for bitif decoding stops at the iteratian

e Check node operatiorAttimet =1, 3,5, ..., for each check node

stepl: () = (D No—elt — 1) (4.10)
beN (c)
by = arg bgl\}?c) [ Ap—e(t — 1)] (4.11)
N, (t) = ) Mo—et—1) (4.12)
beEN (c)\bx
step 2: Vb € N(c), (4.13)
Moot — 1 (D)) Ne(B)], b+ by
Mnlt) = asgn(Ap—c(t — 1))sgn(Ac(t)) [Ac(t)], b# (4.14)

asgn(Xp—e(t — 1))sgn(Ac()) [NL(8)], b= by,

whereq is the scaling factor for the MMS algorithm.
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Although the bit node and check node operations seem quite differergh#ined CU for the
MS algorithm can still be implemented using two adders. The two adders, usieel step 1 and
2 for bit mode operation, work as comparators in the step 1 of the check opedation. The first
comparator is used to find the magnitude and the index of the incoming messagkendthallest
magnitude in eqg. (4.10) and (4.11). This can be done sequentially by cioigpplae magnitude of
the incoming message with the previously found minimum and keeping the smallertefdhThe

second smallest magnitude in eq. (4.12) is found by the following operations:

¢ If a new minimum magnitude is found, the previously stored second minimum isesplsy

the new minimum.

e Otherwise, the larger of the two operands of the first comparator is ceshpath the previ-

ously found second minimum and the smaller of the two is stored as a hew seatnim.

Accordingly, the two comparators work at the same time, as opposed to the@ipmanner. For
the magnitude scaling in the MMS algorithm, a multiplier or a third adder should lgk Uibe CU

for MS/MMS algorithm is shown if Figure 4.4.

4.3.3 Memory Assignment and Bus Connection

For a hardware-based LDPC decoder, a high throughput can vediby deploying a large
number of computation units that work simultaneously. For a higher utilizationeotailable
computation units, the memory assignment should ensure that the messagae®tebeed together
are stored in different memory banks so that they can be accessed santieeclock cycle. In
the array-style memory/bus architecture (see Section 4.2), this is accomdpbighmeapping each
submatrix of the parity check matrix to a separate memory block and proceesimgre than one
message in each submatrix. Thus, the number of message that can lsedcbesiltaneously is
j - Ny. Accordingly, the throughput is determined by the code parameters, anarc¢hitecture
cannot be reconfigured at run time to support a different set of pademeters.

In this thesis, we take a different approach for the memory allocation dredisting to provide
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Figure 4.4: Computation unit for the MS/MMS algorithm

a flexible architecture that can support amy. (N, P, j, k) parameters within the maximum limit
imposed by the allocated resource. To design an architecture that is wekdtlyd to the code
parameters, we seek to achieve a high degree of parallelism by praressgiiple messages within
each submatrix of the parity check matrix in parallel, rather than processitigpl@unessages in
the same column or row of the parity check matrix. In this architecture, thedegmparallelism is
determined by the pre-synthesis paramétewhich can be decided solely by the desired decoding
throughput and the amount of resource available but independenttytfr® code parameters. The
number of CUs i§/, and there are also as many message memory (MM) banks. Thus, thevebjecti
of the memory assignment is to assign each message to oneléfittemory banks.

In an iteration of the decoding process for a QC-LDPC cdtle]N; bit-to-check messages and
as many check-to-bit messages are produced and consumed,Mtisttbe number of nonnegative
shift values in the extendestmatrix. The bit and check node computations can be performed in-

place, i.e., the messagas, .., and ., _p,, both of which correspond to the matrix element
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of H, can be stored in the same memory location. Therefore, BnlyNV, memory locations are
needed.

We can use linear indices to denote tNe S-matrix elements, i.e.s,, denotes then-th ele-
ment. Since the”® messages for correspondingd@,m = 0,... N, — 1, are to be stored iV’
memory banks, it would be sufficient to udg [ P/V'| memory locations in each bank. To simplify
the address generation logic, each bank has been designed to takecaoptiguous equal-sized
partitions, the size of which is the smallest 2-power number not less/thavi |.

Now, we consider the mapping of th’e messages fos,,, to them-th partitions int memory
banks. Reassigning bit and check node indices within the corresposidimgatrix, the shift value
specifies the connections between bit ndges,, ..., bp_1 and check nodes), ¢y, ...,cp_1. De-
noting the message in columras;,j = 0,..., P — 1, the messagg; is assigned to a memory

location as follows:

¢(j) = (l3/V],j mod V), (4.15)

where(z,y) denotes the addressof the banky. With this mapping, each message is assigned
to one of thelV memory banks in a round-robin manner An example of the bank assignmemnt fo
10 x 10 submatrix withY” = 4 is shown in Figure 4.5.

During the bit node computation, normally contiguous bit nodes are processed at a time,
starting from index); however, there can be less thérbit nodes involved whefr does not divide

P. The vectorby, the set of bit nodes processed at tilneéakes the following form:

b (bVks bVkt1s -+ bUkrv—1), 0<k<[P/V]-2
k pu—
(OVE bVkt15 -+ bV (P mod v)—1), Kk =[P/V] -1
Since the bit node index is the same as the message index, the memory locagjomess of

the message associated withcan be written as

With this mapping, any’ consecutive data in bit indices are storedidifferent memory banks so
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that they can be accessed by theomputation units simultaneously.
Similarly, during the check node computation, the veetpcontaining the check nodes to be

processed at timk takes the following form:

(CVEs CVRALs - CVRFV 1), 0<k<[P/V]-2
Cr =
(CVEs CVE+1, -+ CVEH(P mod V)—1)s k= [P/V] =1

The check node indexcan be converted to the message ingléy the following:
j=1—s mod P,

wheres is the shift value of then-th S-matrix element. Thus, the memory location assignment for

the message associated withs
¢c(i) = (i — s mod P). (4.16)

However, with this assignment] consecutive data in check indices are not always iW idif-
ferent banks, which results from the discontinuity in the index causedéntlbd * operation in
eq. (4.16). For example, in Figure 4.5, the four mess&gdeshs, A7, Ag) corresponding to check
indices (0,1,2,3) are in different memory banks. However, the mesgages), A1, A2) correspond-
ing to the check indices (4,5,6,7) are not, i.e., the messagand)\g are in the same memory bank
1.

To overcome this memory conflict problem, which arises wikeis not a multiple ofV, we
perform a special processing called “copy phase” at the end of lgadn check node operation,
i.e., we keep a redundant copy of the messages beyond the boundary s provide contiguous
bank assignment. For this, we use extra cycles to copy the first portior ah¢imory to the last
portion after bit node (half) iteration, and copy the last to the first afteckmode (half) iteration.

The details of the copy phase operations are as follows:

e Determine the number of messages to copy:

r=(V|P/V]—s mod P) mod V,
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Figure 4.5: Memory block assignment for one submatrix wiith- 10 andV = 4.

e Copyr messages after bit mode iteration:

(Mp(P)], M[¢(P +1)],..., M[¢(P +r —1)])

— (M]0,0], M[0,1],..., M[0,r —1]),

whereM(i, j] denotes the memory location at the addresbthe banki, ‘<’ denotes a copy

operation from right to left.
e Copyr messages after check mode iteration:

(M[0,0], M[0,1],. .., M[0, — 1])

= Mp(P)], M[p(P + 1)],..., M[p(P +r —1)])

With the copy phase, it is guaranteed that &hgonsecutive check messages in eq. (4.16) are in
V different memory banks by determining the bank and address of the fisstige\; by eq. (4.16)

and the rest by taking the “next” positions in the message memory, i.e.,
¢e(i+n) = ¢((i — s mod P) +n),

where0 < n < V — 1. This operation is best illustrated by an example. In Figure 4.6, the contents

of them-th partition of the message memory is shown for each step of the bit and ithetion.
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Figure 4.6: Message memory contents for an iteration. Duplicated messagma/n in gray.
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Parameter Value

Algorithm MS/MMS

Data Precision Integer = 4 bit, Fractional = 2 bit
1% 2,12, 24, 36,48

Max value for(N., Ny, P, 5, k)  (32,32,2048, 32, 32)
Max value for[P/V] + 1 512

Max N 16384

Max M 8192

Max Npy, 256

Max N 128

Max IOM, 512

Max M M, 2048

Max N, 256

Max Nier 1024

Max N, 8

Table 4.1: Example: Pre-synthesis parameter set.

Figure 4.6a shows the memory contents after the bit mode iteration is completind bit mode
copy phase, three messages are copied from the beginning to the showasn Figure 4.6b. Now,
we can see the messages, \g, A1, A2) corresponding to check indices (4,5,6,7) are in different
memory banks, using the duplicated messages. During the check mode iter&tigare 4.6c, the
messages are modified using the addressing in eq. (4.17). Finally, in BiGdrehe three messages
at the end are copied back to the beginning to ensuréthatssages are in different banks when
the next bit node iteration begins.

The copy phase requir@sV, clock cycles per iteration. Since the total number of clock cycles
for an iteration without the copy phase2id/; [ P/V], this overhead becomes negligibly small when

P is large compared to V. When divides P, the copy phase is not necessary.

4.3.4 Synthesis Results

The hardware-based evaluation system including the proposed déwmsibeen implemented
on the Xilinx Virtex-Il Pro XC2VP30 FPGA. Each FPGA contains two embedBewerPC pro-
cessors, 13,696 slices, 136 18k-bit BRAMSs, and 13& 1®-bit multipliers. One of the processors
is used for downloading code parameters and recording the decaldt$ réut is not used by the

decoder.
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Figure 4.7: Chip utilization for MMS decoder

In order to demonstrate the flexibility of the proposed architecture in theiresasage and
throughput, the evaluation system has been synthesized with a wide fgrayaltelization factors
for the decoder. The pre-synthesis parameters used for the dexeddrown in Table 4.1. The re-
source utilization with respect to the parallelization factor is given in Figurevh@re the resource
usage is shown for the entire FPGA chip including the decoder, the randorher generator, and
the peripherals for the embedded processor. By incredsingtil the FPGA is fully utilized, we
could utilize 100% of slices and 94% of BRAMSs.

The decoding complexity of a given LDPC code with the SP algorithm is direoctiggstional

to the number of edges in the Tanner graph. In [43], the required gsmze powerF, ., was
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ParallelizationV”
2 12 24 36 48 total

Area [slices] 886 2967 5233 8130 10466 13696
Block RAM 14 34 58 82 114 136
Multiplier 6 16 28 40 52 136
Max frequency [MHZz] 7156 69.19 67.03 67.18 66.78

PeakP, [edges/cycle] 1 6 12 18 24

PeakP; [M edges/sec] 72 415 804 1209 1603

PAR [edges/sec/ 1000 slices] 81 140 154 149 153

Table 4.2: Decoder-only area and throughput results with parameteabla Z.1.

defined as the number of edges to be processed per cycle, which darives as

Eimaxl’
K feik

Preqg = [edges/cycle] (4.17)

wheree is the number of edges in the Tanner grapkix is the maximum number of iterations,
D is the desired information throughpuk] is the number of information bits per codeword, and
feLk is the clock frequency of the decoder. For a given implementatimtessing poweP,, the
actual number of edges that are processed per cycle, can be usatkasure of parallelism. Since
each edge corresponds to two messages (bit-to-check and cheitkenebeach CU is capable of
processing one message per clock, the peak processing power ofplesgd architecture is simply
P. = V/2. However, wherl/ does not divideP, the actual processing power depends on the code

parameters due to the copy phase, and can be derived as follows.

N, P [edges/codeword]
e 2N,([P/V] + 1) [cycles/codeword] (4.18)
= # [edges/cycle] (4.19)

2([P/V]+1)
In order to make a comparison across different LDPC decoder implemergatiee can define

processing rateP; as the number of edges processed per second, which is given by
P, = P. - fck [edges/sec] (4.20)

As a metric for of area efficiency, we will uggocessing rate to area ratiPAR), which gives

the processing rate per unit area.
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The resource usage and peak processing power of the propabdéigcture synthesized with
the parameters in Table 4.1 are shown in Table 4.2, where the resougedsifa the decoder only.
The table shows that the maximum clock frequency deteriorates only slightlynerasingl” due
to the sequential processing structure. In addition, the table shows tH2ARh& almost constant

for sufficiently large parallelization factors.

4.3.5 Architecture Comparison

Due to the lack of a standard framework to compare different LDPC d#dogblementations,
it is a difficult task to carry out fair comparisons, especially with diffeesin the code parameters
and the implementation technology. For example, the TAR in [42] cannot leefaseomparing
decoders designed for different code rates since it is computed fraengtput in bits per second,
which is often reported in literature as a part of the synthesis results. Ithédss, we will use
processing ratd’; defined in Section 4.3.4 to quantify the computational capability, because the
decoders to be compared are based on the SP or MS algorithm and toathesthms the number
of edges correctly represents the decoding complexity of a given LDBE. Accordingly, we will
use PAR to compare the area efficiency of different decoder implemergation

In Table 4.3, three FPGA decoder implementations in the literature with arrkeyrsgmory ar-
chitectures are compared with the proposed architecture when the dndelbeoded has a regular
CPA structure. While the proposed decoder has run-time reconfigurathiityther decoders are
synthesized for a specific array structure of LDPC codes. As a réseltesource usage including
the number of CUs and memory blocks and the processing power are dinketyto the structural
parameter such a¥j or j. On the other hand, the memory usage of the proposed decoder is only
related with the parametéf, which is independent of the code structure. The processing pBwer
is weakly related withP, and becomes irrelevant &'V increases.

The throughput, processing power, and area efficiency are cothpaii@ble 4.4. A code has
been chosen from each of the architectures in Table 4.2 and the aordésg throughput and area

are taken for comparison as shown in Table 4.4a. Since it is a common priactiee literature
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Author
Sun [41] Karkooti [32] Zhang [44] Prop-osed
Architecture
Flexibility
Supported codes array of regular CPA(Bp, CPA QC-LDPC
submatrices P =2
Parallelization scalability No Yes No _ Yes
Precision flexibility Yes Yes Yes _Yes
Run-time reconfigurability No No No _Yes
Algorithm MS MMS SP SP/MS/MMS
Resource and Computational Power
Number of input memory blocks N, SNy Ny 1%
Number of message memory blocksj Ny 85 Ny 2N, \%4
Number of CUs (BCU,CCU) Ny, N, sNp, sN. Ny, N, V (SCU)
CU processing power (BCU,CCU) j/2,k/2 J/2,k/2 1/2,1/2 1/2
[edges/cyc]

Table 4.3: Architecture comparison of LDPC decoders.
(BCU: bit computation unit, CCU: check computation unit, SCU: shared cortipatanit)

to report the throughput in bits per second, theand P; have been calculated from the reported
throughput using eq. (4.17) and (4.20), respectively. If the preghaecoder is synthesized by the
parameters in Table 4.1, the three codes considered in Table 4.4a carodedlby the same im-
plementation. The throughput of the proposed decoder for four ¢odeessling the aforementioned
three are shown in Table 4.4b.

It can be seen from the PARP(/Area) that the architectures designed for a specific array struc-
ture process between 2.9 and 8.1 times more edges per second with the samedarhardware
resource than the proposed architecture, from which we can seedh®ead incurred by the run-
time reconfigurability. To understand how much overhead is reasonaltkesftiexibility, the results
in [42] may be helpful, where a network-on-chip decoder for any kindaPC codes with run-time
reconfigurability is compared with more code-specific solutions implementegiitapon-specific
integrated circuit (ASIC). In this work, it has been shown that a fullyaparsolution and a partially

parallel solution have 22 and 17 times higher area efficiency than the flexikigon, respectively.
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It is also notable that, despite the large difference in PAR between thegadmtecoder and
Sun’s decoder in [41], the difference in the throughput in bits perrs®€D) is only a factor of two.
This is because of the pre-synthesis flexibility of the proposed archiéettiat allows the highest

resource utilization independently from the code parameters.
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Author
Parameter Sun [41] Karkooti [32] Zhang [44]
Code DDSf = 3, N = 4923) CPA(3,6,256) CPA(6,32,64)
Algorithm MS MMS SP
Precision 6 bit 5 bit 6 bit
€ 14769 4608 12288
imax 1 20 1
D[Mbps] 832 63.5 195
K[bits] 4376 768 1664
fek[MHZ] 208 121 100
Area [slices] 2571 11352 7320
P, [edges/cycle] 13.5 62.98 14.4
P, [edges/sec] 2.81 x 10° 7.62 x 10° 1.44 x 10°
PAR [edges/sec/slice] 1090 x 103 671 x 103 197 x 103

(a) Code-specific architectures in the literature

Code
Parameter DDS(= 3, N = 4923) CPA(3,6,256) CPA(6,32,64) CPA(3,9,500)
Algorithm MMS
Precision 6 bit
€ 14769 4608 12288 13500
imax 1 20 1 10
D[Mbps] 412 11.6 188 30.9
K[bits] 4376 768 1664 3000
ferk[MHZ] 66.67
Area [slices] 10466
P, [edges/cycle] 21.0 18.3 10.7 20.83
P, [edges/sec] 1.40 x 10° 1.22 x 10? 0.71 x 10° 1.39 x 10°
PAR [edges/sec/slice] 134 x 103 116 x 103 67.9 x 103 133 x 103

(b) Proposed architecture with = 48 for different codes

Table 4.4: Throughput and area efficiency comparison.



CHAPTERS

PERFORMANCESTUDY

5.1 INTRODUCTION

The pseudorandom construction of the CPA-structured LDPC codestamber of advantages
over the other types of constructions. First, the size ofstmeatrix and the submatrix size can be
arbitrarily chosen, which makes it possible to design a code for a desiceEdrate and codeword
length in a very flexible manner. Also, the girth of the code can be directlyrpocated in the
design process to allow better performance with the iterative decodingthfgor The inherent
graph partitioning in the CPA-structure also facilitates a highly parallel dacacdthitecture with
simple bus connections, resulting in a much more area-efficient decoddghthenore general class
of QC-LDPC codes. However, the performance of the pseudorar@iastructured codes (PR-
CPA) depends on the actustmatrix elements chosen by a computer search. Due to the random
nature, two codes with the sarSematrix dimension and the same girth can have very different
performance.

Accordingly, a natural question would be whether it would be possible tbdigood code
by examining the structural properties of the code. In this chapter, wg sydimulation the
effect of the structural parameters of CPA-structured codes on tbe gerformance. For this
purpose, we construct CPA-structured LDPC codes by using thepsswdom method described in
Chapter 3. Another point of interest is to find out how the PR-CPA LDRfes@ompare with other

construction methods. For this, we compare the performance of pseddonty constructed CPA

70
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codes with well-known deterministically generated codes. For the simulatiotisr@sthis chapter,
we used the FPGA decoder described in Chapter 4, synthesized foMigedigjorithm with 6-bit

LLR quantization. The performance was measured after 50 iterations wighdytstopping.

5.2 HARDWARE-BASED NOISE GENERATION

A correct implementation of a random number generator (RNG) plays arrahtede in ob-
taining accurate results from the simulation. We designed a Gaussian no&atge based on the
well-known Box-Muller method [45] that converts two uniformly distributeddam variables over

the interval[0, 1) to two samples of Gaussian distributidan(0, 1)., i.e.,

fu) = /=In(u) (5.1)
gi(ug) = V2sin(2mug) (5.2)
go(us) = V2cos(2mus) (5.3)
yi = flur)gi(uz) (5.4)
y2 = flur)ga(uz). (5.5)

The hardware design is based on [46] as shown in Fig. 5.1, but wecegpthe uniform random
number generator with the Mersenne Twister (MT) 19937 that providegtaemely long period of
219937 _ 1 of 32-bit numbers using relatively small hardware resource [47].

A high-dimensional uniformity is also regarded as one of the desired girepef good RNGs.
An RNG with periodP is said to be:-distributive tov-bit if, when a set okv-bit vectors is formed
by collectingv most significant bits fronk consecutive numbers starting from eachPofiumbers,
each possible bit vector occurs the same number of times in the set, excep &il-zero vector
that occurs once less often. In such a test, with the largest pogdite givenv, the RNG is said
to bek(v)-dimensionally equidistributed with-bit accuracy. The MT 19937 has a very laige)
forv=1,2,...,32, having 623-dimensional equidistribution with 32-bit accuracy.

The hardware MT 19937 has been designed based upon the parallelidatian [48], support-
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ing any even parallelization factor that dividgt. With this flexibility, the RNG can be configured

to keep up with the speed of the decoder.

The currently designed RNG is good enough for BER=x 10~? when we collect 100 bit
error samples in the sense that the probability of any sample from a popuétion10'° Gaussian
samples exceeding the maximum representable value is les8.thdviore recently, Lee proposed
a hardware Gaussian RNG with much higher accuracy that can be usqudcedfor BER as low
as10~'2 or 10713 [49]. Although our Gaussian conversion unit has not been desigitadsuch
high accuracy, our RNG has been shown to have a sufficient agdarabtain correct results with
our fixed-point hardware decoder. We have measured the perfoentdra selected set of codes
by replacing our RNG with that in [49] that the authors kindly provided, fmuohd no noticeable

differences down to the BER af)—11.
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5.3 PSEUDO-RANDOMLY GENERATED CPA-STRUCTURED CODE
5.3.1 Effect of Girth

To see how the girth affects the performance, we have constructed tsvof @®des of different

code rate, with various girths but similar diameters.
e Code rate2/3: CPA(3,9,100) and CPA(3,9,500)
e Code rate%/2: CPA(3,6,150), CPA(3,6,750) and CPA(4,8,1023)

The performance of the codes with code rat8 is shown in Figure 5.2. For bothh' = 900
(Figure 5.2a) andvV = 4500 (Figure 5.2b), it can be seen that the girth has a major effect on the
performance in the error floor region, which justifies the code searchltoge the girth. The
performance of the codes with code rétm Figure 5.3 shows a similar trend with an exception of
the girth6 and girth8 codes in Figure 5.3a. The cycle distribution of the two codes was checked
but the difference was not large enough to explain the higher errardfdbe code with the higher
girth. On the other hand, for the CPA(4,8,1023) in Figure 5.3c, the girthe itdk difference in
the entire SNR region. This is probably because the error floor did moir @gthin the simulated
SNR region. In both plots, the girths do not make difference in the perfarenahthe waterfall

region but it is evident that higher girths lower error floors.

5.3.2 Effect of Diameter

To demonstrate the effect of diameter on the performance, a number ¢ft BP2023) codes
with different diameters have been generated using the method descriGedpier 3. While the
largest possible diameter is infinity, it would simply mean that the correspofi@dinger graph is
not connected, effectively shortening the code length. Excluding tkialtdase, the largest finite
diameter found with a reasonable amount of search effort$asrom the performance shown in
Figure 5.4, the diameter has a direct influence on the performance in the &@R& range under

consideration; the code with a smaller diameter has a steeper slope in thalvetgidn.
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Figure 5.5: The distribution of uniformly sampled CPA(3,6,384) codes

Although increasing the diameter results in deteriorated performancepdgraedom gener-
ation based only on the girth results in very low diameters, which are only sliginggr than the
lowest diameter that can be obtained by explicit efforts to reduce it in thelspeocess. In addi-
tion, in the search space of PR-CPA codes, the codes with a very higFir(ibe) diameter seem
to be very rare, and can be found only after a time-consuming searc¢he Bearch process for a
high-diameter code, a néB¢matrix entry is chosen to maximize the diameter while keeping already
determineds-matrix entries . With the rarity of the high-diameter codes, it might be susptaéd
the bad performance is the artifact of the search process, rather ¢heffigbt of the high diameter.

To demonstrate that high diameters are a reliable indicator of bad perfagrmatie space of
CPA-structured codes, a test with uniform sampling was conducted, imdBimillion CPA(3,6,384)
codes were generated by randomly choosingStratrix elements without any efforts to control
the girth or diameter. The number of sampled codes for each (girth, dianpatiers shown in

log scale in Figure 5.5. To measure the effect of diameter on the perfoemaecformed sets
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Figure 5.6: The performance of uniformly sampled CPA(3,6,384) codesivtth6

of codes, each of which contains up 100 codes of girth6 and diameters ranging fromto 16,
respectively. We will denote as(?) the set of the codes with diametér Each set contains00
codes except fof (1) that contains only 85 codes. The BER of the codes are measured atfhe SN
of 2.3 dB, and the minimum, mean, median, and maximum of the BER are shown in Figure 5.6.

To investigate statistical significance of the observed difference in BERrpgance, we can
regard the BER of each code s&t’) as a random variable. Due to our lack of knowledge of
the actual distribution of the BER random variable, we used the nonpaiargpothesis testing
introduced in Section 2.5.

First, we define random variabl&&?,d = 9, .. ., 16 as the BER of a code ifi{¥), respectively.
We perform the one-sided Mann-Whitney-Wilcoxon test for each p&ify(, X (%)) to test Hy:
both variables have the same distribution agafiist both have different distributions. The test
measures thg-value, i.e., the probability that we will obtain the observed result when lity¢lae

two variablesX (Y and X ) have the same distribution.



5.3 PSEUDO-RANDOMLY GENERATED CPA-STRUCTURED CODE

79

di\d2 9 10 11 12 13 14 15 16

9 0.50 0.78 046 26x10710 1.3x107%* 13x1073* 1.3x1073 57x 1032
10 022 050 034 16x1072 47x10732 13x10732 15x1073 1.1x1073!
11 054 0.65 050 48x1077 1.5x10720 24x10732 2.8x107% 57 x 1032
12 1.00 1.00 1.00 0.50 43%x1072% 81x10730 1.7x107% 5.7x1073!
13 1.00 1.00 1.00 1.00 0.50 43%x10712 1.0x107%2 1.5x 10726
14 1.00 1.00 1.00 1.00 1.00 0.50 1.5 x 1078 9.3 x 10722
15 1.00 1.00 1.00 1.00 1.00 1.00 0.50 2.6 x 10710
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50

Table 5.1:p-value from the Wilcoxon test for diametér and diameteds.

The test results are shown in Table 5.1. For diameters up,tthese is no statistical relation

between diameter and BER. However, for diametdrsand above, any difference in diameters

makes a statistically meaningful difference in the BER, as indicated by very smalues in the

upper diagonal portion of the table. For atly andds that satisfyll < d; < ds, we draw the

conclusion that the codes with diametkrhave higher BER than the codes with diameterDue

to the extremely smajl-values in the corresponding results, the conclusion will not changafor

significance level down ta: = 4.8 x 10~7. For two-sided tests, the newvaluep’ can be simply

computed by the following formula:

2p,

p =

p <0.5

(5.6)

In the distribution of uniformly sampled codes shown in Figure 5.5, the codtbsdiameter

greater thari1 make upl.72% of the all codes with girtt6. This indicates that, even though the

random construction generates good CPA codes in terms of diameter witiprtalgability, there

is still a nonnegligible probability that bad codes will be chosen. Thus, tisiglitr@ustifies the

incorporation of diameters in the CPA code construction.

5.3.3 Effect of Column Weight

The column weight of LDPC codes determine the number edges per codaddbdirectly

affects the decoding complexity of a given code when the iterative degadtjorithm is used. In
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Figure 5.7: The effect of column weight on the performance

general, a higher column weight can provide a strong error correctipabidlity since there are
more check equations that involve each bit. However, a high column wdgghgjanerates a large
number of short cycles in the Tanner graph, having a detrimental effietie performance with the
SP algorithm. The performance of half-rate PR-CPA codes with the colurngihtye= 2, 3,4,5,6
are shown Figure 5.7. The plots are shown for the code leNgth 576, 1152, 2304, and the size
of the submatrix” has been appropriately adjusted to maintain the code length. For all these cas
the codes withj = 3 have the best result within the simulated range of SNR with the exception for
N = 576 where the code withi = 3 shows a higher error floor. It can be seen that a higher column
weight does not always lead to better BER performance although the tmued on the minimum
is an increasing function of the column weight as shown in eq. (1.3).

Also, the codes with = 2 exhibit a very flat BER curve, showing a substantially high error rate

in the entire SNR region.



5.3 PSEUDO-RANDOMLY GENERATED CPA-STRUCTURED CODE

81

10 T T 3
—B-CPA(2,4,288), = 2
-@-CPA(3,6,192),j=3
_ —%—CPA(4,8,144),j= 4
107 ——CPA(5,10,117),j=5
F —4-CPA(6,12,48),j= 6
107 3
10 3
o [
W 10k 5
10 5 |
10°E e
107 3
10°F 4
10’97 i i i i i
2 25 3 35 4
Eb/NO(dB)
(b) N=1152
10 T :
—B- CPA(2,4,576),j = 2
-@-CPA(3,6,384),j=3
_ —%—CPA(4,8,288),j = 4
10 ——CPA(5,10,227),j=5 |3
F —-CPA(6,12,192),j=6 | ]
1073; E
10 3
o [
W 10k 5
W 10 1
10°F 3
107E 4
10785* =
10’97 i i i i i
2 25 3 35 4
Eb/NO(dB)
(c) N=2304

Figure 5.7: The effect of column weight on the performance (cont'd)
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5.3.4 Effect of Submatrix SizeP

With the CPA-structured codes, reducing the submatrix Bizgth the number of checks fixed
increases the column weight by the relatiBn= M/N. andj = N.. On the other hand, with
the CPA structure, the column weight can be maintained by replacing some of the sidesaty
all-zero matrices. To see if the submatrix s2das any influence on the performance, several half-
rate CPA codes with different”? are compared with a CPA(3,6,384) code, where all tested codes
have the same rate, length, and column weight. The codes do not showtasahle difference
as shown in Figure 5.8. However, when designing a code with a very loahg length, it would be
more advantageous to use CPgructure with a smalleP than to use CPA structure with a larger
P since the CPA structure allows the girth to be increased beyond 12 with a sufficiently &rge

while the CPA structure has the limitation @ 12 regardless of.
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5.4 ARRAY CODE

The array code array(P), using the notation introduced in Section 1.1, has a GPA(P)
structure whereP is a prime andi < P. They are guaranteed to have a girtt6ddy the algebraic
construction. It has been also found that they have diametgwdiich is the lowest possible diam-
eter for CPA-structured codes with girth 6. To compare the performaraeay codes with pseu-
dorandomly generated CPA codes, nine array codes griy(ith j = 3,4,5 andP = 23, 31,47
are constructed and compared with PR-CPA codes with the $&m#/, and P. As seen in Fig-
ure 5.9a, the array codes with= 3 show similar performance with their PR-CPA counterparts,
where all codes have the same girth. On the other handPfer 31 and47, the pseudorandom
generation could not find CPA codes with girths more thaAccordingly, in Figure 5.9b, the array
codes withj = 4 outperform the PR-CPA codes due to the higher error floor in the PR-GBésc
However, the array codes are on par with their respective CPA cqanterbefore the error floor
occurs. Finally, for the case gf = 5 shown in Figure 5.9c, the array codes show similar perfor-
mance with PR-CPA, probably because the error floor of the CPA cadesotioccur within the

simulated SNR range.

5.5 HNITE GEOMETRY CODE

In this section, we evaluate the performance of the two-dimensional typelhtorder EG-
LDPC codes fok = 2, 3,4, 5. For this class of codes, the parity check matrix (84 —1) x (225—1)
square matrix with column and row weight= k£ = 2°, forming a QC{, 1, 2%* — 1) structure. Since
N. = N, = 1, the codes are cyclic. The performance of EG-LDPC codes are shdvigure 5.10.

To compare EG-LDPC codes with the pseudorandomly generated CPA, d®ReCPA codes
with j = 3,4, 5 have been constructed where Swenatrix parameter&\V,, N, P) have been chosen
to make the code rate and codeword length close to those of the EG coutstefjgure 5.11a shows
that the (0,4)-th order EG code outperforms the CPA counterparts.téépe slope of the EG code

in the waterfall region seems to be caused by the column wegight16, which is much higher
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Figure 5.9: Comparison of array code and PR-CPA

than the CPA codes. However, it should be also noted that the CPA codg with has only0.2

dB difference at the BER df0~° from the EG code while it has much lower decoding complexity.
Another observation is that, unlike the case with half rate in Section 5.3.3, litmarceveight affects
the slope of the BER curve.

The same comparison is made for the (0,5)-th order EG, as shown in Figdt 5n this case,
all CPA codes except for the one wifh= 3 outperforms the EG-LDPC code within the simulated
range. Although the EG-LDPC is expected to eventually outperform the coid&s at very low
BER due to the steeper curve, the short cycles generated by the highrcaleight ofj = 32
seems to adversely affect the performance at the relatively high BEJe rarhis implies that, for
applications where the BER requirement is not very stringent such aesgreommunication, the
CPA-structured codes provide larger coding gain than the EG-LDPE€ wtile they require less

processing power at the decoder.
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5.6 802.1& LDPC CobDE

In the IEEE 802.16e standards for wireless metropolitan area networlCRA&-structured
LDPC codes have been adopted as an option for channel codinglfiliie standards, the codes
take the form of CPA(N,, N, P), whereN, = 12 and N, € {12,8,6,4} to support code rates
1/2,2/3,3/4, and5/6. The submatrix sizé is a multiple of4 in the range fron24 and96, which
corresponds to the codeword lengths betwaer- 576 and N = 2304 at the multiples 0D6 bits.
The S-matrix elements are specified for submatrix size= 96, one representation for each of the
ratesl/2 and5/6, and two representations for each of the r&tgsand3/4 (called type A and B).
The S-matrix elements for smalleP are derived by proportional scaling for code ratgg, 3/4

(type A and B),2/3 (type B) and5/6, i.e.,

Si,5(96), 5i,j(96) <0
Sij(P) =

[S:,;(96) &1, otherwise
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Figure 5.12:S-matrix for 802.16e half-rate code fét = 96

or by modulo operation for code ra@¢3 (type A), i.e.,

S@j (96), Si’j(96) <0
S j(P) =
S;,(96) mod P, otherwise

The S-matrix representation for a half-rate code with= 96 is shown in Figure 5.12. The
S-matrices in the standards are partitioned into two pérts,[S;S,], whereS; is composed of the
left N, — N, columns of the originaB-matrix andS, contains the rest. In the encoding process,
the S; corresponds to the information bits and tfiecorresponds to parity bits, arft] has higher
column weights thard,. Due to this irregularity, the information bits are involved in more check
equations, and are thus better protected than the parity bits.

The 802.16e half-rate code is compared with a regular PR-CPA codg within Figure 5.13,
shown for the shortestH{ = 24, N = 576) and longestP = 96, N = 2304) codeword length.
For N = 576, the regular PR-CPA code outperforms the 802.16e counterpart foeieritire
SNR region. ForNV = 2304, the 802.16e code shows larger coding gain for BER less thah
although it shows a higher error floor at around BER=S. Considering that the target operating
BER specified in the standards 879, it seems reasonable to use irregular codes to get better

performance at the specific BER.
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Figure 5.13: Comparison of half-rate 802.16e and PR-CPA codes

To better see the effect of nonuniform column weights, CBkuctured codes have been con-
structed from the regular PR-CPA codes CPA(12,24,96) and CPA(8)2dy®eliminating some of
the nonnegativ8-matrix entries, i.e., replacing them byl. The elimination is arranged to give two
different column weights, larger fdf; and smaller foiS,. The performance of the CPAstructured
codes including the 802.16e code and the regular CPA-structured oodda@vn in Figure 5.14.
For the half-rate codes in Figure 5.14a, the 802.16e codes are outpedfat BER*0~% by some
of the PR-CPA codes including the regulae= 3 codes. Irregular codes outperform the regular
code whery = 3. On the other hand, for ray'3 codes, the 802.16e code outperformed the regular
code withj = 4. Itis also observed that the irregular code wijtk= (4, 2) gives a slightly larger
coding gain than the 802.16e code.

As a further comparison between the 802.16e codes and the PR-CPg, tisel@erformance
of the codes at the BER dfo—>, 107% and 10~7 have been measured for all codeword lengths

defined in the standards. The result is shown in Figure 5.15. For ctele rH2 (Figure 5.15a),



5.6 802.1& LDPC CobE

90

10"

-4

10

-5

10

BER

-m-802-CPA*(12,24,96), |, =3.17

-@-PR-CPA(12,24,96), j=3

—%—PR-CPA*(12,24,96), j=3,2
——PR-CPA*(12,24,96), j=4,2
—-PR-CPAX(12,24,96), j=5,2
- PR-CPA*(12,24,96), j=6,2
—A-PR-CPA*(12,24,96), j=4,3
-l PR-CPA*(12,24,96), j=5,3
@ PR-CPA*(12,24,96), j=6,3

-2

10

10°

10"

10°

BER

10°

10~

10"

10"

10710

2.4
E,/N,(dB)

() rate =1/2

3.2

—m-802-CPA*(8,24.96) type A, j , =3.33

-@-PR-CPA(4,12,192), j=4

—%—PR-CPA*(8,24,96), j=3,2
—— PR-CPA*(8,24,96), j=4,2
—4-PR-CPA*(8,24,96), j=5,2
% PR-CPA*(8,24,96), j=6,2
—A— PR-CPA*(8,24,96), j=4,3
Ml PR-CPA*(8,24,96), j=5,3
@ PR-CPA*(8,24,96), j=6,3

[y
o

Figure 5.14: The performance comparison of regular/irregular colungitge

18 2

2.2

2.4 2.6
E,/N,(dB)

(b) rate = 2/3

3.2



5.7 GPASTRUCTUREDLDPC CODE 91

as previously noticed, the regular CPA codes provides the SNR gairwéé&e0.1 and0.5 dB at

the target BER 010~ % over the 802.16e codes. The gain becomes substantially larger for the BER
of 10~7 although it would not be helpful for the wireless application. It is also notéy that the
regular codes show a smooth increase in the coding gain as the codengitd ilcreases while

the 802.16e codes have fluctuations. For code rate = 2/3 (Figure 5thi&lb¢gular codes still tend

to perform better than the 802.16e codes for shorter calfes:(1000), but the opposite is true

for longer codesy > 1000). However, the PR-CP&odes withj = (4, 2), chosen based on the
result in Figure 5.14b, slightly outperformed the 802.16e coded/for 1152 with an exception at

N = 1344.

5.7 GPASTRUCTUREDLDPC CoDE

As described in Section 2.4.4, GPA-structured codes have the potentdlieve larger girths
than CPA structured codes, since they do not have the limitation ofidithat the CPA-structured
codes have. Also, they are expected to be able to achieve large girthstvethalostantial increase
in the codeword length, which is the case with the CR&uctured codes. The search for good GPA-
structured codes heavily relies on the existence of good non-abeliapgysaitable for constructing
large-girth codes. Once such group is found, a computer-basexhsteruld be conducted to check
if a high girth code can be constructed with the elements in the chosen groughi$purpose, a
search has been conducted using the GAP computer algebra systemtj®®] provides a library
of all groups of order up ta000. Due to the enormous number of groups and the considerable
search time, the search space has been reduced by considering ofujoteng two classes of

groups:
groupG with ordern = pq, p : primep | (¢ — 1) (5.7)

where |’ denotes ‘divides’ and

. . —1
groupG with ordern = pqr, p : primep | (¢ —1),r1{ qT, G =Cp :Cy, (5.8)
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(Ne, No) (2,4) (3,4) (3,6) (3,9) (4,8)
CPA,GPA1 CPA,GPAL1,GPA2 CPA,GPAL1,GPA2 CPA,GPAL1,GPA2 @PPAL,GPA2
g=6 5,10 7.10,28 8,10, 28 10,10, 28 11,14, 28
g=2_8 5,10 10,10, 28 18,21,28 35, 38,44 59,74,76
g=10 13,20 39,39, 44 111,111,117 367,417, 412 754,831, 873
g=12 13,20 73,93,92 366, 543, 412 - -
9214 _755 _73057549 T Ty T Ty Ty T Ty Ty T
9:16 7755 Ty Ty T Ty Ty T Ty Ty T Ty Ty T
9218 _7205 Ty Ty T Ty Ty T Ty Ty T Ty Ty T
9220 _7205 Ty Ty T Ty Ty T B Ty Ty T

Table 5.2: Smallest group order for each target gjr(R’ indicates that no codes have been found.)

where(C, is a cyclic group of order and “:” denotes semidirect product. The GPA codes based on
the groups in eq. (5.7) and eq. (5.8) will henceforth be referred tdPAsl@nd GPA2, respectively.

In the search process, for each of the groups belonging to GPA1 A2,GliRe GPA codes are
constructed using the same sequential filling method as used by the CPAuctiastto find a
code that has a target girth ranging frahto 20. From the search results for seveamatrix
sizes, the smallest group ordelwhich is also the submatrix size in the GPA-structured codes)
for each target girth is shown in Table 5.2. The search results for @Batgred codes are also
included here for comparison purposes. With the groups consideee@RA-structured codes tend
to require higher group order than the CPA-structured codes. Whilenaadic increase in the girth
from 12 to 20 could be achieved with a GPA(2,4,205) code, it was difficult to find GPAestired
codes having girths more thda for j > 3. The only such case found is GPA(3,4,305) with girth
14 compared to CPA(3,4,305) code with gifth.

Since the GPA-structured codes are not quasi-cyclic, they cannadmipdated by the imple-
mented hardware decoder. The result obtained from software simulastiows in Figure 5.16.
The GPA(2,4,205) code does not show a noticeable performance imnpeavever the CPA(2,4,205)
code in spite of the large difference in the girth, which seems to have basadhy the patholog-
ical behavior of codes with column weight On the other hand, the GPA(3,4,305) code shows a
considerable performance improvement with a much steeper slope in théalvaggion than the

CPA(3,4,305). Such large improvement with only an increase of 2 in the gigimbt been seen in
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the experiments with CPA codes and makes further research on this ctagtesfvery promising.



CHAPTERG

CONCLUSIONS ANDFUTURE WORK

6.1 CONCLUSIONS

The primary goals of this thesis are the design of a flexible decoder fat[QFI= codes and the
investigation of the performance of QC-LDPC codes with a focus on psandom construction of

circulant permutation arrays. The main results of this research can be sizexires the following:

1. The design of a highly flexible decoder:This thesis presents a generalized QC-LDPC de-
coder architecture designed with a priority placed on flexibility. The prepatecoder is
capable of supporting a wide range of array-structured codes in lbetex# set of codes

under investigation.

e Flexibly parameterizable architecture: Unlike throughput-oriented architectures, this
architecture decouples the degree of parallelism and resource utilizatmartie code
parameters. This is accomplished by a new approach in which parallelishiéved
within submatrices rather than across submatrices. As a result, the deaodsz syn-

thesized for a user-defined processing power and resource usage

e Run-time reconfigurability: As a benefit of the flexible architecture, the entire set
of code parameters of QC-LDPC codes can be changed while the hardweaun-

ning. These parameters include the dimension of the array structiarévg, P), the

96
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column/row weights {; k), and the actual shift values of circulants in the parity check

matrix.

e Architecture comparison: The designed decoder has been implemented in FPGA, and
the synthesis results have been compared with a selection of decodtrcuchs in the
literature in terms of processing rate to area ratio (PAR). The area effyciedicated
by the PAR shows that the proposed architecture uses beveand8.1 more area re-
source to generate the same processing power than more code-speluifectures. We
believe that the order of the difference is reasonable considering gineedef flexibility

provided by this architecture.

2. Analysis tools for QC-LDPC codes:This thesis presents new methods of finding the girth

and the diameter of QC-LDPC codes.

e Girth-finding algorithm: Finding the girths of a QC-LDPC decoder is more compli-
cated than the CPA-structured codes. The proposed algorithm findgdieedistribu-
tion of given codes by propagating messages in a compact form of Tgragh where
a node represents a group of actual nodes. The messages asemggteas polynomi-
als in X to keep track of the shift value differences. The presence of trdesytthe
original Tanner graph can be detected by examining the coefficient térmeX °. This

algorithm is linear in the girth and the column/row weights.

e Diameter-finding algorithm: Based on the observation that the input cost matrix for
all-pairs shortest-path (APSP) algorithm for QC-LDPC codes is an aifraiculants
but not a circulant as a whole, a blocked version of APSP is applied teedothe
original problem to subproblems where the input cost matrices are citsuls¥ithin
each subproblem, the APSP algorithm is replaced by modified versions dtiaigk
algorithm to best exploit the circulant property. The runtime of the resultiggrighm
is O(N?), whereN is the codeword length while the direct application of the Floyd-

Warshall algorithm has a runtime @theta(N?).
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3. Performance study of CPA-structured codesThe performance of a large selection of CPA-

structured codes have been evaluated for the investigation of the follit@ing.

e Effect of girth: The effect of the girth on the BER performance was shown by con-
structing CPA-structured codes with the different girths. It has beserebd that the
girth does not have a major effect on the performance in the waterfadirégt lowers
the error floor. Thus, it justifies the pseudorandom construction of§iRAtured codes
directed toward higher girth which is adopted in many construction methodslbgszd
on computer search. However, it is not clear from the observed reghéther this is
a unique trait of CPA-structured codes or a general property oy-atractured codes
since no other construction methods provide a wide range of choicesfgirth while

keeping the other code parameters constant.

o Effect of diameter: The effect on the diameter on the performance has been quantita-
tively measured by constructing CPA-structured codes with a wide rdndjaroeters.
It has been shown that the high diameter seriously affects the slope cERelve. To
construct codes with a desired diameter, both the girth and diameter werpdreted
into the pseudorandom code construction process. To separate thet aftthe explicit
efforts to control the diameter, a large set of codes have been gehésateniform
random sampling. Using the random samples, the Mann-Whitney-Wilcoxopana-
metric test has been conducted. From the test results with uniformly sampliled gir
CPA(3, 6, 384) codes, it has been shown that every increase in diameter béydmas

an adverse effect on the BER performance with very high statistical signde.

o Effect of column weight: The column weight linearly increases the decoding complex-
ity of the sum-product algorithm and provides a lower bound on the minimunndista
From the observed results from the experiment designed for the coluightvedfect,
it is seen that the higher column weight increases the BER without an appghange

in the slope of the BER curve. However, in some other experiments with higtear
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it has been noticed that the column weight increased the slope. For the siirBERe

region down tol0~?, the column weight of 3 or 4 gave the best results.

4. Performance comparison between pseudorandomly constructedPA-structured codes
and deterministically constructed codesThe pseudorandom construction of CPA-structured
codes is very flexible in choosing a desired rate or codeword length. ltlegdesign flex-
ibility, deterministically constructed codes based on finite-geometry and arithpretices-
sion in powers have been compared with CPA-structured codes with mataddegate and

length.

e Finite geometry codes: A selection of (0,s)-th cyclic Euclidean geometry codes of
length 22¢ — 1 have been compared with the CPA-structured codes. sFer4, EG
codes gave the best performance, butfoe 5, CPA-structured code with column
weight4, 5 or 6 outperformed the EG with column weigB2 at the BER range down
to 10~?. Considering the low column weight of such CPA codes, it shows that the CP

structure can be a cost-effective solution for certain applications.

e Array codes: Array codes have the same CPA structure with a deterministic arithmetic

progression in the powers. They have a fixed girtl6 @nd fixed diameted. When

the pseudorandomly constructed codes have the same girth, no differetiee per-
formance is observed. However, f8fmatrices with large dimensions, it is not always
possible for CPA codes to achieve gigh When there is a girth difference, the array
codes have better performance due to the higher error floor of thd@segdomly con-
structed counterparts with girth 4. It can be seen that, for a high ratesBBéture, the
array codes are a better choice than the pseudorandom constructian timetlyirth of

6 is guaranteed. Conversely, for low-rate codes with sm&ieratrix dimensions, the

pseudorandom construction can yield better codes by enlarging the girth.

e 802.16¢e codesThe LDPC codes in the 802.16e are derived from a fixed Basatrix.

They have unbalanced column weights for the information bits and the parityrbite



6.2 FUTURE WORK 100

experiments with half-rate codes, it has been shown that a regular Cle& oatperform
the 802.16e codes by between 0.1dB and 0.5dB at the target BER &f For code
rate2/3, the 802.16e codes outperform the regular CPA codes, but give cabipa

performance to the pseudorandomly constructed irregular codes.

e GPA-structured codes: The underlying group structure of the GPA-structured codes
is not cyclic and thus the limitation of girth2 does not apply to these codes. In the
computer search for GPA-structured codes with a selection of grougtstes, it has
been observed that GPA codes tend to require large submatriR gizattain the same
girth and GPA codes with higher girths tha® are very difficult to find. However, the
GPA(3,4,305) code gave a performance improveme6isodB at the BER ofl0~6 with

a much steeper BER curve.

6.2 FJUTURE WORK
The possible directions of the future research are as follows:

e Pseudorandom construction methods for QC-LDPC codesThe QC-LDPC code struc-
ture encompasses a much larger code space than the CPA structure winigetha same
encoding complexity as the CPA-structured codes. Since many goodailgebdes have a
QC structure, a pseudorandom construction method of QC-LDPC catlgsavide a very
flexible design tool for more powerful LDPC codes that can compete wigrodrer deter-

ministically generated codes.

e Search for other graph parameters that affect the performarce: Even though the girth
and diameter have been shown to have major effects on the performaac®dé, they are
by no means sulfficient to predict the superiority of a given code to otRersexample, in the
uniform random sampling test in Chapter 5.3.2, a large difference betivedrest code and
the worst code has been observed within the set of codes with the samargirthameter.

If other graph parameters that affect the performance can be fobeyl,can be incorpo-
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rated into the pseudorandom code construction process. One possittitigyuse of cycle
distribution that can already be obtained using our girth-finding algorithnoti#ar possibil-
ity is the incorporation of trapping set (or pseudo-codewords) anahtsighe construction
process, which has been developed to explain and analyze the eor5fl952]. With the
cyclic-symmetry in the QC-LDPC codes, an efficient method for trappingrsai/sis can be

expected to exist.

e Computer search for more GPA-structured codes:The GPA-structured codes with high
girth are hard to find, but it has been shown that they bring a consideraprovement to
performance. If a sufficiently large number of GPA codes can be foitimdll form a new

class of very good structured codes.

e Hardware support for GPA-structured codes: While GPA-structured codes may bring a
major improvement in the performance, they do not belong to the class of theDRC
codes. It will be crucial to find ways to exploit the structure of the GPAestred codes in

order to design efficient encoders and decoders that can be usedtiic@ systems.
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