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Abstract

Very fast runtime is crucial in many applications in scientific computing, multimedia processing,

communication, and control. Most of these applications spend the bulk of the computation in well-

known mathematical functions which are provided by highly optimized libraries. The development

and maintenance of these libraries has become extraordinarily difficult. Optimal performance re-

quires multiple-core balancing, careful use of vector instruction sets, and locality optimization.

These optimizations require highly-skilled programmers and are often platform-specific, which

means maintenance is a considerable effort given the short processor release cycles.

The Spiral system has successfully addressed these issues by automatically generating high

performance libraries given only a high-level mathematical algorithm description in a language

called SPL. Spiral produced high performance code using a number of techniques including SPL

rewriting systems and a form iterative compilation. However, to date Spiral has been limited in two

key aspects. First, Spiral could only generate libraries for the domain of linear transforms; second,

all optimizations for a specific target platform are performed during the source code generation, that

is, the produced libraries themselves had no dynamic platform-adaptation mechanism.

In this thesis we make progress on both fronts. We present a framework and its implementation

for the computer generation of functionalities that are not transforms, specifically matrix multipli-

cation and convolutional decoding. The framework builds on the operator language (OL) that we

introduce and that extends SPL. Similar to prior work on transforms, we then develop OL rewrit-

ing system to explore algorithm choice, to vectorize and parallelize, and to derive the basic library

structure called recursion step closure. The actual code is obtained through a backend that supports

different target languages. The generated libraries exhibit a performance comparable to libraries

that are hand-written for commodity workstations.

Further, we enable the generation of platform-adaptive libraries, through adaptation modules

that can be inserted into our libraries, which are generated to support different ways to compute
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the same function. We distinguish between online adaptation and offline adaptation and provide

mechanism for both. Online adaptation happens during the actual user function call when the input

size is provided. Given this size, the library searches for the best computation strategy inside the

library, which can then be used for subsequent computations of this size. We provide the dynamic

programming strategy used in prior work and introduce a novel kind of Monte-Carlo search on

graphs. Finally, we present a machine learning approach that performs offline (during installation

time) adaptation with an online adaptive library. First a search is run to produce solutions for a set

of sizes. Based on the result, a learning algorithm derives solutions for all sizes in the form of a set

of decision trees that are then inserted into the library to render it deterministic. Experiments show

the viability of both approaches.
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CHAPTER 1

Introduction

1.1 Overview

Very high runtime performance is one of the key quality aspects for software in a wide range of

domains, including scientific computing, image/video processing, communications, and control. In

many of these applications, the bulk of the computation is spent inside well known mathematical

functions such as matrix multiplications, discrete Fourier transforms, or others. For efficiency rea-

sons, these functions are typically provided by external high-performance libraries. A good example

is Intel’s Integrated Performance Primitives (IPP), which implements around 10,000 functions from

16 different domains [Intel, 2009a].

Designing and implementing such libraries has become very difficult due to the complexity of

current computing platforms. The optimal performance tolerates no bottleneck and every aspect of

the code needs to be carefully designed. Memory hierarchy reuse, multiple core load-balancing,

vector code scheduling, are but a few of the optimization techniques required to reach the best

possible performance. To illustrate the impact of these optimizations, we show in Figure 1.1 the

performance of four implementations of a square matrix-matrix multiplication on a commodity

quad-core platform. Performance is measured in giga-floating point operations per second (GFlop/s)

and all implementations are compiled with a state-of-the-art optimizing compiler from Intel. At the

bottom is a naïve triple loop. Optimizing for the memory hierarchy yields about 20x improvement,

explicit use of short vector instructions another 2x, and threading for 4 cores another 4x for a total

speedup of 160x.

This large gap shows that the optimizing compiler does not perform the necessary optimizations

automatically. There could be three fundamental reasons behind this failure: the lack of domain-

specific algorithmic knowledge, the weaknesses of the loop optimizer framework, or the lack of a

good performance model to decide which transformations are beneficial. The difficult optimization
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FIGURE 1.1: Underlying factors for performance. The plot shows four double precision imple-
mentations multiplying n× n matrices. The operations count is exactly the same in all four cases:
2n3.

task is therefore left with the library developer. Exacerbating the problem, optimal code is platform-

dependent and thus, re-optimization and re-implementation is required for each new architecture or

even microarchitecture.

Often, library performance objectives are achieved by having experts write different optimized

routines for the same function, one for each of the supported architectures. Famous academic and

commercial libraries (e.g., GotoBLAS [Goto, 2008], MKL [Intel, 2009b]) use this approach but it

requires a continual development in order to support the constantly changing computing platforms.

The resulting high development costs of this approach have spawned academic research efforts on

mechanizing the optimization process.

One approach to tackle the problem has been to design adaptive libraries: In such libraries,

the developers allows for a wide range of different implementations of the exact same function and

the fastest one on the considered architecture is mechanically found by empirical search. This ap-

proach has been successfully demonstrated in various domains, including basic dense linear algebra

(ATLAS [Whaley and Dongarra, 1998]), sparse linear algebra (OSKI [Vuduc et al., 2005]), sort-

ing (Adaptive Sorting Library [Li et al., 2004]), and linear transforms (FFTW [Frigo and Johnson,

2005], UHFFT [Ali et al., 2007]).

Another approach to the problem is to raise the abstraction level and have machines, rather than

experts, create optimized source code. Humans, of course, are still needed to formalize the algo-

rithm space but the difficult and repetitive task of implementing them, optimizing them and com-

bining them is then fully automatized. Such systems, that we call library generators, are domain-

specific iterative compilers: their input is an algorithm specification given in a high-level mathemat-

ical form and their output is optimized source code implementing it. Along the way, multiple com-

pilation phases are necessary to generate and evaluate a pool of variants. So far, progress has been

reported in advanced dense linear algebra (FLAME [Bientinesi, 2006]), quantum chemistry (Tensor
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Contraction Engine [Baumgartner et al., 2005]), and linear transforms (Spiral [Püschel et al., 2005],

detailed later).

Library generators offer multiple advantages over standard performance libraries. First, they are

easily maintainable, and thus extensible, since algorithms, optimizing transformations, and search

mechanisms clearly reside in different layers. Second, they offer flexibility: it is for instance possi-

ble to target different languages, customize for different needs or even change the library interface.

Third, they are rigorous in that the generated implementations and their proofs grow hand in hand

and are therefore correct by construction [Dijkstra, 1972]. Of course, library generators also have

drawbacks, mainly that the expressivity of their algorithm specification language inherently limits

them to a specific domain and that their offline nature might forbid drop-in replacements in legacy

user code.

1.2 Goal of the thesis

In this thesis, we push back both these limitations in the context of the library generator Spiral

[Püschel et al., 2005]. As of 2010, Spiral has demonstrated that high-performance automatically

generated code could make it into commercial performance libraries in the form of fixed input size

functionalities [Intel, 2009a]. Recently, the capability of generating general input size libraries has

been added to the system, but it comes at a price: automatic platform adaptation has been lost

[Voronenko et al., 2008b]. Finally Spiral’s domain has to date been restricted to linear transforms.

The goal of the thesis is to extend Spiral’s high-performance library generation frame-

work in two orthogonal ways:

1. We extend the formal framework and the generator to new functionalities be-

yond linear transforms, notably matrix-matrix multiplication and Viterbi de-

coding.

2. We enable the automatic generation of adaptive general input size libraries. We

provide both novel online (at runtime) and offline (at installation time) adapta-

tion mechanisms that can be inserted into Spiral-generated libraries.

The library generator we build is schematically displayed in Figure 1.2. It can first be seen as a

“black box” with multiple inputs: the target library functionality, the target platform characteristics

and the pool of algorithms.

• The target library functionality describes the precise operations that the generated library

will provide to its users (e.g., row-major or column-major matrix multiplication, forward or
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FIGURE 1.2: Architecture of the library generator.

inverse discrete Fourier transform). It is represented as an expression in a domain-specific

language, called OL, that we introduce.

• The target platform characteristics captures specifics about the architecture that we are gen-

erating the library for. It consists of tags that we attach to expressions in our domain-specific

language. These specify if the code should be vectorized or threaded.

• The pool of algorithms is a set of widely known algorithms such as blocked matrix multipli-

cation, fast Fourier transforms or Viterbi decoding that we represent as rules in OL, extending

prior Spiral work.

The system is able to produce libraries of four different types: heuristic-based general input size

libraries, fixed input size libraries, online adaptive general input size libraries, and offline adaptive

general input size libraries. Before we explain these types of libraries, we first use Figure 1.3 to give

possible examples of generated libraries.

In Figure 1.3a, the system is configured to generate a matrix-multiplication library conform-

ing with the general matrix multiplication (GEMM) specification which is a popular interface in

the linear algebra community [Dongarra et al., 1990]. The algorithm space consists of recursive

block matrix multiplications and the library should be optimized for commodity processors using

important features such as multicores and short vector extensions (here, 2-way SSE). The generator

outputs a library core which consists of a dozen of mutually recursive functions and corresponding
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FIGURE 1.3: Some possible inputs to the library generator and the corresponding generated li-
braries.

base cases, totalizing more than 10,000 lines of C++ code, filled with SSE vector intrinsics and

OpenMP threading pragmas. It is not yet usable though: since it can capture a vast domain of algo-

rithmic variants, it has many degrees of freedom that require decisions before any computation can

occur. In the presented example, the system has been configured to generate an offline adaptive li-

brary, which means that these degrees of freedom are to be determined on the target platform during

installation time (similarly to ATLAS [Whaley and Dongarra, 1998]). We achieve this by deploying

the library core to the user with a statistical classifier and the necessary installation scripts. Dur-

ing installation on a user platform, the classifier will generate multiple decision trees that will be

plugged back inside the library core to take the required decisions and hence render the computation

deterministic.

In Figure 1.3b, the system is configured to generate a discrete Fourier transform (DFT) li-

brary using the Cooley-Tukey algorithm, which is the most famous fast Fourier transform (FFT)

[Cooley and Tukey, 1965]. In this case, the target platform is a Java virtual machine and compu-
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tations should use single-precision floating-point numbers. In this case, the generator produces a

library core that consists of multiple Java classes. Again, it is not directly usable since any single

function inside still has multiple open degrees of freedom (e.g, the choice of radix). In this example,

the system has been configured to generate an online adaptive library, which means that the degrees

of freedom are fixed on the target platform at runtime (similarly to FFTW [Frigo and Johnson,

2005]). The core has therefore to be bundled with one of the available search modules that we

provide before being released.

In Figure 1.3c, the system is configured to generate a Viterbi decoder [Viterbi, 1995] for the

CDMA 2000 standard that is used in 3G cellphones communications. The selected target platform

supports 8-way SSE integer operations. In this embedded systems setup, we assume that the com-

putation and platforms are fully specified before generation. In this case, we search offline, during

the generation process, and produce a deterministic library specifically tailored for this problem and

platform.

1.3 Compared benefits of different library types

As shown in Figure 1.2, one of the goals of the thesis is to enable the computer generation of libraries

of four different types within the same framework: fixed input size (prior work, [Püschel et al.,

2005]), heuristics based general input size (prior work, [Voronenko, 2008]), online adaptive general

input size (this thesis) and offline adaptive general input size (this thesis). Each of these library

flavors inherently possesses different properties that favor or prevent a given usage scenario. We

have collected the advantages and limitations of each type of library in Table 1.1.

The first column represents fixed input size libraries such as the ones provided by the Spiral-

generated IPPgen [Intel, 2009a]. Such libraries are inherently designed to perform a specific com-

putation (or, alternatively, a collection of specific computations) on a specific platform. Without

a generator, they are expensive to develop and of limited use which restricts their scope to high-

performance kernels on high-profile applications such as the ones that are used inside the Goto-

BLAS [Goto, 2008]. These restrictions are considerably relaxed when a generator is made directly

available to the user which is for instance what we propose, as part of this work, for Viterbi de-

coders [de Mesmay et al., 2010a]. However, library users might still not be able to accommodate

the change in the interface that requires the problem to be of fixed input size. In comparison, all

other columns capture a different kind of libraries that we denote as general input size. Such li-

braries are more flexible since the users can dynamically choose the parameters of the computation

that has to be performed.

The second column captures general input size non-adaptive performance libraries in which

the developers have fixed the inherent degrees of freedom of the implementation space through

heuristics. This category, which contains most commercial and scientific libraries, is, by nature,

extremely sensible to changes in hardware. The whole library may have to be rewritten if the
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General input size

Fixed input size Heuristics based Online adaptive Offline adaptive

Example library IPPgen-like MKL-like FFTW-like ATLAS-like

[Intel, 2009a] [Intel, 2009b] [Frigo, 1999] [Whaley et al., 2001]

Example interface f_8(X,Y) f(8,X,Y)

{

d = f(8)

d(X,Y)
f(8,X,Y)

Supports legacy interface N Y N Y

Adaptation none none online (planner) offline (setup)

User view

When size changes discard - replan -

When platform changes pray pray replan reinstall

When paradigm changes discard discard discard discard

Developer view

(without generator)

When size changes rewrite the library - - -

When platform changes rewrite the library retune heuristics - -

When paradigm changes rewrite the library rewrite the library rewrite the library rewrite the library

Developer view

(with generator)

When size changes regenerate - - -

When platform changes regenerate retune heuristics - -

When paradigm changes retune the generator retune the generator retune the generator retune the generator

Generatable by Spiral [Püschel et al., 2005] [Voronenko, 2008] this dissertation this dissertation

TABLE 1.1: Different libraries for a hypothetical functionality f and their properties. The second
row shows the corresponding user interface for a call of fwith inputX of size 8 and outputY. “Pray”
upon a platform change means nothing in the library is changed; hence, the resulting performance
may or may not be good. Observe that wrappers can fake the legacy interface for both the fixed
input size and the online adaptive library if the sizes of interest are known but they cannot handle
arbitrary sizes.
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platform substantially changes and even minor architectural modifications may require a new tuning

of the heuristics. The recent doctoral thesis of Voronenko developed an extension to Spiral that has

enabled the computer generation of such libraries for linear transforms [Voronenko, 2008]. This

way, the library developers can update the generator and regenerate the library instead of rewriting

the library if major changes are needed. However, this generative approach still has one limitation

which is that the automation is complete: the heuristics still have to be designed by hand.

The third column captures online adaptive libraries such as FFTW [Frigo and Johnson, 2005]

that split the computation into two phases: the creation of a problem descriptor or plan (called d

in the table) and the use of that descriptor to actually perform the computation. The idea there

is that a space of different algorithms can be explored during plan creation and that overhead can

be compensated over time since users usually perform the desired computations more than once

for the same problem size (here: 8). The thesis intends to enable the generation of such libraries

which would free the library developers of the heuristics design. To achieve this, we design different

search strategies for the planner, from the “traditional” dynamic programming to advanced decision

making strategies based on reinforcement learning. These are then implemented in a way that they

can be inserted into the libraries generated by us or the transform libraries from [Voronenko, 2008].

The fourth column captures offline adaptive libraries such as ATLAS [Whaley and Dongarra,

1998] that adapt to the platform during installation. The difference to online adaptive libraries is

that, after setup, the library is readily available to the user who can now use it through the legacy

interface. This dissertation presents a mechanism for the computer generation of offline adaptive

libraries from online adaptive libraries by creating deterministic decision-trees during the setup of

the library.

1.4 Contributions of the Thesis

The main contributions of this thesis include the following:

• A domain-specific mathematical language, called the Operator Language (OL), to symboli-

cally represent numerical algorithms that have data-independent control flows. OL is a su-

perset of SPL [Xiong et al., 2001], the signal processing language at the core of Spiral. We

show that OL can describe linear transforms (the domain of SPL), matrix-multiplications and

Viterbi decoding [de Mesmay et al., 2010a; Franchetti et al., 2009].

• Compiler transformations that enable the generation of high-performance code directly from

OL specifications. This includes optimization passes on intermediate languages and rewriting

systems to formally vectorize and parallelize at a high level of abstraction.

• OL extensions to Voronenko’s recursion step closure which is the key phase in deriving the set

of mutually recursive functions necessary to provide efficient general input size libraries for
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linear transforms [Voronenko, 2008; Voronenko et al., 2009]. In particular, data reorderings

across recursion steps for OL are supported.

• Modular platform-adaptation mechanisms that search the space of alternative algorithms. No-

tably, we generate offline adaptive (at installation time) and online adaptive (at runtime) li-

braries. Offline adaptation is achieved using a statistical classifier that generates decision

trees at installation time [de Mesmay et al., 2010b]. Online adaptation is performed by run-

time planning using several search modules that include dynamic programming and a novel

algorithm based on Monte-Carlo tree search [de Mesmay et al., 2009].

• A generator prototype that extends previous work and implements the above contributions to

allow “push-button” adaptive library generation for different domains.

Evaluation. We evaluate the results of this thesis on two key aspects, the performance of the

generated libraries and the versatility of the code generator. Performance is assessed with compar-

isons against relevant academic and industrial competitors on commodity platforms. Versatility is

shown by the range of different libraries that can be generated. In particular, we demonstrate the

following:

• A library generator for different domains: linear transforms, basic linear algebra, and con-

volutional decoding. For linear transforms, the general input size library generation problem

was solved by [Voronenko, 2008]. In this case, our work makes it possible to render these

libraries adaptive (see below).

• Experimental results that show that the generated libraries have a performance that is com-

petitive with existing academic and industrial competitors.

• A system that can generate different types of libraries: collections of fixed input size prob-

lem (prior work), heuristic based libraries (prior work), planner-based adaptive libraries or

adaptive libraries that infer a decision tree at installation time.

• A back-end that can target different languages: Besides C++, we will produce C code and

Java code.

• A customization mechanism that allows interesting tradeoffs, notably trading library code

size for performance or for problem coverage.

• A compiler that can optimize for different targets most notably scalar, vectorized, and parallel

code.

• Different planners that provide different online search strategies, including dynamic program-

ming, Monte-Carlo, and a novel technique based on reinforcement learning.
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• A mechanism that automatically generates customized heuristics in order to generate offline

adaptive libraries.

1.5 Related work

The motivation for program generation and automatic platform adaptation arises from the inability

of optimizing compilers to achieve the performance levels of hand-optimization (see, for example,

Figure 1.1). This is evidenced by the fact that most platform vendors offer specific performance

libraries: Intel (Math Kernel Library & Integrated Performance Primitives), AMD ( Core Math

Library & Framewave ), IBM (Engineering and Scientific Subroutine Library ), and others.

The core reason for this shortcoming of compilers is that the increasing complexity of comput-

ing platforms prevents the development of accurate platform models that are needed to assess the

profitability of compiler transformations and hence choose among the large set of otherwise legal

optimizations. Two different avenues of research related to our work have started to address these

problems: iterative compilation and automatic performance tuning / program generation.

1.5.1 Iterative Compilation

Several researchers have proposed iterative compilation which places the compiler at the center of

a feedback-driven optimization loop [Bodin et al., 1998; Fursin et al., 2005b; Kisuki et al., 2000a].

The idea is attractive but, in practice, going beyond the research demonstrator is difficult because

there are actually many compiler parameters to evaluate and even more if we start looking at se-

quences of transformations. As of 2010, several propositions have been made to render iterative

compilation practical and we distinguish four major research directions:

• Machine learning techniques can be used to model the search space and therefore reduce

the number of actual evaluations needed [Cavazos and O’Boyle, 2006; Cooper et al., 2002;

Leather et al., 2009; Monsifrot et al., 2002; Stephenson and Amarasinghe, 2005].

• Sampling methodologies propose to reduce the duration of each run by evaluating only

a carefully chosen subset of the computation phases of the benchmark program, therefore

scanning more points within the same amount of time [Fursin et al., 2005a; Lau et al., 2005;

Sherwood et al., 2002].

• Using developer hints can direct the compiler towards the right transformations and therefore

reduce the number of points to evaluate. This is done by providing a framework to help

developers express their own transformations [Barthou et al., 2007; Beckmann et al., 2004;

Cohen et al., 2006; Donadio et al., 2006].

• Structuring the transformation space can directly reduce the number of points to evaluated.

Typically, structuration is a “grassroot” approach where one focuses on a specific domain and



1.5. Related work 11

gradually grows it towards more general cases. The polyhedral model framework is possibly

the most general approach in that it can deal with a certain type of loops and can describe

entire compositions of optimizing transformations for them [Ahmed et al., 2000; Bastoul,

2004; Cohen et al., 2005].

1.5.2 Automatic Performance Tuning and Program Generation

A different approach (even though in some aspects related to iterative compilation) to overcoming

compiler shortcomings has been the development of automatic performance tuning and program

generation techniques. We overview some prominent examples starting with Spiral which underlies

this thesis.

Spiral. Our work builds on Spiral, a library generator for linear transforms [Püschel et al.,

2005]. Representing linear transforms using a declarative domain-specific language [Xiong et al.,

2001] based on Van Loan’s formalism [Van Loan, 1992], Spiral formally manipulates the structure

of the algorithms to map them to various targets: parallel shared memory code [Franchetti et al.,

2006b], distributed message passing code [Bonelli et al., 2006], vectorized code [Franchetti et al.,

2006c], and hardware descriptions [Milder et al., 2008]. The associated search space has been mod-

eled using machine learning techniques [Singer and Veloso, 2001, 2002]. Spiral has long been

limited to generating collections of fixed input size functionalities but the recent doctoral thesis of

Voronenko [Voronenko, 2008] enables the generation of general input size libraries. Such libraries

achieve very high performance [Voronenko et al., 2009] but, since they are generated without feed-

back, the degrees of freedom have to be determined with properly chosen heuristics. In this the-

sis, we extend Spiral in two orthogonal directions: 1) the computer generation of non-transform

functionalities, notably matrix-multiplication libraries and Viterbi decoders, and 2) the computer

generation of online and offline adaptive general input size libraries.

ATLAS. ATLAS is an offline adaptive library providing automatically tuned basic linear algebra

operations (BLAS) [Whaley and Dongarra, 1998; Whaley et al., 2001]. The different implementa-

tions of the matrix multiplication operation arise from different combinations of important param-

eters such as the block sizes or the unrolling factor. Interesting parameter combinations are tested

on the target platform at installation time and the best ones are selected for inclusion in the final

library. This approach has been very successful for years but lacks expressivity to represent more

advanced transformations such as vectorization or packing that are required on new commodity ar-

chitectures. As a result, ATLAS is now mainly used as an infrastructure around user-contributed

kernels [Whaley, 2001]. In comparison, this thesis targets the generation of vectorized GEMM li-

braries. Considering that a high-performance BLAS 3 can be built from a high-performance GEMM

[Kågström et al., 1998], this thesis could serve as a basis for an offline adaptive BLAS library.

FFTW and UHFFT. FFTW and UHFFT are online adaptive libraries for linear transforms

[Frigo and Johnson, 2005; Mirković, 2001]. The core idea of both libraries is to provide a set
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of different recursions for the computation of the DFT. At runtime, the libraries use a so-called

planner to select the best recursions with dynamic programming. Using the work from [Voronenko,

2008] as a basis to generate linear transform recursive libraries, this thesis builds the infrastructure

to add a runtime planner to our generated libraries, making them generated online adaptive libraries.

Multiple search mechanisms are proposed to drive the planner.

FLAME. FLAME is a library generator for advanced dense linear algebra algorithms (e.g.,

LU Factorization) [Gunnels et al., 2001; van de Geijn and Quintana-Ortí, 2008]. Algorithms are

described using blocked matrix equations and transformed all the way to source code implementa-

tions with key steps being the discovery of possible loop invariants and the parallelization using task

queues [Bientinesi, 2006]. Note that FLAME relies on an existing high-performance BLAS library.

TCE. TCE is a library generator for tensor contractions that are needed in quantum chemistry

[Baumgartner et al., 2005]. The input to the system is a tensor expression and main optimization

steps include operation count minimization, locality optimization, and problem partition among

different processors [Gao et al., 2005]. It also relies on an external performance library to supply it

with BLAS functionality.

1.6 Organization of the Thesis

In the remainder of this document, we will explain the mechanisms at work inside the library gen-

erator. For the explanation, we will mostly focus on a single functionality, the matrix-matrix multi-

plication but other functionalities are in principle possible.

In Chapter 2, we present the domain-specific language OL that we use to describe algorithms

and we show how to automatically generate imperative code from OL. In Chapter 3, we derive

library cores from our algorithms: undetermined optimized recursive libraries that naturally capture

a spectrum of different implementations. We then study how to determine the degrees of freedom

inside these library cores using online and offline exploration mechanisms in Chapter 4. Finally, we

present results in Chapter 5 before concluding.



CHAPTER 2

Representing Algorithms

This chapter introduces the Operator Language (OL), a mathematical domain-specific language

designed to describe structured algorithms for data-independent functions. It is used as the input

language of our library generator, which generates an optimized library through a sequence of trans-

formations.

We start by providing background on the Signal Processing Language (SPL, [Xiong et al.,

2001]), which is a subset of OL, and describes algorithms for linear transforms and underlies Spi-

ral [Püschel et al., 2005]. We then extend SPL beyond the transform domain by introducing OL

primitives needed for matrix-matrix multiplication. Finally, we show how OL can be used to model

subsets of more involved functions using a Viterbi decoder as example.

2.1 Signal Processing Language (SPL)

2.1.1 Linear Transforms

Although often presented in the literature as summations, linear transforms can be equivalently

defined as a matrix-vector products

y = Mx,

where x and y are, respectively, the input and the output vectors, and M is a fixed matrix that, by

slight abuse of notation, we also call the transform.

Many transforms are important for signal processing and data compression, notably:

• the Discrete Fourier transform (DFT), widely used for spectral analysis [Tolimieri et al., 1997;

Van Loan, 1992] and its real-valued counterpart, the real DFT (RDFT) [Bergland, 1968;

Voronenko and Püschel, 2009];
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TABLE 2.1: Definition of important linear transforms.

• the Walsh-Hadamard transform (WHT), used for instance inside the high-definition video

standards Blu-Ray and HD-DVD [Beauchamp, 1984];

• the four main types of discrete cosine transforms (DCTs), used for instance in the JPEG image

format and MPEG video format [Rao and Yip, 1990] and [Püschel and Moura, 2008];

• the modified discrete cosine transform (MDCT), used in numerous modern lossy audio for-

mats such as MP3, AC-3 or WMA [Malvar, 1992].

These transforms are all defined for every input size n, except the WHT which only exists for

two-powers n = 2k. Further, all transforms are n × n square matrices with the exception of the

MDCT. Their general form is presented in Table 2.1. Note that many more transforms exist, but are

possibly less relevant.

2.1.2 Fast Transform Algorithms and SPL

Θ(n2) arithmetic operations are required for a generic dense matrix-vector product [Burgisser et al.,

1997] but the particular structure of many transforms, including those in Table 2.1, allows their

computation with O(n log n) operations.

Fast transform algorithms can be represented as factorizations of the typically dense transform

into a product of sparse structured matrices. We provide a simple example with the DCT-2 of size

4, defined by:

DCT-24 =















1 1 1 1

cos 1π
8 cos 3π

8 cos 5π
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
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

. (2.1)
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Computing y = DCT-24 x naïvely requires 12 additions and 12 multiplications1 . Yet, it is easy to

verify (but not easy to derive) that the following factorization holds:

DCT-24 =















1 . . .

. . 1 .

. 1 . .

. . . 1





























1 1 . .

cos 2π
8 cos 6π

8 . .

. . cos 1π
8 cos 3π

8

. . cos 3π
8 cos 7π

8





























1 . . 1

. 1 1 .

1 . . −1

. 1 −1 .















(2.2)

Using Equation 2.2, y = DCT-24 x can be computed in 3 successive matrix-vector products and

reduces the number of operations to 8 additions and 6 multiplications.

The Signal Processing Language (SPL) extends the Kronecker product formalism introduced

by [Johnson et al., 1990a; Van Loan, 1992]. It was first presented in [Xiong et al., 2001] and fur-

ther extended in [Püschel et al., 2005]. It is a domain-specific language that captures transform

algorithms such as Equation 2.2 using formulas that are constructed from transforms, matrices, and

matrix constructs.

Matrices. Basic matrices are the building blocks of SPL. They are described using standard

mathematical notations. Examples include the n× n identity In and the n× n “flip” matrix Jn:

In =











1

. . .

1











, Jn =











1

. .
.

1











.

Important permutations are also given symbols such as the stride permutation Ln
m, defined by its

underlying permutation

Ln
m : jk + i 7→ im+ j for 0 ≤ i < k, 0 ≤ j < m with n = mk. (2.3)

Matrix constructs. The strength of SPL lies in its ability to capture the structure of the trans-

form algorithms. Matrix constructs are used for this purpose and the most important ones are the

matrix product, the direct sum, and the tensor product.

We have already used the matrix product A ·B = AB in the DCT-24 example (Equation 2.2).

We note that, in SPL, a matrix product is not supposed to be computed using a matrix-matrix com-

putation but is viewed as a two stage matrix-vector multiplication algorithm: t = B x, y = A t. The

iterative product Πn−1
i=0 Ai extends the matrix product and expresses that the computation be done in

n successive steps.

1We assume that multiplications by 1 and -1 do not count.
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The direct sum ⊕ composes two matrices into a block diagonal matrix:

A⊕B =





A

B



 .

The most important matrix construct in SPL is the tensor (or Kronecker) product ⊗, defined as:

A⊗B = [ak,lB], where A = [ak,l]. (2.4)

Two important special cases arise when A or B is the identity matrix. If the identity appears on

the left side, then the tensor product degenerates into a direct sum that is a simple block diagonal

matrix:

In ⊗ B = B⊕ · · · ⊕ B
︸         ︷︷         ︸

n times

=











B

. . .

B











.

As we will see later In ⊗ B can be interpreted as a computation that is perfectly parallelizable on a

machine using n processors. If the identity appears on the right side, as in A⊗In, the tensor product

also presents a very particular structure where each entry is replicated n times, for instance,





a b

c d



⊗ I2 =















a b

a b

c d

c d















. (2.5)

We will see later that computations of this type can be perfectly mapped to machine supporting

SIMD vector extensions.

Finally, we introduce the indexed tensor product for n matrices Bj , j = 0 . . . n− 1, of the same

size:

In ⊗j Bj = B0⊕ · · · ⊕ Bn−1 =











B0

. . .

Bn−1











.

Bj ⊗jIn is defined analogously.

Formulas and breakdown rules. SPL expressions are called formulas and their grammar is

sketched in Table 2.2. It is possible for two different formulas to be mathematically equal in which

case each formula can be read as an algorithm and both algorithms ultimately perform the same

computation. For instance, the definition for DCT-24 (Equation 2.1) presents a trivial strategy to
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〈formula〉 ::= 〈matrix〉 | 〈transform〉 |
〈formula〉〈formula〉 | product

〈formula〉 ⊕ 〈formula〉 | direct sum

〈formula〉 ⊗ 〈formula〉 tensor product

〈matrix〉 ::=
[

a b
c d

]

| In | Jn | Ln
k | . . .

〈transform〉 ::= DFTn | RDFTn | DCT-2n | . . .

TABLE 2.2: SPL grammar [Püschel et al., 2005] in Backus-Naur form [Harrison, 1978] showing
that an SPL formula is either a matrix, a transform, or is constructed using matrix constructs.
a, b, c, d, n and k are integers.

compute it, whereas the factorization Equation 2.2 describes a fast algorithm for it.

A breakdown rule is a formula equality involving a transform of arbitrary size such as DCT-2n

(as opposed to fixed size such as DCT-24). It captures a divide-and-conquer algorithm for the

transform by breaking it down into several other transforms.

For example, the breakdown rule that generalizes Equation 2.2 is

DCT-2n → Ln
n/2 · (DCT-2n/2⊕DCT-4n/2) ·

[

In/2 Jn/2

In/2 −Jn/2

]

.

Note that we write “→” instead of “=” to denote that it is a rule. The most iconic example, and

also a recurring character of this dissertation, is the rule corresponding to the well known general-

radix Cooley-Tukey Fast Fourier transform (FFT), the first special case of which was introduced in

[Cooley and Tukey, 1965]:

DFTn → (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k , n = km. (2.6)

The above equality shows that DFTn can be computed in four successive steps, namely, a permu-

tation, k DFTms, a scaling2 and m DFTks.

The literature contains many dozens of such fast algorithms, for instance [Elliott and Rao,

1983; Nussbaumer, 1982; Püschel and Moura, 2008; Tolimieri et al., 1997; Voronenko and Püschel,

2009]. Table 2.3 presents a few of these breakdown rules for DFTn and DCT-2n, including the fa-

mous prime-factor [Good, 1958] (Equation 2.8), Rader [Rader, 1968] (Equation 2.9), and Bluestein

[Bluestein, 1970] FFTs.

2.1.3 Insights from Spiral

Spiral [Püschel et al., 2005; Voronenko et al., 2009] automatically generates high-performance li-

braries for linear transforms. The generated programs are automatically tuned to a given target

2Tn
m is a diagonal matrix whose precise entries are irrelevant here.
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DFTn −→ (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k , n=km (2.7)

DFTn −→ V −1
m,k(DFTk ⊗Im)(Ik ⊗DFTm)Vm,k, n=km, gcd(k,m)=1. (2.8)

DFTn −→ W−1
n (I1 ⊕DFTn−1)En(I1 ⊕DFTn−1)Wn, n prime (2.9)

DFTn −→ BT
n,mDmDFTmD′

mDFTmD′′
mBn,m, m≥2n−1 (2.10)

DFTn −→ PT
k/2,2m

(

DFT2m⊕
(

Ik/2−1 ⊗i C2m rDFT2m((i + 1)/k)
)) (

RDFT
′
k ⊗Im

)

(2.11)

DCT-2n −→ Ln
n/2(DCT-2n/2 ⊕DCT-4n/2)

[

In/2 Jn/2

In/2 −Jn/2

]

(2.12)

DCT-2n −→ SnRDFTnK
n
2 (2.13)

DCT-2n −→ PT
k/2,2m

(

DCT-22mK2m
2 ⊕

(

Ik/2−1 ⊗N2mRDFT-3T2m
))

Gn(L
n/2
k/2 ⊗ I2)(Im ⊗RDFT

′
k)Qm/2,k (2.14)

TABLE 2.3: Examples of SPL breakdown rules for DFTn and DCT-2n. Above, Q,P,K, V,W
are various permutation matrices, D are diagonal matrices, and B,C,E,G,N, S are other sparse
matrices, whose precise form is irrelevant. Arrows are used in place of equalities to emphasize that
the left-hand side should be replaced by the right-hand side.

platform using both a rewriting system that structurally optimizes algorithms and a feedback di-

rected search in the space of alternative algorithms.

More precisely, Spiral can be viewed as an iterative compiler for SPL3 as shown in Figure 2.1.

The input to Spiral is a transform of fixed size such as DCT-24 (that we used earlier) or DFT1024;

the output is an optimized C program that computes the transform. Like other iterative compilation

frameworks [Fursin et al., 2005b; Kisuki et al., 2000b], Spiral replaces traditional static cost models

for optimization choices by providing an evaluation and a search module that work in unison: the

evaluation feeds back timing information that are exploited by the search in order to drive the current

optimization strategy towards the best implementations.

One of the key characteristics of the project is that it is limited to a specific domain, linear signal

transforms. Because generality has been forfeited, the level of abstraction of the source language

of the compiler, SPL, is much higher than the one of traditional languages like C. This has two

interesting consequences: first, entire algorithms, not just loop transformations, can be captured

and searched upon and second, optimizations, during the implementation stage, can be made more

general and more powerful due to the limited variety of inputs coming into the compiler.

In this dissertation, our first goal is to enlarge the source language of Spiral in a way that different

primitives, non-transforms, can be captured. The major difficulty in doing this is that each layer of

the system is tightly integrated: adding a primitive to the description language requires to propagate

3As we will see later, this affirmation is only partially true for the later versions of Spiral
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Formula Optimization

Implementation
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in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

Evaluation

Level

FIGURE 2.1: The architecture of the early versions of Spiral.

changes throughout the compiler. We present our candidate language, the Operator Language, in

the next section.

2.2 Operator Language (OL)

The Operator Language (OL) is a domain-specific language that extends SPL. Just as SPL, it aims

to express algorithms at a high abstraction level and to be mathematical and declarative in that it

describes the structure and the index space of the data layout of computations without specifying

how to perform them. The language to date is restricted to express computations that are data

independent and that possess a suitable structure to be handled efficiently.

This section starts by presenting the building blocks of the language followed by an overview

of how to capture a simple dense matrix-matrix multiplication using the language.

2.2.1 Elements of the Language

OL is a language of mathematical nature that is a superset of SPL (Subsection 2.1.2). Its main

building blocks are operators, combined into formulas by higher-order operators.

Operators. An operator is a function that consumes and produces a set of vectors. An operator

of arity (r, s) consumes r vectors and produces s vectors. An operator can be (multi)linear or not.

Linear operators of arity (1, 1) are precisely linear transforms, i.e., mappings x 7→ Mx, where M

is a fixed matrix.
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Name Definition

Linear, arity (1,1)

Identity In : Cn → C
n; x 7→ x

Transposition of an m× n matrix Lmn
m : Cmn → C

mn; A 7→ AT

Matrix M ∈ C
m×n M : Cn → C

m;x 7→Mx

Multilinear, arity (2,1)

Point-wise product Pn : Cn × C
n → C

n; ((xi), (yi)) 7→ (xiyi)

Scalar product Rn : Cn × C
n → C; ((xi), (yi)) 7→

∑

(xiyi)

Kronecker product Km×n : Cm × C
n → C

mn; ((xi), y)) 7→ (xiy)

TABLE 2.4: Definition of basic OL operators. The operators are here assumed to operate on
complex numbers but extension to other base sets is straightforward. Boldface fonts represent
vectors or matrices linearized in memory. A vector is sometimes written as x = (xi) to identify the
components.

Matrices are viewed as vectors stored linearized in memory in row major order. For example,

the operator that transposes an m×n matrix4, denoted with Lmn
n , is of arity (1, 1). Table 2.4 defines

a set of basic operators that we use.

Functionalities. A functionality is an operator for which we want to generate fast code. For

instance, the matrix-matrix multiplication MMMm,k,n is an operator that consumes two matrices

and produces one5:

MMMm,k,n : Rmk × R
kn → R

mn; (A,B) 7→ AB.

The discrete Fourier transform DFTn is another functionality example. It is a linear operator of

arity (1, 1) that performs the following matrix-vector product:

DFTn : Cn → C
n; x 7→ [e−2πikl/n]0≤k,l<nx.

In this document, functionalities are bold-faced.

Higher-order operators. Higher-order operators are functions on operators. A simple example

is the composition, denoted in standard infix notation by ◦. For instance, using the Pmn operator

defined in Table 2.4,

Lmn
n ◦ Pmn

is the arity (2, 1) operator that first multiplies point-wise two matrices of size m × n, and then

transposes the result.

4The transposition operator is functionality equivalent to the stride permutation introduced in Equation 2.3 and is
sometimes referred to as a corner turn in the literature.

5Note that this definition is purely mathematical and thus differs from commonly used interfaces such as the DGEMM
[Dongarra et al., 1990]. This will be taken into account later in this thesis.
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The cross product of two operators applies the first operator to the first input set and the second

operator to the second input set, and then combines the outputs. For example,

Lmn
n × Pmn

is the arity (3, 2) operator that transposes its first argument and multiplies the second and third

argument pointwise, producing two output vectors.

The most important higher order operator in this language is the tensor product. For linear

operators A,B of arity (1,1) (i.e., matrices), the new tensor product corresponds to the tensor or

Kronecker product of matrices defined in Equation 2.4.

As we have seen in Table 2.3, the Kronecker product is very useful for concisely describing

transform algorithms. Its usefulness resides in its ability to captures loop structures, data indepen-

dence, and parallelism. Therefore, it really is a key construct in SPL and we now formally extend

its definition to more general operators, focusing on the case of two operators with arity (2,1); the

generalization is straightforward.

Let A : C
p×C

q → C
r be a multi-linear operator and let B : C

m×C
n → C

k be any operator.

We stress that A, being multi-linear, is not interchangeable with B by using a calligraphic font for

it. We denote the ith canonical basis vector of Cn with e
n
i . Then

(A⊗B)(x, y) =

p−1
∑

i=0

q−1
∑

j=0

A(epi , e
q
j)⊗ B((ep

T

i ⊗ Im)x, (eq
T

j ⊗ In)y),

(B⊗A)(x, y) =

p−1
∑

i=0

q−1
∑

j=0

B((Im ⊗ e
pT

i )x, (In ⊗ e
qT

j )y)⊗A(epi , e
q
j).

Intuitively, A, whether on the left or on the right of the tensor product, describes how to operate

on the chunks of data produced by B. If it is on the left, A describes the coarse structure of the

computation. If it is on the right, A describes the internal structure (as in Equation 2.5). Obviously,

if B is also multilinear, then both properties hold simultaneously.

We give a few examples to better illustrate the tensor product. First, let A = P2 be the pointwise

product of two vectors of length 2. Then, the relationship between P2 and P2 ⊗ B (arbitrary B) is

as follows (the superscripts U and L denote the upper and lower halves of a vector):





x0

x1



×





y0

y1





P2−→





x0 · y0
x1 · y1



 ,





xU

xL



×





yU

yL





P2⊗B−−−→





B(xU , yU )

B(xL, yL)



 . (2.15)
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Next, we choose A = R2, the scalar product of vector of length 2:





x0

x1



×





y0

y1





R2−−→
∑

i∈{0,1}

xi · yi,





xU

xL



×





yU

yL





R2⊗B−−−−→
∑

i∈{U,L}

B(xi, yi).

Finally, we choose A = K2×2, the Kronecker product K2×2 (now viewed as operator of arity

(2, 1) on vectors, see Table 2.4, not viewed as higher order operator):





x0

x1



×





y0

y1





K2×2−−−→















x0 · y0

x0 · y1

x1 · y0

x1 · y1















,





xU

xL



×





yU

yL





K2×2⊗B−−−−−→















B(xU , yU )

B(xU , yL)

B(xL, yU )

B(xL, yL)















.

In all three cases, the multilinear part A of the tensor product describes how blocks are arranged and

B prescribes the local operations to perform on the blocks. Comparing these three examples, A = P

yields a tensor product in which only corresponding parts of the input vectors are computed on and

results are juxtaposed, A = R does essentially the same computation but results are accumulated

and A = K yields a tensor product in which all combinations are computed on and stored.

2.2.2 Matrix-Matrix Multiplication

This subsection outlines how OL can be used by developing a whole space of alternative implemen-

tations for a simple example functionality: the dense matrix-matrix multiplication. This is achieved

by plugging divide-and-conquer algorithms into each other and terminating the recursion using base

cases.

Breakdown rules. We express recursive algorithms for functionalities as OL equations and call

them breakdown rules. As example, we consider a blocked matrix multiplication. While it does

not improve the arithmetic cost over a naïve implementation, blocking increases reuse and therefore

can improve performance [Whaley et al., 2001; Yotov et al., 2005]. Note that we do not draw a firm

line between cache and register blocking since this difference is related to unrolling which is only

performed later in our framework. We start with blocking along one dimension.

Figure 2.2a shows a picture of a horizontally blocked matrix. Each part of the result C is pro-

duced by multiplying the corresponding part of A by the whole matrix B. In OL, this computation

is expressed by a tensor product with a Kronecker product:

MMMm,k,n → Km/mb×1 ⊗MMMmb,k,n . (2.16)

Note that the number of blocks m/mb is a degree of freedom under the constraint that m is divisible

by mb
6; in the picture, m/mb is equal to 2 (white block and black block).

6In general, blocks may be of different sizes but this is not easily expressible with the tensor product.
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=

(a) Horizontal blocking

=

(b) Vertical blocking

=

(c) Depth blocking

FIGURE 2.2: Blocking matrix multiplication along each one of the three dimensions. For the
horizontal and vertical blocking, the white (black) part of the result is computed by multiplying the
white (black) part of the blocked input with the other, gray, input. For the depth blocking, the result
is computed by multiplying both white parts and both black parts and adding the results.

Figure 2.2b shows a picture of a vertically tiled matrix. The result is computed by multiplying

parts of the matrix B with A so the underlying tensor product again uses a Kronecker product.

However, since matrices are linearized in row-major order, we now need two additional stages: a

pre-processing stage where the parts of B are de-interleaved and a post-processing stage where the

parts of C are re-interleaved7 :

MMMm,k,n→
(

Im ⊗ Ln
n/nb

)

◦
(

MMMm,k,nb
⊗K1×n/nb

)

◦
(

Ikm× (Ik ⊗ Ln
nb
)
)

. (2.17)

Finally, Figure 2.2c shows a picture of a matrix tiled in the “depth.” This time, parts of one input

corresponds to parts of the other input but all results are added together. Therefore, the correspond-

ing tensor product is not done with a Kronecker product but with a scalar product:

MMMm,k,n →
(

Rk/kb ⊗MMMm,kb,n

)

◦
(

(L
mk/kb
k/kb

⊗ Ikb)× Ikn
)

. (2.18)

The three blocking rules we just described can actually be combined into a single rule with three

degrees of freedom:

MMMm,k,n →(Im/mb
⊗ Lmbn/nb

mb
⊗ Inb

) ◦ (MMMm/mb,k/kb,n/nb
⊗MMMmb,kb,nb

)

◦((Im/mb
⊗L

mbk/kb
k/kb

⊗Ikb)×(Ik/kb⊗L
kbn/nb

n/nb
⊗Inb

)).

(2.19)

The above rule captures the well-known mathematical fact that a matrix multiplication of size

(m,k, n) can be done by repeatedly using block multiplications of size (mb, kb, nb). Interestingly, a

blocked matrix multiplication can be described as a tensor product in which both the coarse and fine

structures are themselves matrix multiplications8 . This fact was already observed by [Johnson et al.,

1990b], albeit expressed somewhat differently.

Base cases. Recursive algorithms need to be terminated by base cases that correspond to sizes

7As we will explain later, the three stages here are fused during the loop merging optimization, so three OL stages do
not necessary imply three different passes through the data.

8Observe that any one of the matrix multiplications can actually be chosen as the coarse structure since both operators
are multilinear.
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for (p=0; p<k; p++)

for (i=0; i<m; i++)

for (j=0; j<n; j++)

C[i*n+j] += A[i*k+p] * B[p*n+j] ;

FIGURE 2.3: Naïve triple loop implementation of a matrix-matrix multiplication in C. We assume
the output matrix to be initialized with zeros.

for which the computation of the functionality is done straightforward.

In the blocked multiplication case, the three dimensions can be reduced independently. There-

fore, it is sufficient to know how to handle each one to be able to tackle any size. In the first two

cases, the matrix multiplication degenerates into Kronecker products; in the last case, it simplifies

into a scalar product:

MMMm,1,1 → Km×1, (2.20)

MMM1,1,n → K1×n, (2.21)

MMM1,k,1 → Rk. (2.22)

Note that these three rules are degenerate special cases of the blocking rules in Equation 2.16,

Equation 2.17 and Equation 2.18.

Algorithm space. A complete algorithm to compute a functionality is obtained by inserting

the breakdown rules into each other and varying the degrees of freedom. For instance, Figure 2.3

presents the naïve algorithm that accumulates outer products in order to compute a matrix multipli-

cation.

In OL, the equivalent algorithm can be obtained by successively applying to MMMm,k,n the

rule in Equation 2.18 with kb = 1, the rule in Equation 2.16 with mb = 1 and finally the rule in

Equation 2.21. The derivation is shown below (obvious simplifications are performed for improved

readability):

MMMm,k,n →
(

Rk ⊗MMMm,1,n

)

◦
(

Lmk
k × Ikn

)

→
(

Rk ⊗ (Km×1 ⊗MMM1,1,n)
)

◦
(

Lmk
k × Ikn

)

→
(

Rk ⊗ (Km×1 ⊗K1×n)
)

◦
(

Lmk
k × Ikn

)

. (2.23)

The last line exactly corresponds to the four lines of pseudocode above. This exhibits the three

strengths of OL:

1. it concisely captures the structure of the computation,

2. it is index-free (no dummy indices i, j and p),
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3. it is point-free9 (no explicit input-output arrays A, B, C).

Also note that we actually derived the final algorithm, thereby giving a proof of correctness, assum-

ing Equation 2.16, Equation 2.17 and Equation 2.18 are correct.

And beyond. More complex algorithms can be generated by following the same principle. For

instance, the above rules capture both the standard “recursive” and “iterative” class of algorithms

[Yotov et al., 2007]. Furthermore, algorithms with sub-cubic cost can also be described in OL. For

instance, Strassen’s method to multiply 2× 2 matrices using only 7 multiplications (instead of 8) is

captured as a base case for MMM2,2,2 [Strassen, 1969]:

MMM2,2,2 →
[ 1 0 0 1 −1 0 1

0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0

]

◦ P7 ◦

















1 0 0 1
0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0

−1 1 0 0
0 0 1 −1









×









1 0 0 1
1 0 0 0
0 0 1 −1

−1 1 0 0
0 0 0 1
1 0 1 0
0 1 0 1

















. (2.24)

Since blocking is a tensor product of two MMMs (Equation 2.19), the Strassen base case

can then be used in the coarse part of the tensor while standard matrix blocking rules are used in

the fine structure. Such algorithms are called hybrid Strassen and they are among the fastest (albeit

numerically unstable) methods to compute the matrix multiplication [D’Alberto and Nicolau, 2007].

However, this will unfortunately remain purely speculative for this dissertation as current limitations

in the compiler prevent us from generating code for non canonical tensor products such as this one.

2.3 OL for Applications Example: Viterbi Decoding

Many real world applications have little global structure and therefore OL cannot reasonably be

extended to cover them. However, for many compute intensive applications, most of the time is

spent within a single functionality which is the performance bottleneck [Intel, 2009d; Jain, 1991].

Sometimes OL can be enlarged to capture these kernels. Spiral can then be used to deliver highly

optimized performance critical parts of full applications. There are two main reasons for using a

domain-specific language. First, it structures and simplifies the implementation of our software

generator. Second, it can enable the automatic SIMD vectorization of the bottleneck. This section

presents one such application that was considerably sped up with OL, namely Viterbi decoding.

Note that OL has been also extended to support other applications, notably synthetic aperture

radar [McFarlin et al., 2009] and sorting [Franchetti et al., 2009]. The most demanding part of the

encoding algorithm for the image compression standard JPEG 2000 [ISO, 2004] has also been

captured [Shen, 2008].

Viterbi decoding. Viterbi decoding is a maximum likelihood sequence decoder method intro-

duced in [Viterbi, 1967], and finds wide usage in communications, speech recognition, and sta-

9For a good example of point-free notation, see [Gibbons, 1999].
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tistical parsing. As a decoder for convolutional codes, it is used in a broad range of everyday

applications and telecommunication standards including wireless communication (e.g., cell phones

and satellites) and high-definition television [Viterbi, 2006]. In the past, the high throughput re-

quirements for decoding demanded dedicated hardware implementations [Black and Meng, 1992,

1997; Kang and Willson, 1998; Lin et al., 2005]. However, the dramatically growing processor per-

formance has started to change this situation: expensive processing is now often done in software

for reasons of cost and flexibility. A prominent example is software defined radio [Mitola, 2002].

In this section, we start by introducing convolutional codes and the Viterbi algorithm. We

then explain how the Viterbi algorithm is usually split it into two parts, the forward pass and the

traceback. We finally rewrite the forward pass, which is the computation bottleneck, and capture it

in OL.

2.3.1 Convolutional Codes

The purpose of forward error-correcting codes (FEC) is to prevent the corruption of a message by

adding redundant information before the message is sent over a channel. At the receiver side the

redundant data is used to reconstruct the original message. In this dissertation, we focus on a single

type of FEC, namely convolutional codes. These codes are heavily used in telecommunications

including Global System for Mobile communications (GSM) and Code Division Multiple Access

(CDMA).

A convolutional encoder takes as input a bit stream and convolves it with a number of fixed bit

sequences to obtain the output bit stream. Since convolution is equivalent to polynomial multipli-

cation, the fixed bit sequences are often called polynomials.

Formal specification. Formally, a convolutional code is specified by N polynomials of degree

K − 1, denoted with p1, . . . , pN . Such a code is said to have a constraint length K and a rate 1/N ,

i.e., for each input bit, the encoder produces N output bits.

We view each polynomial pℓ alternatively as bit sequence10 , integer11, or actual polynomial

pℓ(x) with binary coefficients. An example polynomial for K = 3 is

pℓ = 101 2 ⇔ pℓ = 5 ⇔ pℓ(x) = x2 + 1 .

More generally, if a = a0, . . . , aS−1 is a sequence of bits, then a(x) =
∑S−1

i=0 aix
i.

Encoding now works as follows. The bit stream to be encoded is divided into blocks of length

S. Such a block of bits a = a0, . . . , aS−1 is convolved (denoted with ⋆) with each pℓ, ℓ = 1, . . . , N ,

10We denote bit sequences like this: 101 2.
11In the literature, integers for polynomials are often expressed in octal or hexadecimal format.
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FIGURE 2.4: (a) Hardware implementation with a shift register and (b) Finite state machine repre-
sentations of the encoder r = 1/2, K = 3 with polynomials 7 ⇔ x2 + x+ 1 and 5 ⇔ x2 + 1.

which is equivalent to polynomial multiplication:

b1 = p1 ⋆ a ⇔ b1(x) = p1(x)a(x)

. . .

bN = pN ⋆ a ⇔ bN (x) = pN (x)a(x) .

The bit streams b1, . . . , bN are interleaved to yield the output bit stream b. Each bℓ has length

F = S +K − 1, called the frame length. It is convenient to view the output stream as a sequence

of F many words of N bits each.

Example. Assume we want to encode the bit-stream a = 1010 2 with polynomials p1 = 7 and

p2 = 5, i.e., N = 2 and K = 3 :

b1(x) = (x2 + x+ 1)(x3 + x)

= x5 + x4 + x2 + x

⇔ b1 = 110110 2 .

Similarly, b2(x) = (x2 + 1)(x3 + x) ⇔ b2 = 100010 2. Therefore the final output stream is

b = 1110 00 10 11 00 2 . (2.25)

Hardware implementation. A different way to look at a convolutional code is to consider its

actual hardware implementation, represented for our example in Figure 2.4a.

A shift-register with K−1 flip-flops is used to delay the input stream so that modulo-2 additions

can be performed between the K newest bits. The actual wiring of the adders is determined by the

bit representation of the polynomials pℓ. The initial content of all registers is 0 and that the input

stream is padded with K − 1 trailing zeros to flush the message through the channel.

For instance, assume the two registers in Figure 2.4a contain 0 and 1 and a 1 enters the encoder.

In this case, the top output bit is a 0 (≡ 0 + 1+ 1) and the bottom output bit is a 1 (≡ 0 + + 1) so
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the aggregated output is 01 2. Shifting the values to the left, the registers now contains 1 and 1.

Finite state machine (FSM) representation. Equivalently, the encoding process can be rep-

resented by a finite state machine with 2K−1 states (the possible states of the shift register) that

outputs N bits on each transition. The FSM equivalent to Figure 2.4a is shown in Figure 2.4b.

Each state in the finite state machine has a 0-transition (input bit is 0, solid arrow) and a 1-

transition (input bit is 1, dashed arrow) to other states. More precisely, there exists a 0-transition

between states n and m if m ≡ 2n mod 2K−1. Similarly, there exists a 1-transition between states

n and m if m ≡ (2n + 1) mod 2K−1. The output bit in bℓ (corresponding to the polynomial pℓ)

when transitioning from state n to state m is computed as

bℓn→m =
⊕

(

pℓ&
(

2n⊕ (m&1)
)

)

.

Here, & is the bit-wise AND, ⊕ is the bit-wise XOR, and the initial
⊕

performs an XOR on all

bits. As said before, the initial state is assumed to be 0 and the input stream is padded with K − 1

trailing zeros.

In our running example (Figure 2.4b), assume the current state is 01 2. If the input bit is 1 then

the FSM outputs 01 2 and transitions to state 11 2.

Viterbi trellis. A third representation of the encoding process “unrolls” the finite state machine

in time to yield the Viterbi trellis, shown in Figure 2.5 for our running example. Each path from the

initial state to the final state represents a possible message that can be sent in a single frame.

The different states of the encoder are placed vertically, the different time steps, or stages are

placed horizontally. For example the first line contains state 00 2 at different stages, the second line

contains state 01 2 and so on. The initial state (first stage) when starting a frame is 0. The zero

padding explained previously implies that the last K − 1 transitions are 0-transitions. Therefore,

there is a unique final state and it is zero.

In our example, the message 1010 2 is first padded to 101000 2 then encoded in the finite state

machine. The path that results is highlighted in Figure 2.5. Collecting the corresponding output bits

yields Equation 2.25 again.

2.3.2 Viterbi Decoding

The Viterbi algorithm is a dynamic programming method that performs maximum likelihood se-

quence decoding on a convolutionally encoded stream. Intuitively, the decoder receives a bit stream

from the receiver and has to find the path in the Viterbi trellis that best corresponds to it, which,

ideally, would be the same path the encoder took. It is composed of three phases, the branch metric

computation, the path metric computation, and the traceback. The best visualization of the Viterbi

algorithm again uses the Viterbi trellis but its purpose is now reversed: the incoming message is

fixed and the path is to be found.
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FIGURE 2.5: Viterbi trellis representation of the encoder r = 1/2, K = 3 with polynomials
7 ⇔ x2 + x+ 1 and 5 ⇔ x2 + 1 encoding 1010 2 (padded to 101000 2).

Branch metrics computation. In the first phase, the Viterbi algorithm assigns a cost, called the

branch metric, to each edge in the trellis. This value represents how well the received bits would

match if we knew the encoder took the transition corresponding to a given edge. It is computed

by taking the Hamming distances between the bits the transition should output and the actually

received ones.

Building on our example, we assume the decoder just received the message 11 10 10 00 11 00 2

(which is the message in Equation 2.25 with two bit flips corresponding to injected errors) and we

aligned it vertically with the corresponding stages (top row in Figure 2.6a). The branch metrics that

have been placed on each arrow are the Hamming distance between the actually received bits and

the output bits of the transition (shown in Figure 2.5)

Path metrics computation. After the previous phase, the problem is equivalent to finding the

shortest path between the entry and the exit vertices on a directed acyclic graph with weighted

edges. Therefore, the second phase is a breadth-first forward traversal of the graph. It progressively

computes the path metric, which is the shortest path to get from the root to each vertex. If a state

has the path metric π, there exists one message that ends in the state with π corrupted bits and this

message is less or equally corrupted than all other messages. While computing this, the predecessor

of each node is remembered as a decision bit12.

In our example (Figure 2.6b), path metrics have been written inside each state and decision bits

are represented by removing the discarded incoming edge.

Traceback. The decision bits describe the ancestor of each vertex. Given this information

and the final state, one can reconstruct the shortest path, called the survivor path by reading off

predecessors.

In our example, remembering that solid lines correspond to the zero input bit and dashed lines

to the one input bit, one can simply read off the shortest path on the Figure 2.6b by starting in the

12The structure of the FSM guarantees that there are exactly two incoming edges into each vertex, except for the
leftmost nodes in the trellis where there is only one.
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FIGURE 2.6: The same Viterbi trellis at different phases in the algorithm: (a) After branch metrics
have been computed and (b) After path metrics have been propagated and predecessors have been
decided.

final state and reading backwards to get 101000 2.

In a software Viterbi decoder, it is important to perform branch and path metrics computations

simultaneously to improve the ratio of operations over memory accesses. The fusion of these two

phases is called the forward pass. For more information about the Viterbi algorithm, we refer the

reader to [Fleming, 2006].

Soft decisions. In actual applications, Viterbi decoders are usually placed downstream of a

receiver that converts analog channel symbols to a digital format. If the receiver classifies incoming

symbols as either zero or one, the system is said to be using hard decisions. However, doing so

hides uncertainty which can be useful for decoding. For example, assuming symbols on the channel

are internally mapped by the receiver to reals between zero and one, 0.9 makes a more convincing

1 than 0.6.

This observation underlies a soft-decision receiver, which directly encodes its confidence level

and passes this information to the decoder. Let Q be the number of levels in which the information

is encoded: for instance, if Q = 8, the receiver classifies in 8 different levels and if Q = 2 the

system is actually making hard decisions. The higher Q, the less emphasis is put on ambiguous

symbols, resulting in an overall better decoding.

In a hard decision decoder as shown in Figure 2.6, the decoder receives 1 bit per polynomial

per stage and branch metrics are therefore comprised between 0 (perfect match) and N (bits differ

on all polynomials). Formally, let βi
n→m be the branch metric for the transition from state n to m

at stage i and let siℓ denote the bit for the ℓ-th polynomial at stage i. Then, the Hamming distance

expression is

βi
n→m =

N
∑

ℓ=1

|siℓ − bℓn→m| .

In a soft-decision system with Q levels of quantization, the branch metrics range between 0 and

(Q− 1)N since the maximal mistake that can be done on each polynomial is Q− 1. Redefining siℓ
to be the symbol (i.e., a value between 0 and Q− 1) for the ℓ-th polynomial at stage i, the Hamming
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FIGURE 2.7: Each stage in the Viterbi trellis consists of a perfect shuffle and 2K−2 parallel butter-
flies (here K = 3 and F = 6).

distance generalizes to

βi
n→m =

N
∑

ℓ=1

|siℓ − (Q− 1)bℓn→m| .

Viterbi butterflies. The trellis shown in Figure 2.5 has a regular structure except for the initial

and final stages. The initial stage can be handled like all other stages by inserting prohibitively high

path metrics as appropriate. Handling the final stage like all other stages simply involves computing

all path metrics—the useless ones are automatically discarded.

Closer inspection of the trellis structure now shows that each stage of the forward pass can be

decomposed in two phases: a fixed permutation called a perfect shuffle and a parallel operation on

2K−2 2-by-2 substructures called butterflies (see Figure 2.7). In the following, we denote the states

of a butterfly as shown below:

A

B

U

V

During the path metric computation, each butterfly does two Add-Compare-Select operations

to compute the path metrics πU and πV from the path metrics πA and πB and the branch metrics

βA→U , βA→V , βB→U and βB→V :







πU = mindU (πA + βA→U , πB + βB→U )

πV = mindV (πA + βA→V , πB + βB→V ) .

Note that the minimum operator mind(a, b) actually performs both the compare and select opera-

tions simultaneously. It returns the actual minimum of a and b and stores the binary decision in the

decision bit d.

Symmetries. Code designers usually impose additional properties on the polynomials that trig-

ger symmetries in the trellis and simplify the computation [Taipale, 2004].

In particular, if states A and B can both transition into the same state U, then all lower bits

of A and B must be the same. In fact, the two states differ precisely in their most significant bit,

the one that is shifted out (Figure 2.4a). Now, if a polynomial has degree K − 1, the outgoing bit
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is guaranteed to be taken into account and thus, the corresponding output bits for A and B have

to be complements of each other. Therefore, if all polynomials have this property13, then the two

incoming transitions into the same state always have symbols that complement each other (it can be

observed in Figure 2.5). Therefore, one branch metric computation can be deduced from the other

one: βB→U = (Q− 1)N − βA→U .

In our running example, since Q = 2 and N = 2, we can verify in Figure 2.6a that all pairs of

arrows entering the same state either have branch metrics (0,2) or (1,1).

Similarly, if state A can reach both state U and state V, then U and V only differ by the lowest

significant bit. Therefore, if all polynomials have their constant coefficient equal to one14, the output

bits for all pairs of arrow that stem from the same state are complement of each other. Therefore,

the branch computation can also be reduced: βA→V = (Q− 1)N − βA→U .

In our running example, since Q = 2 and N = 2, we can verify in Figure 2.6a that all pairs of

arrows outgoing from the same state either have branch metrics (0,2) or (1,1).

By combining both symmetries, the computation carried out by the butterflies during the pass

metric propagation can be simplified to use only one branch metric instead of four:







πU = mindU (πA + βA→U , πB + (Q− 1)N − βA→U )

πV = mindV (πA + (Q− 1)N − βA→U , πB + βA→U ) .

Forward pass with both symmetries. Since the transition A → U is always a 0-transition,

the computation carried out by the j-th butterfly at stage i during the forward pass (branch and path

metrics computation), assuming both symmetries explained above hold, can therefore be simplified

to






























β+ =
∑N

ℓ=1 s
i
ℓ ⊕

[

(Q− 1)
(

⊕ (pℓ&2j)
)]

β− = (Q− 1)N − β+

πi
2j = mindi

2j
(πi−1

2j + β+, π
i−1
2j+1 + β−)

πi
2j+1 = mindi

2j+1
(πi−1

2j + β−, π
i−1
2j+1 + β+) .

Note that the computation can be reduced further by introducing the tabulated branch t, a pre-

computed two-dimensional array containing numbers resulting from the polynomials in the follow-

ing way:

tℓ2j = (Q− 1)
(

⊕ (pℓ&2j)
)

. (2.26)

13This condition is equivalent to saying that the integers representing the polynomials are all bigger than 2K−1 and
also equivalent to saying that the final register is always connected to one of the adders.

14This condition is equivalent to saying that the integers representing the polynomials are all odd and also equivalent
to saying that the input is always connected to one of the adders.
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FIGURE 2.8: Dataflow of the Pease algorithm for computing the WHT4.

2.3.3 Forward Pass Formulation in OL

From now on, we only consider the forward pass, excluding the traceback. The reason is that the

traceback is computationally much cheaper than the forward pass, requiring O(F ) operations versus

O(2KF ) for the forward pass. Hence, in practice, except for very short constraint lengths, a generic

traceback is not the performance bottleneck.

Intuition: Pease FFT algorithms. Among the many fast (i.e., O(n log n)) algorithms to com-

pute the DFT and WHT (see Table 2.1), the so-called Pease algorithms [Pease, 1968] stand out

for having maximal regularity, which makes them good candidates for hardware implementation

[Milder et al., 2008].

We denote the n×n bit-reversal permutation with Rn and the twiddle diagonal matrix with T n
i .

Their exact definition is not important here. The DFT butterfly15 matrix F2 corresponds to a DFT

on two points: F2 =
[

1 1
1 −1

]

. In SPL, the Pease algorithms for WHT and DFT are written as:

WHT2n →
n−1
∏

i=0

(

(I2n−1 ⊗ F2)L
2n

2n−1

)

(2.27)

DFT2n →R2n

n−1
∏

i=0

(

T n
i (I2n−1 ⊗ F2)L

2n

2n−1

)

. (2.28)

The dataflow for the Pease WHT of size 4 is shown in Figure 2.8 (the Pease DFT dataflow

is analogous, except for the final bit-reversal). Note the similarity to the Viterbi trellis shown in

Figure 2.7, but remember that the butterflies operate differently. The resemblance between the DFT,

the WHT and the Viterbi forward pass was already noticed in [Forney, 1973], [Rader, 1981] and

[Gilhousen et al., 1971]. Omega networks also share this dataflow [Lawrie, 1975].

Forward pass. The forward pass of the Viterbi algorithm is not linear and therefore cannot be

expressed in the SPL framework. It is however captured by the OL tensor product which can handle

non-linear operators.

Observe that the DFT butterfly F2 is a two-by-two matrix but can equivalently be seen as an

15The Viterbi butterfly is not to be confused with the DFT butterfly.
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operator that takes two inputs x0 and x1 and produces two outputs y0 and y1:







y0 = x0 + x1

y1 = x0 − x1 .

Similarly, we view the j-th Viterbi butterfly decoding the i-th codeword as an operator Bi,j that

takes two inputs x0 and x1 and produces two outputs y0 and y1. The difference between F2 and Bi,j

is that, depending on its position, the Viterbi butterfly uses values from two global arrays, namely

the received symbols s and the tabulated branch t, and it also writes values to the decision bit array

d (through the “select” part of the minimum operator). Formally, it computes































β+ =
∑N

ℓ=1 s
i
ℓ ⊕ tℓ2j

β− = (Q− 1)N − β+

y0 = mindi
2j
(x0 + β+, x1 + β−)

y1 = mindi
2j+1

(x0 + β−, x1 + β+) .

Using OL, the forward pass of a Viterbi decoder with constraint length K , frame length F ,

denoted VitK,F can therefore be expressed as

VitK,F →
F
∏

i=1

(

(I2K−2 ⊗j BF−i,j)L
2K−1

2K−2

)

. (2.29)

Not surprisingly, the VL formulation of the forward pass looks very similar to the Pease algorithms

(Equation 2.27 and Equation 2.28).
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Library Core Generation

In the library generation framework that we present (Figure 1.2), the first block (Library Core Gen-

eration) takes as input functionality, algorithms, and platform characteristics and derives the imple-

mentation of the library core for this functionality. The library core can be viewed as an adaptive

library that has been stripped of its search logic. It is therefore capable of computing a given func-

tionality using different methods that typically all yield a different performance. Various adaptation

mechanisms that can be added to the library core will be presented in the next chapter.

Overview of the problem. High-performance library users want the best code possible for

their machine and their problem set. The popularity of libraries such as FFTW ([Frigo and Johnson,

2005]) and ATLAS ([Whaley and Dongarra, 1998]) shows that most of them are willing to pay a

fixed cost for this specialization, either at runtime (online adaptation) or at installation time (offline

adaptation). We want the library generation framework that we develop to support both cases. It

therefore needs to support the most constraining case which is to specialize based on parameters

specified by the user at runtime.

The runtime requirement imposes the adaptation to be robust, portable and fast, ruling out the

possibility of invoking any compiler. Hence, this adaptation problem creates the paradoxical situa-

tion where the code has to be generated first, but the algorithmic transformation space is determined

only later. In this thesis, we solve this apparent contradiction by operating at a meta-level1: what

we really compute during the library core generation is the transformation space for all possible

parameters. This generic space is then instantiated at runtime with the user-provided parameters

using the search mechanisms.

In practice, it is not possible to generate every variant of a code, so the generic transformation

space has to be somehow closed during the library generation. This closure problem is difficult in

1See meta-programming [Sheard and Jones, 2002]
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the general case and might not even have solutions. However, by restricting to SPL and the specific

domain of linear transforms, [Voronenko, 2008] solved this problem by deriving the recursion step

closure, which is the set of mutually recursive functions that are needed to capture the interactions

of multiple transform algorithms after locality optimizations.

Our approach. In this thesis, we recognize the recursion step closure derivation as a critical

step in the automatic generation of libraries, even beyond linear transforms. The existing SPL

framework was therefore enlarged to support OL which can capture additional functionalities such

as the matrix-matrix multiplication. This extension leveraged some of the previous work but also

requires an expansion of its foundations.

The library core generation from Figure 1.2 is depicted in larger detail in Figure 3.1 and can be

decomposed in two components: the library structure derivation and the library implementation.

The first section of this chapter covers the library structure derivation and focuses on the generation

of the global structure of the library using the aforementioned recursion step closure. It produces

a precise description of each recursion step, or function, in the library. This description uses the

intermediary language
∑

-OL that we introduce and which is derived from
∑

-SPL [Franchetti et al.,

2005].

The second section covers the library implementation, which translates the
∑

-OL description

to the target language C, C++ or Java. Specifically, it produces the recursive functions in the clo-

sure and combines them with properly selected base cases to form the library core. These base
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cases are generated directly from
∑

-OL, similar to the generation of fixed input size transforms

[Püschel et al., 2005]. To achieve these goals, we expanded the capabilities of the original iterative

compiler to support OL and included a few new optimization passes.

Finally, the last section explains how parallelization and vectorization are performed. In prac-

tice, these are captured as rules that directly manipulate loop nests. New operators are therefore

introduced that extend the GT index-free notation [Voronenko, 2008] to
∑

-OL.

3.1 Library Structure Derivation

The goal of this section is to automatically derive the structure of the library that is being gen-

erated (first block in Figure 3.1). More precisely, the mechanisms presented here are responsible

for determining the specifications of all the functions that compose the library based on the target

functionality and the breakdown rules used. In practice, the target platform characteristics (e.g.,

vectorization, parallelization) also play a role in the specification but this part will be specifically

covered in Section 3.3.

We start with a brief example. Assume that:

• the target functionality is a dense row major matrix multiplication C = AB,

• the target platform does not have SIMD or multiprocessing capabilities,

• and the chosen breakdown rules are the three standard matrix blocking rules: Equation 2.16,

Equation 2.17, and Equation 2.18.

The target functionality that interests the user constitutes what we call a recursion step: a class of

problems that only differ by some parameters, here, the dimensions of the matrices and the actual

pointers to the data. Typically, a recursion step can be thought of as being an equivalent to the

specification of a function in a traditional imperative language. For example, in this case, the target

functionality is the first recursion step (RS1) and would have the following signature in C:

void RS1(int m, int k, int n, double* A, double* B, double* C);

After blocking, the smaller matrix multiplications are performed on matrices that are not contigu-

ous in memory. Hence, this function alone is not suitable for a recursive implementation without

generating a prohibitive number of explicit copies. A helper recursion step is therefore needed and

it takes the following signature, assuming lda, ldb, and ldc are the leading dimensions of the

matrices A, B, and C2:

void RS2(int m, int k, int n, int lda,

int ldb, int ldc, double* A, double* B, double* C);

2Our denominations for leading dimensions are intentionally compatible with the ones from the commonly used
DGEMM interface [Dongarra et al., 1990].
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RS 1

(a)

RS 1

RS 2

(b)

RS 1

RS 2

RS 3 RS 4 RS 5

(c)

FIGURE 3.2: Static call graphs of three matrix-matrix multiplication libraries. We call the set that
comprises all recursion steps of a given library the recursion step closure of the library. The first
recursion step (RS1) captures the functionality that the user is interested in and is therefore part of
the API (Application Program Interface): it is common to all libraries. However, the strategy to
compute it is not fixed and, in particular, it can be decomposed into other recursion steps which are
internal to the library. (a) is the naïve implementation and (b) is obtained after removing unneces-
sary explicit copies from it. Note that the closure can become more complicated, for instance (c) is
obtained after an optimization to provide looped base cases.

The differences in the structure of the two possible libraries are best understood with the static

call graphs of the libraries, presented in Figure 3.2. In these graphs, the nodes are the recursion

steps and the arrows show which steps call which other steps. The set of all recursion steps for a

given library is called the recursion step closure of the library. The first library closure is trivial: it is

uniquely composed of RS1 and is displayed in Figure 3.2a. The second library closure was obtained

by removing explicit copies, it is composed of RS1 and RS2 and is displayed in Figure 3.2b. Note

that other optimizations can further complicate the closure: for instance, using the generalized

tensor operator to capture loops (Subsection 3.3.1) enables the generation of looped base cases and

leads to the closure in Figure 3.2c.

Also note the following:

• Ultimately, only the original recursion step (RS1 in Figure 3.2) ever needs to be exposed to

the final user through the library interface since it is the only one that actually captures the

problems he or she is interested in.

• There might be different rules to break down a given recursion step. Choosing which rule to

apply is considered a degree of freedom. Chapter 4 will explain mechanisms that make good

decisions.

• In the present case (Figure 3.2c), the existence of the five different recursion steps allows the

library to use every possible regular3 blocking strategy, for any given input.

In the first part of this section, we introduce
∑

-OL, a lower-level extension of OL that makes

loops and index mappings explicit. Using rewriting systems,
∑

-OL solves the problem of loop

3By regular, we mean that no blocking step produces leftover rows or columns.
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merging whose derivation is a key issue in recursive library generation as we will see later.
∑

-

OL is a generalization of
∑

-SPL, which was designed for linear transforms and introduced in

[Franchetti et al., 2005].

The second part of this section presents the recursion step closure which is the key step of the

library generation since it automatically provides the specification of all the recursion steps needed

in the process. It was first introduced by [Voronenko, 2008] for linear transforms.

Lastly, we explain how to partition function parameters into two classes, the cold parameters

which provide degrees of freedom and the hot parameters which don’t. This partition impacts the

function signatures in general and the user interface in particular.

3.1.1 Loop Merging with Sigma-OL

OL describes the data-flow of algorithms. In particular, data accesses are represented as explicit

permutations as, for example, can be seen in the right-hand sides of the Cooley-Tukey FFT rule

(Equation 2.6) and the MMM vertical blocking rule (Equation 2.17). A straightforward mapping to

code would explicitly perform these permutations which would be detrimental to the performance.

The goal of loop merging is to fuse these permutations with adjacent computations to increase

locality. We perform this loop merging is performed by rewriting expressions in
∑

-OL, which is

an extension of
∑

-SPL [Franchetti et al., 2005] that supports operators of higher arities. Note that,

while maximizing reuse through loop merging has been proved NP-hard in its most general form

[Kennedy and McKinley, 1994], it becomes tractable in our domain-specific framework because the

structure of the computation is explicit.

Motivation. In the previous chapter, we derived in Equation 2.23 a naïve OL algorithm to

compute the matrix-multiplication. We restate it here:

MMMm,k,n →
(

Rk ⊗ (Km×1 ⊗K1×n)
)

◦
(

Lmk
k × Ikn

)

. (3.1)

Parsing this expression, we observe the two following distinct stages: first, the first input matrix

is transposed and second, an accumulation of Kronecker products is performed. A direct mapping

of the algorithm to code would therefore yield the code in Figure 3.3 which is different and worse

than the expected code for this naïve algorithm (presented earlier in Figure 2.3). This extra stage is,

in a sense, the price paid by the expressiveness of OL. In this subsection, we describe a rewriting

system that fuses data reorderings into the subsequent computational loops.

The loop merging process is a rewriting system that can conceptually decomposed into two

steps. First, the OL expressions are converted into
∑

-OL, which introduces explicit loops. For

example, after the conversion into
∑

-OL, the right-hand side of Equation 3.1 becomes:





∑

0≤p<k

∑

0≤i<m

∑

0≤j<n

S(h1→mn
in+j,1) ◦ P1 ◦ (G(h1→mk

pm+i,1)×G(h1→kn
pn+j,1))



 ◦
(

Lmk
k × Ikn

)

.
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for (t=0; t<m*k; t++)

T[(t%k)*m + t/k] = A[t] ;

for (p=0; p<k; p++)

for (i=0; i<m; i++)

for (j=0; j<n; j++)

C[i*n+j] += T[p*m+i] * B[p*n+j] ;

FIGURE 3.3: Direct mapping of Equation 3.1 to code. The matrix A is explicitly transposed to a
temporary matrix T, a step that could be merged with the subsequent computation and yield more
efficient code shown in Figure 2.3. The purpose of the

∑

-OL rewriting system is to perform this
kind of loop merging automatically.

Then, a set of rewriting rules propagates the data shuffles (here:
(

Lmk
k × Ikn

)

) into the sums

which represent loops. In our example, we get:

∑

0≤p<k

∑

0≤i<m

∑

0≤j<n

S(h1→mn
in+j,1) ◦ P1 ◦ (G(h1→mk

ik+p,k)×G(h1→kn
pn+j,1)). (3.2)

In summary, the OL tensors, which expressed the structure of the algorithm, are converted

into
∑

-OL iterative sums and indexing. Within these sums, the data points are first gathered us-

ing index mapping functions, multiplied together and scattered into the result array. Note that, in

Equation 3.2, the triple loop nature of the algorithm becomes apparent.

Next, we provide a more formal description of
∑

-OL and loop-merging.

Definition.
∑

-OL is composed of three components: index mapping functions, parametrized

operators, and iterative sums.

Index mapping functions are functions mapping interval into intervals. In this thesis, we will

only use three of them, the identity ı4, the stride h, and the transposition ℓ. Let In denote the integer

interval {0, ..., n − 1}, then

ın→n : In → In; i 7→ i,

hd→r
b,s : Id → Ir; i 7→ b+ is,

ℓmk→mk
k : Imk → Imk; i 7→ ⌊ i

m⌋+ k(i mod m).

The stride index mapping hb,s strides the input by a factor s starting at b. The transposition is the

permutation underlying the transposition operator L introduced in Equation 2.3.

Parametrized operators are operators whose definition depends on an index mapping function.

We will define three of them: the gather G(f), the scatter S(f), and the permutation perm(f). We

define here arity-(1,1) parametrized operators (i.e., parametrized matrices); higher-arities paramet-

rized operators follow. Let fd→r be an index mapping function from Id into Ir and let eni be the ith

4For backwards compatibility with legacy notations, the symbol of the identity index mapping is an i without dot
[Franchetti et al., 2005].
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canonical basis vector of Cn, then

S(fd→r) = [erf(0) | ... | erf(d−1)],

G(fd→r) = S(f)T ,

perm(fd→d) = G(f) = S(f−1).

To give the reader some intuition, consider a simple example where one wants to extract d = 2

data points at stride s = 4 among a set of r = 8 points. In
∑

-OL, this translates to a gather operator

which corresponds to a simple rectangular matrix:

G(h2→8
0,4 ) =





1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0



 ,

If the data points are gathered at the same stride but are also offset by b = 1, we get:

G(h2→8
1,4 ) =





0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0



 .

The last component of
∑

-OL is the iterative sum, denoted with the usual
∑

symbol. Sums are

indexed over an interval and express the concepts of loops and iterations. Formally, we define for a

series of arity-(1,1) operators Ai and a series of arity-(2,1) operators Bi:

(

∑

i

Ai

)

x =
∑

i

(Aix)

(

∑

i

Bi

)

(x, y) =
∑

i

(Bi(x, y))

Observe that the original definition of iterative sums [Franchetti et al., 2005] guarantees that the

different Aix are non-overlapping and that therefore, the resulting iterative sum is a convenient

mathematical representation that does not incur any additional computational cost. We do not take

such a view in our definition and stick with the mathematical definition. We therefore default the

optimization of useless sums onto the compiler.

Rewriting OL into
∑

-OL. The purpose of
∑

-OL is to be an intermediate language between

OL and imperative code. In this paragraph we explain how to transform OL expressions into
∑

-OL

expressions.

As we have seen earlier, the main difference between OL and
∑

-OL is that tensors are converted

into iterative sums which represent loops. The transformation from one into the other is done by

parsing the OL expression tree top down, recursively matching and replacing subtrees with the

parametrized
∑

-OL templates listed in Table 3.1.

Simultaneously with the introduction of loops that tend to complicate the expression, other sets
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Im ⊗Ad→r →
∑

0≤i<m

S(hr→mr
ir,1 ) ◦A ◦G(hd→md

id,1 ) (3.3)

Ad→r ⊗Im →
∑

0≤i<m

S(hr→mr
i,m ) ◦A ◦G(hd→md

i,m ) (3.4)

Pp ⊗Am×n→k →
∑

0≤i<p

S(hk→pk
ik,1 ) ◦A ◦(G(hm→pm

im,1 )×G(hn→pn
in,1 )) (3.5)

Am×n→k ⊗Pp →
∑

0≤i<p

S(hk→pk
i,p ) ◦A ◦(G(hm→pm

i,p )×G(hn→pn
i,p )) (3.6)

Rp ⊗Am×n→k →
∑

0≤i<p

A ◦(G(hm→pm
im,1 )×G(hn→pn

in,1 )) (3.7)

Am×n→k ⊗Rp →
∑

0≤i<p

A ◦(G(hm→pm
i,p )×G(hn→pn

i,p )) (3.8)

Kp×q ⊗Am×n→k →
∑

0≤i<p

∑

0≤j<q

S(hk→pqk
(iq+j)k,1) ◦A ◦(G(hm→pm

im,1 )×G(hn→qn
jn,1 )) (3.9)

Am×n→k ⊗Kp×q →
∑

0≤i<p

∑

0≤j<q

S(hk→pqk
iq+j,pq) ◦A ◦(G(hm→pm

i,p )×G(hn→qn
j,q )) (3.10)

Kp×q → Kp×q ⊗ P1 (3.11)

Rp → Rp ⊗ P1 (3.12)

TABLE 3.1: Rules to convert OL to
∑

-OL. Depending on the superscripts, A is assumed to be
either a (1,1)-operator from C

d into C
r or a (2,1)-operator from C

m × C
n into C

k

(

∑

j Aj

)

◦ B →
(

∑

j Aj ◦B
)

(3.13)

B ◦
(

∑

j Aj

)

→
(

∑

j B ◦Aj

)

(3.14)

(A×B) ◦ (C×D) → (A ◦C)× (B ◦D) (3.15)

S(f1) ◦ S(f2) → S(f1 ◦ f2) (3.16)

G(f1) ◦G(f2) → G(f2 ◦ f1) (3.17)

G(f) ◦ perm(p) → G(p ◦ f) (3.18)

perm(p) ◦ S(f) → S(p−1 ◦ f) (3.19)

TABLE 3.2:
∑

-OL loop merging rules. Assume A and B are operators, C and D are operators
which can be composed to A and B (they need to have compatible signatures), f , f1, f2 are index
mapping functions, and p is a bijective index mapping function.
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In → perm(ın→n) (3.20)

Lmk
k → perm(ℓmk→mk

k ) (3.21)

(ℓmk→mk
k )−1 → ℓmk→mk

m (3.22)

ℓmk→mk
n ◦ hk→mk

kj,1 → hk→mk
j,m (3.23)

hN→N ′

b′,s′ ◦ hn→N
b,s → hn→N ′

b′+bs′,ss′ (3.24)

hn→n
0,1 → ın→n (3.25)

f ◦ ı → f (3.26)

ı ◦ f → f (3.27)

TABLE 3.3:
∑

-OL index simplification rules. f is an arbitrary index function.

of rewriting rules are applied to simplify the expressions, notably the loop merging rules (Table 3.2)

and the index mapping simplification rules (Table 3.3). The rewriting system is designed to be

confluent, which means that the order of application of the rules does not have an impact on the

final outcome (see [Baader and Nipkow, 1998] for more information on rewriting systems).

As an example, we derive the optimized
∑

-OL expression in Equation 3.2 from the initial naïve

OL algorithm (in Equation 3.1). The steps are annotated with the rewriting rules used:

(

Rk ⊗ (Km×1 ⊗K1×n)
)

◦
(

Lmk
k × Ikn

)

→
(

∑

0≤p<k

(Km×1 ⊗K1×n) ◦ (G(hm→km
pm,1 )×G(hn→kn

pn,1 ))
)

◦
(

perm(ℓmk→mk
k )× perm(ıkn→kn)

)

(3.7), (3.21)

→
∑

0≤p<k

(Km×1 ⊗K1×n) ◦ (G(ℓmk→mk
k ◦ hm→km

pm,1 )×G(ıkn→kn ◦ hn→kn
pn,1 )) (3.13), (3.15), (3.18)

→
∑

0≤p<k

(Km×1 ⊗K1×n) ◦ (G(hm→km
p,k )×G(hn→kn

pn,1 )) (3.23),(3.27)

→
∑

0≤p<k

(

∑

0≤i<m

S(hn→mn
in,1 ) ◦K1×n ◦ (G(h1→m

i,1 )×G(hn→n
0,1 ))

)

◦ (G(hm→km
p,k )×G(hn→kn

pn,1 )) (3.9)

→
∑

0≤p<k

∑

0≤i<m

S(hn→mn
in,1 ) ◦K1×n ◦ (G(hm→km

p,k ◦ h1→m
i,1 )×G(hn→kn

pn,1 ◦ ın→n)) (3.13), (3.15), (3.17), (3.25)

→
∑

0≤p<k

∑

0≤i<m

∑

0≤j<n

S(hn→mn
in,1 ◦ h1→n

j,1 ) ◦ P1 ◦ (G(h1→km
ik+p,k ◦ ı

1→1)×G(hn→kn
pn,1 ◦ h1→n

j,1 ))
(3.11), (3.13), (3.15), (3.17), (3.24), (3.27), (3.25)

→
∑

0≤p<k

∑

0≤i<m

∑

0≤j<n

S(h1→mn
in+j,1) ◦ P1 ◦ (G(h1→km

ik+p,k)×G(h1→kn
pn+j,1)) (3.24), (3.27)

The final expression shows various properties of
∑

-OL: it is compact, mathematical, declarative

and close to imperative code but it is still point-free (no references to the input and output arrays).

3.1.2 Recursion Step Closure

The computation of the recursion step closure is probably the most critical step of the library core

generation. It was first introduced in the context of library generation for linear transforms by
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[Voronenko, 2008] who recognized that
∑

-SPL could be used not only to manipulate codelets but

also purely symbolic expressions. In this thesis, we extend the concept and derivation to OL and

will therefore present it using a matrix multiplication library as example.

The recursion step closure derivation is the set of mutually recursive functions necessary to “ef-

ficiently” implement the target interface. The recursion step closure is derived automatically using

a rewriting system expressed in
∑

-OL which identifies the auxiliary functions needed and also de-

rives their implementations. The resulting set of mutually recursive functions depends on both the

actual algorithms used and the platform parameters set. Efficient means that it minimizes the num-

ber of data reorderings needed to compute the target functionality. In many aspects what is really

performed during the computation of the closure is loop merging across function prototypes. We

note that in some cases (Prefetching, TLB optimizations), the literature suggests that some copying

of the data actually boosts performance ([Goto and van de Geijn, 2008; Temam et al., 1993]). This

could be modeled in our framework but is not implemented in this thesis.

3.1.2.1 Example

We first explain the closure computation with an example. Assume we again want to create a

recursive matrix-multiplication library which performs C = AB where the matrices dimensions

are m × k and k × n and all matrices are tightly packed in a row-major order. The associated

interface is:

MMM(int m, int k, int n, double* A, double* B, double* C);

The pseudocode of a blocked implementation is given on the left column of Figure 3.4a. Since

matrices have to be tightly packed to fit the interface, explicit copies need to be introduced to

“compact” blocks that are scattered in memory into contiguous buffers, so that the same function

can be called recursively. These copies are a direct consequence of the chosen interface. To optimize

this code, we start by extracting the body of the loop and “outlining” it; we will call this new

auxiliary function T (left column of Figure 3.4b). While this intermediary step does not in itself

remove inefficient copies, it reveals that T is actually a performing a matrix multiplication, only

on matrices that are scattered in memory. Therefore, blocking could be applied again, yielding a

self-contained recursive implementation of T (left column of Figure 3.4c). Note that there is not a

single explicit copy left in this optimized version.

Using
∑

-OL, the exact same optimization can be derived automatically as we sketch in the right

columns of the figures. In all three figures, the
∑

-OL rule in the right column precisely specifies

the imperative code in the left column. In the right column of Figure 3.4a, we show the smallest

base case for the matrix-matrix multiplication and a
∑

-OL translation of the OL matrix blocking

algorithm of Equation 2.19. The loop body is exactly the argument S... ◦MMM... ◦G...×G... of

the nested
∑

-OL sums. Note how in Figure 3.4a, the gathers and scatters are performed explicitly

in the corresponding code. Pulling out the loop body as T yields Figure 3.4b. Using a simple
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MMM(m, k, n, A, B, C){

if m = k = n = 1

C[0] = A[0]*B[0]

else

determine mb nb kb

loop i = 0 .. m/mb

loop j = 0 .. n/nb

loop p = 0 .. k/kb

Ab <- submatrix(A, ...)

Bb <- submatrix(B, ...)

Cb <- 0

MMM(mb,kb,nb,Ab,Bb,Cb)

submatrix(C, ...) += Cb}























MMM1,1,1 → P1

MMMm,k,n →
m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

S... ◦MMMmb,kb,nb
◦G...×G...

MMM

(a) Naïve version. Inefficient explicit copies are needed to collect blocks scattered in memory into contiguous buffers.

MMM(m, k, n, A, B, C){

if m = k = n = 1

C[0] = A[0]*B[0]

else

determine mb nb kb

loop i = 0 .. m/mb

loop j = 0 .. n/nb

loop p = 0 .. k/kb

T(mb,kb,nb,A,B,C,...)}

T(mb, kb, nb, A, B, C, ...){

Ab <- submatrix(A, ...)

Bb <- submatrix(B, ...)

Cb <- 0

MMM(mb,kb,nb,Ab,Bb,Cb)

submatrix(C, ...) += Cb}















MMM1,1,1 → P1

MMMm,k,n →

m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

Tmb,kb,nb,...

{

Tmb,kb,nb,... →

S... ◦MMMmb,kb,nb
◦G...×G...

MMM T

(b) Intermediate step. The body of the loop has been put in a different function that we call T.

MMM(m, k, n, A, B, C){

if m = k = n = 1

C[0] = A[0]*B[0]

else

determine mb nb kb

loop i = 0 .. m/mb

loop j = 0 .. n/nb

loop p = 0 .. k/kb

T(mb,kb,nb,A,B,C, ...)}

T(mb, kb, nb, A, B, C, ...){

if mb = kb = nb = 1

C[i*n+j]+=A[i*k+p]*B[p*n+j];

else

determine mb2 nb2 kb2

loop i2 = 0 .. mb/mb2

loop j2 = 0 .. nb/nb2

loop p2 = 0 .. pp<kb/kb2

T(mb2,kb2,nb2,A,B,C,...)}















MMM1,1,1 → P1

MMMm,k,n →

m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

Tmb,kb,nb,...























T1,1,1,... → S... ◦P1 ◦G...×G...

Tmb,kb,nb,... →
mb/mb2
∑

i2=0

nb/nb2
∑

j2=0

kb/kb2
∑

p2=0

Tmb2
,kb2

,nb2
,...

MMM T

(c) Optimized version. The former body of the loop (T) is recognized as a function that multiplies matrices scattered
in memory (i.e., with optional leading dimension). Not a single explicit copy is needed anymore.

FIGURE 3.4: Recursion step closure. Three different recursive matrix multiplication implementations are
displayed, simultaneously in imperative code (left) and in

∑

-OL (top right). The corresponding static call
graphs are given (bottom right). The closure derives the optimized version (c) from the naïve one (a).
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derivation, one can now discover a new self-contained rule for T (all parameters are omitted for

clarity):

T = S ◦MMM ◦ G×G

→ S ◦(∑∑∑

S ◦MMM ◦ G×G) ◦ (G×G)

→∑∑∑

(S ◦MMM ◦ G×G)

→∑∑∑

T

Indeed, applying the MMM rule of Figure 3.4a inside the definition of T and rewriting using

Table 3.2 and Table 3.3 yields an optimized algorithm (right part of Figure 3.4c) for T that does

not require explicit copies. The resulting closure consists of both the functions MMM and T.

This example illustrates how the recursion step closure can be derived automatically so that the

mutually recursive functions that compose the library avoid explicit data movements. This optimiza-

tion should be of critical importance for a number of applications that are forced to reuse existing

performance libraries because redevelopment is expensive. For instance, the quantum chemistry

software NWChem [Bylaska et al., 2007] uses code that calls a general matrix-multiplication but

precedes and succeeds the call by transpositions which seriously impacts the performance. Using

the above procedure, the development effort would be reduced and these transpositions could be

folded into the library for potentially major performance gains.

3.1.2.2 General Procedure

We provide now the general procedure to derive the recursion step closure. Extending the original

recursion step closure algorithm [Voronenko, 2008] for OL is relatively straightforward. More

precisely, the preceding and following layers of the compilation stack were engineered so that this

step would be almost exactly compatible with the existing procedure in the linear transform library

generator.

The input is a functionality F and a set of OL rules R. The output is a set of
∑

-OL expressions

that characterizes all the recursion steps required in the generated library and a set of
∑

-OL rules

for these recursion steps that capture all possible recursions.

Figure 3.5 presents the global procedure for computing the recursion step closure in detail: one

needs to try all OL rules on each recursion step which can optionally produce new recursion steps.

When no new recursion steps are found, the closure is reached.

We provide now some additional details for the application of rules and possible generation of

new recursion steps. As depicted in Figure 3.5, it happens in a loop of three successive steps:

1. Application of a given OL breakdown rule to a recursion step.

2. Rewriting of the OL formula into a
∑

-OL formula using Table 3.1, Table 3.2 and Table 3.3.
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Initiate rsteps = { F }

 recursions = Ø

For all

rsteps

For all

OL rules in R

OL rule

applicable to

rstep?

1. Apply the OL rule

2. Rewrite into Σ-OL and

    add the result to recursions

3. Extract new recursion steps

    and add to rsteps

yes

no

no new

rule

no new

rstep

rsteps and recursions

Functionality F Set of OL rules R

FIGURE 3.5: Derivation of the Recursion Step Closure.

3. Extraction of the recursion steps.

The last step is explained next.

3.1.2.3 Recursion Step Extraction

The recursion step extraction is responsible for the generation of new recursion steps directly from
∑

-OL formulas. For example, in Figure 3.4, the additional recursion step that is automatically

derived is T. Since the overall goal is to avoid data permutations, new recursion steps are obtained

by fusing existing recursion steps with adjacent data accesses (scatters and gathers). In
∑

-OL,

this process happens in two phases: first, the new recursion steps are selected using a rewriting

system and second, the new recursion steps are parametrized so that they can be turned into proper

operators.
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{A} ◦G → {A ◦G} (3.28)

{A} ◦ (G×G) → {A ◦(G×G)} (3.29)

S ◦{A} → {S ◦A} (3.30)

TABLE 3.4: Recursion Step Selection Rules.

Recursion step selection. The first stage of the extraction marks the parts of the OL formula that

are to be encapsulated into their own recursion steps. In practice, this is done by a simple rewriting

system whose target is to locate clusters comprised of functionalities and their corresponding data

access. To represent these clusters, we introduce special delimiters inside
∑

-OL that we denote by

curly brackets {} and that mark the boundaries of the future recursion step.

For example, we consider the full
∑

-OL expression corresponding to the rule displayed to the

right of Figure 3.4a. We first initiate the rewriting process by enclosing all functionalities within the

brackets and then rewrite using the rules of Table 3.4:

m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

S(hmb→m
imb ,1

⊗ hnb→n
jnb,1

) ◦
{

MMMmb,kb,nb

}

◦
(

G(hmb→m
imb,1

⊗ hkb→k
pkb,1

)×G(hkb→k
pkb,1

⊗ hnb→n
jnb ,1

)
)

→

m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

{

S(h
mb→m
imb ,1

⊗ h
nb→n
jnb,1

) ◦MMMmb,kb,nb
◦
(

G(h
mb→m
imb ,1

⊗ h
kb→k
pkb,1

)×G(h
kb→k
pkb,1

⊗ h
nb→n
jnb,1

)
)

}

.

As it can be seen, all nearby data permutations are pulled inside the newly delimited recursion

step. Observe that it prefigures the recursion step that we called T in Figure 3.4b.

Recursion step parametrization. The recursion step selection marks a subexpression of a
∑

-

OL expression but does not define a proper recursion step yet since no binding information has been

provided. In an imperative language, the difference between the two would be understood as the

difference between a macro and a function.

The parametrization creates a proper recursion step out of a given
∑

-OL formula. It does so by

1) replacing all expressions by new variables and 2) enforcing
∑

-OL constraints between the new

variables. We explain the procedure continuing with our previous example.
First, all existing variables except constants are replaced by fresh ones:

{

S(hu1→u2

u3,1
⊗ hu4→u5

u6,1
) ◦MMMu7,u8,u9

◦
(

G(hu10→u11

u12,1
⊗ hu13→u14

u15,1
)×G(hu16→u17

u18,1
⊗ hu19→u20

u21,1
)
)

}

.

Second, for the above expression to be a valid
∑

-OL expression, compositions must have do-

mains and ranges that match, which creates additional constraints. The first composition yields two

equalities, one for each dimension: u1 = u7 and u4 = u9. The second composition yields four
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equalities (two dimensions times two inputs): u7 = u10, u8 = u13, u8 = u16, and u9 = u19.
We resolve the system by substitution and we can therefore properly define the auxiliary recur-

sion step T:

Tu2,u3,u5,u6,u7,u8,u9,u11,u12,u14,u15,u17,u18,u20,u21
=

S(hu7→u2

u3,1
⊗ hu8→u5

u6,1
) ◦MMMu7,u8,u9

◦
(

G(hu7→u11

u12,1
⊗ hu8→u14

u15,1
)×G(hu8→u17

u18,1
⊗ hu9→u20

u21,1
)
)

.

(3.31)

Observe that the recursion step T might seem complicated at first glance but it is nothing more

than a more general matrix multiplication that operates on matrices scattered in memory. As seen

in the above example, the advantage to using T is that it is naturally self-contained.

3.1.3 Hot and Cold Partitioning

The hot and cold partitioning of the parameters is the second block of the library structure derivation

in Figure 3.1. It analyzes the closure and partitions the different recursion step parameters into two

groups that each need to be initialized simultaneously.

Indeed, recursion steps are actual mathematical functions but traditional imperative languages

like C are too restrictive to capture their functional nature. In particular, one could want to curry

them so that two different recursion steps share some precomputations when some of their param-

eters are similar. Therefore, object languages such as C++ are more suitable to describe recursion

steps since they directly map to classes.

In the context of adaptive library generation, one precomputation that is interesting to share is

the search. Indeed, some parameters, called the hot parameters (following [Voronenko, 2008]), do

not impact the performance so it is interesting to do the search without taking them into account.

By opposition, the parameters that influence the search are called the cold parameters.

As illustrating example, we consider the recursion step MMMm,k,n and its implementation

MMM(m, k, n, A, B, C) from Figure 3.4a. Obviously, the algorithm choice can heavily de-

pend on the sizes of the input matrices m, k and n, which therefore should be cold. Simultaneously,

the performance is oblivious to the actual values of A, B and C, which are therefore hot5. From

a functional language point of view, this observation means that MMM(m, k, n)(A, B, C) is

the “natural” curried form of MMM(m, k, n, A, B, C) since it makes sense to search for the

best matrix multiplication of some size regardless of the location of the matrices.

A possible C++ implementation of the curried form is given next (the actual implementation of

the search mechanisms is delayed until Section 4.2).

5In fact, the pointers are so hot that they have been entirely implicit until now. Note that this is not exactly true if the
target code is vectorized since proper alignment is required. However, under the assumption that the pointers are aligned,
the above assumption is reasonable.
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class MMM{

int m, k, n;

MMM(m, k, n);

compute(double* A, double* B, double* C);

};

The hot/cold partitioning is responsible for automatically assigning all recursion step parame-

ters a category, either cold or hot. We use the iterative algorithm proposed in [Voronenko, 2008],

which also has a precise description. Basically, considering the closure as a whole, the algorithm

maximizes the number of cold parameters, under the following constraints:

1. Pointers are hot,

2. Parameters that depend on loop variables are hot, and

3. Parameters that depend on hot parameters are hot.

Note that while hot/cold partitioning might have been seemed simple for MMMm,k,n alone,

other recursion steps are more challenging. For instance, one can verify that the correct partition

for the recursion step T in Equation 3.31 according to the above rules is T(u2, u5, u7, u8,

u9, u11, u14, u17, u20)(u3, u6, u12, u15, u18, u21, A, B, C).

3.1.4 Library Plan

The last step in the library structure generation (Figure 3.1) is the generation of the library plan

which is a data structure that entirely describes the library. All recursion steps are successively

described in details: their formula, their parameters partition and their rules are specified. Rules

are themselves characterized by their conditions of applicability, their degree of freedom and their

associated formulas.

In Table 3.5, we show the library plan corresponding to our running example. Note that, for

readability, we use the C function call notation to bind variables to recursion steps parameters but it

is not exactly proper since it hides the hot and cold partial evaluation.

3.2 Library Implementation

The library plan contains all recursion steps and makes explicit how they recurse into each other

using
∑

-OL. This section explains how to turn the plan into code, which requires three main tasks

to be performed for each recursion step (Figure 3.1): First, the code corresponding to the recursions

needs to be generated (left block); second, one must determine and generate base cases to terminate

the recursions (right block); finally, the recursions and the base cases need to be integrated into a

complete library.
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RS 1

Formula: MMMu1,u2,u3

Cold Parameters: u1, u2, u3

Hot Parameters: input and output pointers

Rule 1: MMM-Base

* Applicability: u1 = 1, u2 = 1, and u3 = 1

* Freedoms: none

* Formula: P1

Rule 2: MMM-Block

* Applicability: u1 > 1, u2 > 1, or u3 > 1

* Freedoms: f1 ∈ divisors(u1), f2 ∈ divisors(u2), and f3 ∈ divisors(u3)

* Formula:
∑u1/f1

i=0

∑u3/f3
j=0

∑u2/f2
p=0

RS2(u1, u3, f1, f2, f3, u1, u2, u2, u3, if1, jf3, if1, pf2, pf2, jf3)

RS 2

Formula: S(hu7→u2

u3,1
⊗ hu8→u5

u6,1
) ◦MMMu7,u8,u9

◦
(

G(hu7→u11

u12,1
⊗ hu8→u14

u15,1
)×G(hu8→u17

u18,1
⊗ hu9→u20

u21,1
)
)

Cold Parameters: u2, u5, u7, u8, u9, u11, u14, u17, u20

Hot Parameters: u3, u6, u12, u15, u18, u21, input and output pointers

Rule 1: MMM-Base

* Applicability: u7 = 1, u8 = 1, and u9 = 1

* Freedoms: none

* Formula: S(h1→u2

u3,1
⊗ h1→u5

u6,1
) ◦ P1 ◦

(

G(h1→u11

u12,1
⊗ h1→u14

u15,1
)×G(h1→u17

u18,1
⊗ h1→u20

u21,1
)
)

Rule 2: MMM-Block

* Applicability: m > 1, k > 1, or n > 1

* Freedoms: f1 ∈ divisors(u7), f2 ∈ divisors(u8), and f3 ∈ divisors(u9)

* Formula:
∑u7/f1

i=0

∑u9/f3
j=0

∑u8/f2
p=0

RS2(u2, u5, f1, f2, f3, u11, u14, u17, u20,

u3 + if1, u6 + jf3, u12 + if1, u15 + pf2, u18 + pf2, u21 + jf3)

TABLE 3.5: Library plan corresponding to the closure in Figure 3.4c.

We start this chapter by describing the
∑

-OL compiler which is used to compile
∑

-OL expres-

sions into a C-like internal language that we simply call “code.” Note that our target language, C,

C++, or Java, is other compilers source language, which means that we leave other compilers carry

the library the last mile, from source code to byte code6. We then explain in details the base case

generation procedure and conclude with an overview of the source-to-source optimizations that are

performed in the compiler.

3.2.1 Sigma-OL Compiler

The
∑

-OL compiler is responsible for the transformation of
∑

-OL expressions into pieces of

code. One of the characteristics of the operation is that it requires to go from “point-free” to “point-

6Attempts have been made to actually generate assembly directly from Spiral but there is great hassle and actually
little benefit in doing so since most local optimizations are already performed well by optimizing compilers. Global
optimizations, on the other hand, are carried out more efficiently if they had it been done earlier, higher up inside Spiral.



52 Chapter 3. Library Core Generation

wise”7, which means that the data arrays that the functions were implicitly working on need to be

explicited. The overall task is performed using parametrized code templates that gradually replace

the mathematical expressions in the
∑

-OL expression tree top-down. Some of these templates are

presented in Table 3.6.
As example, consider the following

∑

-OL expression from the rule in the right column of
Figure 3.4a:

m/mb
∑

i=0

n/nb
∑

j=0

k/kb
∑

p=0

S(hmb→m
imb,1

⊗ hnb→n
jnb ,1

) ◦MMMmb,kb,nb
◦
(

G(hmb→m
imb,1

⊗ hkb→k
pkb,1

)×G(hkb→k
pkb,1

⊗ hnb→n
jnb,1

)
)

.

When compiling it, the input and output arrays A, B and C are reintroduced and the following

code is produced:

for (int i=0;i<m/mb;i++)

for (int j=0;j<n/nb;j++)

for (int p=0;p<k/kb;p++){

for (int r=0;r<mb*kb;r++)

Ap[r]=A[(i*mb*k)+p*kb+(r/mb)*k+(r%mb)];

for (int r=0;r<kb*nb;r++)

Bp[r]=B[p*kb*n+j*nb+(r/nb)*n+(r%nb)];

for (int t=0;t<mb*nb;t++)

Cp[t]=0;

mmm(mb,kb,nb,Ap,Bp,Cp);

for (int r=0;r<mb*nb;r++)

C[i*mb*n+j*nb+(r/nb)*n+(r%nb)]+=Cp[r];

}

Observe how the recursive call to MMM in
∑

-OL is transformed into a function call to mmm

in the imperative code8.

3.2.2 Base Case Generation

Besides the implementation of recursions, the compiler is also responsible for selecting which base

cases to implement and compiling them properly. We explain this process using the MMMm,k,n

recursion step Table 3.5 but the method is generally analogous to the one used in [Voronenko, 2008]

for transforms.

A list of sizes is first specified by the user for the main functionality; for instance, (m,k, n) ∈
{1, 2}×{1, 2}×{1, 2}. This triggers the offline search system to search for the best implementations

of MMM1,1,1, MMM1,1,2, MMM1,2,1, MMM1,2,2, MMM2,1,1, MMM2,1,2, MMM2,2,1,

and MMM2,2,2, using the set of rules that have been enabled inside the algorithmic pool.

7These expressions are quite common in the Haskell community.
8Again, we use a C call notation which is not entirely proper since mb, kb and nb are cold parameters that therefore

need to be initialized before the hot parameters.
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Operator S Code

arity (1,1) code for y = S(x)

G(fd→r) for (i=0; i<d; i++)

y[i] = x[f(i)];

S(fd→r) for (i=0; i<d; i++)

y[f(i)] += x[i];

A ◦B <code for t = B x>

<code for y = A t>
∑

0≤i<k Ai
for (i=0; i<k; i++)

{<code for y = A_i x>}

arity (2,1) code for y = S(x1, x2)

P1 y[0] = x_1[0] * x_2[0];
∑

0≤i<k Ai
for (i=0; i<k; i++)

{<code for y = A_i (x_1, x_2)>}

arity (2,2) code for (y1, y2) = S(x1, x2)

A×B <code for y_1 = A x_1>

<code for y_2 = B x_2>

TABLE 3.6: Templates to translate
∑

-OL to code. A and B are assumed to be generic operators.

In fact, these implementations are also inserted into all the other recursion steps as well, since all

of them are variants of MMM. In our example, it means that eight base cases would also be gener-

ated for Tmb,kb,nb,.... Note that, in particular, if a recursion step is looped, then the implementations

naturally become looped base cases.
For instance, assume that the compiler is building an implementation for MMM2,1,2. Depend-

ing on the available rules, one of the option is to break down to the naïve matrix multiplication from
earlier:

∑

0≤p<1

∑

0≤i<2

∑

0≤j<2

S(h1→4
2i+j,1) ◦ P1 ◦ (G(h1→2

i+p,1)×G(h1→2
2p+j,1))

After replacement by the parametrized templates from Table 3.6, the rewriting yields code that

is functionally correct but is clearly not optimized (Figure 3.6).

This source code and the other alternatives to implement MMM2,1,2 are then compiled using

an external optimizing compiler. They are then timed on the target platform and only the fastest

implementation remains in the library9.

In practice, external optimizing compilers do not provide the best performance for code such

9Actually, one is not forced to do this selection stage offline: the search mechanism can entirely support multiple
implementations of the same base case and automatically search for the fastest at runtime.
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for (p=0; p<1; p++)

for (i=0; i<2; i++)

for (j=0; j<2; j++) {

for (q1=0; q1<1; q1++)

t1[q1] = A[i+p+q1];

for (q2=0; q2<1; q2++)

t2[q2] = B[p*2+j+q2];

t3[0] = t1[0] * t2[0];

for (q3=0; q3<1; q3++)

C[2i+j+q3] += t3[q3];

}

FIGURE 3.6: A base case for MMMm,k,n that has not been yet optimized. It implements
MMM2,1,2. The seemingly “extra” for loops correspond to the gathers and the scatters
(Table 3.6).

as the one that comes directly out of the rewriting stage. We therefore pipe the result into our own

source-to-source optimizing compiler which is the topic of the next subsection.

3.2.3 Source-to-Source Optimizer

Traditionally, there has been two complementary strategies to obtain performance in computation

kernels: on one hand, recursive algorithms designers tend to fully unroll their base cases in order to

reduce the control flow overhead and increase the instruction level parallelism of the computation.

On the other hand, experts writing iterative algorithms usually try to develop small kernels that

function at peak performance inside a loop by carefully allocating the computing resources [Agner,

2010; Intel, 2009c].

The source-to-source optimizer is the component of the library generator that ensures that both

types of code can be generated and are efficient. It produces better code directly from code by

successively applying a series of optimizations. Note that the source-to-source optimizer does not

need to perform the entire palette of optimizations since it is ultimately backed up by an external

optimizing source-to-bytecode compiler. Therefore, it only makes sense to implement those op-

timizations where either we possess more information than compilers or where compilers do not

handle properly the kind of code we generate.

The optimizer does not attempt to perform any advanced restructurings since doing so would

defeat the purpose of having a separate algorithmic space search mechanism. In particular, op-

timizations such as vectorization or parallelization are expressed and performed in the algorithm

space (see next section) and are therefore already performed during the
∑

-OL compilation stage.

This section briefly overviews the various optimizations that are performed. These are fairly

common in the compiler literature (see, for instance, [Allen and Kennedy, 2002]) and in prior work

on library generation [Frigo, 1999; Rizzolo and Padua, 2004; Whaley and Dongarra, 1998; Xiong,

2001].
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if ((m == 2) && (k == 1) && (n == 2)) {

double a139, a140, a141, a142, s45, s46,

s47, s49, s50, s52, s53, s55;

s45 = A[0];

s46 = B[0];

s47 = (s45 * s46);

a139 = C[0];

s49 = A[1];

s50 = (s49 * s46);

a140 = C[2];

s52 = B[1];

s53 = (s45 * s52);

a141 = C[1];

s55 = (s49 * s52);

a142 = C[3];

C[0] = (a139 + s47);

C[2] = (a140 + s50);

C[1] = (a141 + s53);

C[3] = (a142 + s55);

return;

}

FIGURE 3.7: An unrolled base case for MMMm,k,n. It implements MMM2,1,2 and has been
generated by Spiral (which explains the seemingly random naming of the variables). Note that the
external if statement constrains the applicability conditions of the base case to what it can really
handle.

Basic optimizations. The code presented above in Figure 3.6 has obvious shortcomings: sin-

gle iteration loops and unscalarized arrays (which reduces the instruction level parallelism). The

optimizer thus performs array scalarization on all internal arrays and unrolls all loops that have a

constant number of iterations. The compiler also uses common subexpression elimination to mini-

mize the number of index operations done. Whenever needed, it also converts the code to the single

static assignment form (SSA). For our previous code, the final result can be seen in Figure 3.7.

Advanced optimizations. Basic optimizations are sufficient to reproduce the kind of code

that is generated by unrolling recursions, that is, vanilla base cases. However, the next section

will introduce a new operator that captures an entire loop nest. Plugging back base cases inside

them therefore produces looped base cases, which is code that is traditionally thought of as being

iterative. An additional set of optimizations are then required: loop induction variable manipulations

(detection, fusion, associated strength reduction and rematerialization) and loop invariants hoisting

(including index computation minimization).

Code generation. Ultimately, code is generated from the library core using a modular unparser.

Efficient online search and precomputation for linear transforms suggest a language that supports

function closures. For this reason, we target C++10 as the original system for transforms. Further, we

10Object-oriented programming is equivalent to function closures.
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support library generation in Java, which is widely used, mainly for its ease of access and security

features.

Note that, despite that object-oriented languages are highly preferable for use with online search

mechanisms, some search mechanisms have been ported to support simpler languages such as C.

3.3 Parallelism

One goal of the library generator is to leverage the on-chip parallelism which means that the gener-

ated code should be threaded and vectorized. We capture these optimizations at the OL level which

is the “right” level of abstraction since it is upstream of the recursion step closure. The closure can

then automatically discover and formalize the additional recursion steps that need to be introduced.

Note that this choice of capturing vectorization and parallelization as just any other algorithm

in our system has an important consequence: since we start by producing additional recursion steps,

the profitability of vectorization and parallelization cannot be evaluated during the library genera-

tion. The decision of applying a given algorithm or not is left as a choice that is decided later by the

search mechanisms (which will be described in Chapter 4).

In order to capture parallelism in our framework, we introduce a new tool, the generalized tensor

for the OL notation. It can capture and manipulate loops of OL objects and logically flows from the

generalized tensor for the SPL notation introduced in [Voronenko, 2008]. Our notation is then used

to provide both parallelization and vectorization in a way that earlier work is leveraged, particularly

the vector and parallel compilers developed in [Franchetti et al., 2006a,c].

3.3.1 Generalized Tensor

The generalized tensor (GT) is an OL construct that serves the purpose of describing loop nests

(loops, loops of loops and so on) in a way that is functional (index free) to allow for easier handling

by the rewriting engine.

Rank-1 GT. A rank-1 GT captures a single
∑

-OL loop:

GT(A, g, s, [k]) =

k−1
∑

i=0

S(si) ◦ A ◦G(gi) (3.32)

In this expression, A is the kernel, k is the number of iterations and si and gi are scatter and gather

index mapping functions like the ones we defined before. The functions s and g are defined in

the functional programming paradigm [Johnsson, 1985]: they are the λ-lifted versions of si and

gi which means, in classical terms, that while si and gi are functions, s and g are functions of

functions that map i to si and gi. Since they have one unbound variable, we say that g and s are

rank-1 functions. Analogously, gi and si are called rank-0 functions. In essence, GT(A, g, s, [k])

in Equation 3.32 expresses the sum in an index-free form, i.e., without the index variable i.
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Ranks and downranks. We define the rank-k GT as an OL operator that can capture k nested

loops. The downranking rule converts a rank-k GT into a loop of rank-(k − 1) GTs; a rank-1 GT is

transformed into a simple loop.

To perform this operation, we introduce the bind operator that simply binds a variable inside a

function that has free variables. We write bind(f, i = j) to symbolize that all instances of i inside f

should be replaced by the expression j. To simplify further, we denote bind(f, i = i) as bind(f, i).

For example, downranking the rank-1 GT in Equation 3.32 yields:

GT(A, g, s, [k])
GT-Downrank(1)−−−−−−−−−→

k−1
∑

i=0

bind(GT(A, g, s, []), i)

=
k−1
∑

i=0

S(bind(s, i)) ◦ bind(A, i) ◦G(bind(g, i))

=

k−1
∑

i=0

S(si) ◦ A ◦G(gi)

A rank-2 GT has to be downranked twice before it is entirely expressed as loops:

GT(A, g, s, [k, ℓ])
∑ℓ−1

j=0 bind(GT(A, g, s, [k]), j)

∑ℓ−1
j=0

∑k−1
i=0 bind(bind(GT(A, g, s, []), i), j)

=
∑ℓ−1

j=0

∑k−1
i=0 S(si,j) ◦A ◦G(gi,j)

GT-Downrank(2)

GT-Downrank(1)

We specify the index of the loop variable to be downranked as an argument to the downranking rule.

Loop interchange. Since a GT represents a fully permutable loop nests, various loop trans-

formations can be applied. We describe here how to do a simple loop interchange to introduce the

reader to GT transformations.

Obviously, in our previous example, the loop interchange can be trivially achieved by down-

ranking in the other order; first with respect to k and then, with respect to ℓ:

GT(A, g, s, [k, ℓ])
∑k−1

i=0 bind(GT(A, g, s, [ℓ]), i)

∑k−1
i=0

∑ℓ−1
j=0 bind(bind(GT(A, g, s, []), j), i)

=
∑k−1

i=0

∑ℓ−1
j=0 S(si,j) ◦A ◦G(gi,j)

GT-Downrank(1)

GT-Downrank(2)
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The same transformation can be performed directly on the GT level with a direct loop inter-

change rule:

GT(A, g, s, [k, ℓ])
GT-Interchange−−−−−−−−→ GT(A, g, s, [ℓ, k])

MMM using GT. While GT has been originally developed for the exclusive use with linear

transforms [Voronenko, 2008]11, one insight of our research is that the GT theory is applicable

to more general operators, provided that the considered loop nest remains fully permutable. We

therefore present here the formulation of the matrix-multiplication blocking rules using GT.

To do this, we start by introducing the rank-k index mapping stride function hb,s,s1,...,sk which

is no more than a standard mapping with base b and stride s that is wrapped inside k loops with

vector strides s1, . . . , sk:

hn→N
b,s,s1,...,sk

: (i, j1, . . . , jk) 7→ b+ si+ s1j1 + · · · + skjk.

Observe that:

bind(hn→N
b,s,s1,...,sk

, jp) = hn→N
b+spjp,s,s1,...,sp−1,sp+1,...,sk

Using this function, the horizontal blocking of MMMm,k,n into a many panels (captured in

Equation 2.16) can be re-expressed as:

MMMm,k,n → GT(MMMm/a,k,n, (h0,1,m/a ⊗ h0,1)× (h0,1 ⊗ h0,1), h0,1,m/a ⊗ h0,1, [a]).

Note that the notation exposes multiple mathematical properties of the matrix multiplication:

1. The operation is recursive in nature and requires a loop of a iterations.

2. Two inputs are coming in, as highlighted by the cross product ×.

3. The two inputs and the single output are two dimensional, as highlighted by the tensor prod-

ucts ⊗.

4. The first input and the output (otherwise denoted as the matrices A and C) are dependent on

the loop since their index mapping functions are of rank-1. The block slice happens in the

external dimension (otherwise denoted as the height of the matrices).

For reference, we provide here the two other MMM blocking rules, that respectively cut the

11The reader that actually goes to the original reference might be puzzled by the description of the GT there. Indeed,
the formulation there is slightly different since it exposes the implementation of the lambda system inside the rewriting
engine. Because it is not our focus here, we choose to simply abstract it away using our bind functions.
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FIGURE 3.8: A vector addition in the SIMD vector paradigm.

matrices in b vertical panels and in c depth panels:

MMMm,k,n → GT(MMMm,k/b,n, (h0,1 ⊗ h0,1,k/b)× (h0,1,k/b ⊗ h0,1), h0,1 ⊗ h0,1, [b]),

MMMm,k,n → GT(MMMm,k,n/c, (h0,1 ⊗ h0,1)× (h0,1 ⊗ h0,1,n/c), h0,1 ⊗ h0,1,n/c, [c]).

3.3.2 Vectorization

We choose to abstract complex computing platforms behind coarse structural descriptions of ma-

chines that we call paradigms. This subsection presents how the single instruction multiple data

(SIMD) vector instruction paradigm can be harnessed using GT; the next subsection discusses the

shared memory paradigm. Observe that paradigms can be hierarchically composed: for instance, an

Intel Core2 Duo is characterized as a two-processor shared memory system (cache line is 64 bytes)

where both CPUs are 4-way SIMD vector units (in single precision floating-point mode).

Background. The SIMD vector paradigm models a class of processors with the following

characteristics:

• The processor implements a vector register file and standard vector operations that operate

pointwise: addition (Figure 3.8), multiplication, and others. The use of vector operations

usually results in a significant speed-up over scalar operations.

• The most efficient data movement between memory and the vector register file is through

aligned vector loads and stores. Unaligned memory accesses or subvector memory accesses

are more expensive.

• The processor implements shuffle instructions that rearrange data inside a vector register

(intra-register moves).

Most important examples of vector instruction sets are Intel’s SSE family, the newly announced

Intel extensions AVX, AMD’s 3DNow! family, Motorola’s AltiVec family including the IBM-

developed variants for the Cell and Power processors.

Automatic compiler vectorization is available in common optimizing compilers (e.g.: GCC

[Naishlos, 2004], Intel Compiler [Bik et al., 2002]) but its applicability is limited to simple cases.

The reasons are that:



60 Chapter 3. Library Core Generation

1. The expressivity of many languages make it difficult to analyze the code and decide the le-

gality of some transformations, and

2. The underlying variability in the architectures makes it difficult to provide performance mod-

els to assess the profitability of the transformations.

Therefore, most performance libraries are still vectorized by hand as of 2010. It is usually done

either by directly programming in assembly or using vendor provided compiler intrinsics for C.

Vectorization in OL. Designing a mathematical framework for vectorization was one of the

original motivations to come up with the Kronecker product formalism [Johnson et al., 1990a].

Since the tensor product simultaneously expresses structure and data independence, SPL has a very

convenient way to describe perfectly vectorizable computation. The most important example is

A⊗Iν where A is any transform and ν is the vector length. Vectorized code for y = (A⊗Iν)x can

be obtained by replacing every scalar operation in the code for y = A x by its corresponding ν-way

vector instruction [Franchetti et al., 2006c].

OL mathematically extends the tensor product to multiple inputs and outputs, hence it is no

surprise that it can also describe vectorizable structures. The identity Iν , however, has to be replaced

with the point-wise product Pν
12. For instance, if A is an arity-(2,1) operator from C

k × C
m into

C
n, then A⊗Pν denotes the operator from C

νk×C
νm into C

νn that performs ν interleaved As, i.e.,

the relationship between A and A⊗Pν is as for transforms before.

Overview of the implementation. The vectorization process in our framework is fully inte-

grated with the recursion step closure. It is performed in three steps:

1. Tagging and propagation of the loops that need to be vectorized,

2. Vectorization using either as-hoc rules or using the vector strip-mining GT rule that we intro-

duce, and

3. Implementation of the vectorized loops using vector operations.

Tagging. The first step is simply a mean to indicate the intent to vectorize a given OL construct.

For instance, if the target machine supports ν-way vector instructions, a target functionality (e.g.

MMM) could be “tagged” with a simple mark:

MMMm,k,n
︸          ︷︷          ︸

vec(ν)

.

Propagation of the vectorization tag is assured by rules such as

A ◦B
︸︷︷︸

vec(ν)

→ A
︸︷︷︸

vec(ν)

◦ B
︸︷︷︸

vec(ν)

.

12The point-wise product is the only generalization of the identity that maintains the concept of matching slots which
is at the core of the vector unit idea (see Equation 2.15 and followings).
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Vectorization. The second step involves finding and locking in actual opportunities for vec-

torization. Indeed, we consider that some constructs are naturally vectorizable, such as loops of

ν iterations with unit vector stride or some particular permutations [Franchetti and Püschel, 2008;

Franchetti et al., 2006c]. These constructs are the only ones that are cast into vector code later on, so

a formula has to be uniquely composed of naturally vectorizable components to be entirely vector-

ized. We denote such vectorizing rules by dropping the vectorization intent tag since the opportunity

is actually locked in.

One easy way to do this is to introduce functionality specific rules, for example:

MMMm,k,n
︸          ︷︷          ︸

vec(ν)

MMM-Vec−−−−−−→ GT(MMMm,k,n/ν, (h0,1 ⊗ dupν)× (h0,1 ⊗ h0,ν,1), (h0,1 ⊗ h0,ν,1), [ν̄]).

One can verify that the above rule slices the B matrix into ν interleaved chunks, multiplies it with a A

matrix that has been splatted ν times and that the C matrix is produced by reconstituting interleaved

chunks. We bar the loop counter ν̄ to symbolize that the loop is a vector loop and should never be

downranked.

Vectorization can also happen directly at the GT level using the strip-mining loop transforma-

tion. This operation is analogous to the standard vectorization mechanism inside optimizing com-

pilers and transforms a loop into a doubly nested loop in which the inner loop performs as many

iterations as the vector length so that it can be directly mapped to vector units.

In GT terms, strip-mining is the transformation of a rank-k GT into a rank-(k + 1) GT. In

contrast with most compiler techniques, GT allows any loop to be strip-mined, that is, inner or outer

loops, whether unit-stride or not. Of course, unit stride loops are expected to be more efficient since

they naturally match the hardware capabilities but non-unit stride loops can also be handled using

subvector loads and stores. This offers more search possibilities down the road and might lead to

interesting niche performance gains.

The general rule requires the introduction of the strip function which is a specific lambda func-

tion. It breaks a given rank-k index mapping function into a rank-(k + 1) function, here is the

example for a rank-1 function:

strip((i, s1) 7→ f(i, s1), ν) = (i, s1, s2) 7→ f(i, νs2 + s1).

The general rule can then be formulated:

GT(A, g, s, [n])
︸               ︷︷               ︸

vec(ν)

GT-Vec−−−−→ GT(A, strip(g, ν), strip(s, ν), [ν̄ , n/ν]).

Code generation. Finally, vector code has to be generated for the constructs that have been

deemed naturally vectorizable. The strategy here varies: for some constructs (e.g. the stride per-
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FIGURE 3.9: The shared memory paradigm.

mutations), a database look up picks up the right vector code straight away13. For vector loops, the

entire code for the kernel is generated and scalar operations are then replaced by vector operations.

3.3.3 Parallelization

Background. The shared memory paradigm models a class of multiprocessor systems with the

following characteristics (Figure 3.9):

• The system has multiple processors (or cores) that are all of the same type.

• The processors share a main, directly addressable memory.

Important processors modeled by the shared memory paradigm include Intel’s and AMD’s mul-

ticores and systems built with multiple of them.

While a general body of work on automatic parallelization does exist [Banerjee et al., 1993;

Hiranandani et al., 1992] and is offered within some optimizing compilers, it is not yet considered

as a serious alternative to manual implementation. Multiple root causes can be found:

1. Threading operates at a coarse grain which makes automatic analysis to discover it naturally

costly.

2. The overhead to threading is important, so failures during automatic parallelization can seri-

ously cripple performance. Compilers are thus very conservative in their attempts.

However, and in comparison to vectorization, good tools exist to help the developers to manually

leverage the threading capabilities. In particular, language extensions and libraries such as OpenMP

or pthreads are widely accepted standards to help manage threads in a way that is portable. Our

backend supports both tools.

Overview of the implementation. Parallelization essentially follows the same principles as

vectorization and is performed in three phases: the tagging of the loops, the actual parallelization

and the code generation.

13While this might be simple, the actual challenge resides in automatically generating the said database, which is
explained in depth in [Franchetti and Püschel, 2008].
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Tagging. We denote by a tag an operator that has to be optimized for a system with p processors:

A
︸︷︷︸

smp(p)

Similarly to the vectorization, a set of rewriting rules directs the propagation of tags in a way that

is compatible with the recursion step closure. This ensures that all possibilities are made available

to the search mechanism which is responsible for taking the right decisions.

For instance, using a new SMP barrier operator, the rule for the propagation of the tag is ex-

pressed like this:

A ◦B
︸︷︷︸

smp(p)

→ barrier ◦ A
︸︷︷︸

smp(p)

◦barrier ◦ B
︸︷︷︸

smp(p)

.

Parallelization. Loop parallelization is essentially a strip-mining operation. The general GT

transformation rule can be written as:

GT(A, g, s, [n])
︸               ︷︷               ︸

smp(p)

GT-Par−−−−→ GT(A, strip(g, p), strip(s, p), [p̄, n/p]).

Note that the bar on top of the p̄ tags this loop as being parallel and guarantees that it will not be

downranked.

Code generation. After the recursion step closure, the backend implement parallel primitives

using either OpenMP or pthreads. For instance, generated OpenMP code for the parallel loop nest

above looks like this:

#pragma omp parallel for

for (i=0; i=n/p; i++)

...

3.4 Putting it all together

We conclude this chapter by detailing the generation of a complex MMM library that exhibits most

of the features that we have presented in this chapter.

This library supports the commonly used DGEMM interface from [Dongarra et al., 1990] with

the limitation that α = β = 1. More precisely, this means that the library can perform the following

computations:

C = A(T)B(T) + C

where A, B and C are column-major matrices, possibly transposed and possibly subject to a non

trivial leading dimension (i.e., submatrices of packed matrices are captured).
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FIGURE 3.10: Static call graph of a vectorized matrix-matrix multiplication library with an inter-
face close to the one of the GEMM. “RS” stands for recursion step.

We capture this interface by creating a DGEMM operator with four simple rules that dispatch

to four different computations, depending if A is transposed and if B is transposed.

We then ask the system to generate a library core, based on this DGEMM functionality, on

the four new dummy rules and on the three blocking rules. We also ask the system to vectorize

the library and specify that base cases to be included for MMM are to be constrained within

[1, 8] × [1, 8] × [1, 8].

The library generator then computes for one hour and produces a library core that is composed

of 105958 lines of code weighting 4MB overall and whose closure graph is presented in Figure 3.10.

On this graph, it can be seen that the GEMM interface (RS 1) is broken down in four different

recursion steps (RS 2, RS 3, RS 4, and RS 5) which corresponds to the different transposition steps of

the matrices A and B. We consider now RS 3. It can breakdown into RS 8, RS 10 and RS 12 which

corresponds to the three looped blocking rules. It can also breakdown into RS 6 which corresponds

to a SIMD vectorized matrix multiplication. RS 6 can itself be broken down into RS 19, RS 20

and RS 21 using the three looped blocking rules. Therefore, the base case code inside these three

recursion steps corresponds to vectorized looped base cases.

We show the loop body of one of the base cases of RS 19 in Figure 3.11. The performance of

the library is shown in the experimental results (Chapter 5).
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// loop initialization omitted

do {

s41379 = *(b119682);

s41380 = _mm_mul_pd(s41378, s41379);

a174716 = *(b119684);

*(b119684) = _mm_add_pd(a174716, s41380);

a174717 = (1 + b119682);

s41381 = *(a174717);

s41382 = _mm_mul_pd(s41378, s41381);

a174718 = (1 + b119684);

a174719 = *(a174718);

*(a174718) = _mm_add_pd(a174719, s41382);

s41384 = _mm_mul_pd(s41383, s41379);

a174723 = *(b119688);

*(b119688) = _mm_add_pd(a174723, s41384);

s41385 = _mm_mul_pd(s41383, s41381);

a174724 = (1 + b119688);

a174725 = *(a174724);

*(a174724) = _mm_add_pd(a174725, s41385);

b119682 = (b119682 + a174703);

s41387 = *(b119682);

s41388 = _mm_mul_pd(s41386, s41387);

a174729 = *(b119684);

*(b119684) = _mm_add_pd(a174729, s41388);

a174730 = (1 + b119682);

s41389 = *(a174730);

s41390 = _mm_mul_pd(s41386, s41389);

a174731 = *(a174718);

*(a174718) = _mm_add_pd(a174731, s41390);

s41392 = _mm_mul_pd(s41391, s41387);

a174734 = *(b119688);

*(b119688) = _mm_add_pd(a174734, s41392);

s41393 = _mm_mul_pd(s41391, s41389);

a174735 = *(a174724);

*(a174724) = _mm_add_pd(a174735, s41393);

b119684 = (b119684 + a174712);

b119688 = (b119688 + a174712);

b119682 = (b119682 + inc55);

} while( b119682<ubound55 );

FIGURE 3.11: Automatically generated vectorized loop body of one of the base cases implement-
ing RS 19 in Figure 3.10. Note that most of the index computation is not shown since it is hoisted
out of the loop.





CHAPTER 4

Adaptation:

Tuning the Library to the Hardware

Adaptive libraries have been advocated as a solution to cut down performance library development

costs in a setting where micro-architectures tend to become increasingly complex and diverse. They

have proved to be successful in a number of domains, including basic dense linear algebra (ATLAS

[Whaley and Dongarra, 1998]), sparse linear algebra (OSKI [Vuduc et al., 2005]), sorting (Adaptive

Sorting Library [Li et al., 2004]), and linear transforms (FFTW [Frigo and Johnson, 2005], UHFFT

[Ali et al., 2007], Spiral-generated libraries [Voronenko et al., 2009]).

The key features that distinguish all these research projects from more “traditional” libraries can

be summarized in two simple points:

1. Adaptive libraries provide many different alternative strategies to implement a given function-

ality. These implementations constitute the exploration space and, a priori, it is not known

which one of them will perform the fastest on the user machine.

2. An exploration mechanism is supplied in order to select one of these alternatives according

to some criterion, usually the speed of the code (but we will see that the length of the search

can also play a role). The choice depends on the feedback that can be obtained through actual

timings on the user machine.

This definition deliberately excludes libraries that provide multiple different optimized routines

for the same function, one for each of the supported architectures (e.g. GotoBLAS [Goto, 2008],

IPP [Intel, 2009a], or MKL [Intel, 2009b]). In such libraries, the exploration is performed by experts

during implementation rather than being mechanized which unfortunately does not scale when the

number of platforms grow.

In the previous chapters, we have shown how various recursive algorithms can be represented as

rules (Chapter 2) and how these rules can be compiled into efficient code (Chapter 3). The handling
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of degrees of freedom was not discussed and questions such as “which one of the rules should be

applied?” or “what block size should be used during the horizontal blocking?” have been delayed

until now.

This chapter covers adaptation by selecting among the available degrees of freedom with the

goal of maximizing the performance on the target platform. Two different usage scenarios will be

tackled and they will naturally lead to two different formulations of the adaptation problem that

essentially differ by the time at which the exploration is performed: Online libraries supply the user

with the best implementation for any given problem size provided he or she is willing to spend time

searching for it whereas offline libraries concentrate the search at installation, providing reasonable

support for all sizes without any exploration overhead.

In Section 4.1, we exhibit the structure of the exploration space for adaptive libraries and present

in depth the two usage scenarios we consider. The infrastructure and the various methods to solve

the online problem are presented in Section 4.2. The offline problem is finally tackled in Section 4.3.

4.1 Structure of the Exploration Space

This section introduces most of the concepts that will be commonly used in the following sections.

We start by presenting the degrees of freedom inside a generated DFT library, show actual expert-

written heuristics and introduce two different representations of the exploration space, namely the

augmented closure graphs and the decision graphs. We finally present the two usage scenarios for

adaptation that we will consider in this thesis: online and offline adaptation.

4.1.1 Motivation: Degrees of Freedom and Heuristics

Depending on the functionality, the degrees of freedom in the choice of algorithms combined with

the recursive nature of the problem can yield a huge number of different alternatives, even without

considering any choices arising from the implementation. Traditional libraries or Spiral-generated

general-size libraries from [Voronenko et al., 2008a] include expert-derived heuristics to manually

select among the alternatives. This process is not automatic and therefore prevents the full mecha-

nization of the library generation.

Degrees of freedom. We focus here on the classic Cooley-Tukey algorithm for the discrete

Fourier transform:

DFTn = (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k , n = km. (4.1)

The degree of freedom is the choice of k|n and impacts the factorization as shown in Figure 4.1.

Observe that the subproblems (smaller DFTs) are of different size depending on the choice of the

radix, which means that the choice actually has repercussions in the entire recursion is affected.



4.1. Structure of the Exploration Space 69
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FIGURE 4.1: Visualization of the impact of radix choice inside the Cooley-Tukey algorithm. The
non-zero values of the three different factorizations ofDFT16 are displayed. In the tensor products,
boxes of equal gray shade are part of the same DFT.
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FIGURE 4.2: Two fully expanded ruletrees for DFT16.

Note that an algorithm is not fully specified until it is fully expanded, or, equivalently, until it

is broken down into base cases. In early Spiral papers [Püschel et al., 2005], such fully specified

algorithms are represented using trees such as those presented in Figure 4.2 and are called ruletrees.

Recursively compounded this yields, in this case, and under certain assumptions, an algorithm

space of Θ(5t/t3/2) for n = 2t that this library covers (see Figure 4.3) [Johnson and Püschel, 2000].

We remind the reader that all of these are “fast Fourier transforms” and have roughly the same

operations count; yet, the performance can differ widely due to cache misses and other effects.

Albeit the number of different algorithms is already significant, we will see later that implementation

optimizations adds further degrees of freedom, which exacerbates the problem.

Heuristics. To select an implementation among the different alternatives, traditional libraries

use heuristics: functions designed by experts that restrict the search space to a single choice, that

ideally is close to optimal.

To illustrate the difficulty of developing such heuristics, we show in Figure 4.4 the function used

in [Voronenko et al., 2008a] to choose the radix as a function of the input size for DFTs. The choice,
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FIGURE 4.3: Number of DFT algorithms based on standard Cooley-Tukey FFT, implemented
naïvely. All algorithms for a given DFT input size have roughly the same operations count.

encoded in a short decision tree is deceivingly simple: called recursively, it selects the radix in each

step in Cooley-Tukey (Equation 4.1). The resulting performance is very good for scalar single-

threaded implementations on new x86 platforms for sizes ranging from 21 to 216. The heuristic

relies on the following assumptions:

1. The library only supports DFT sizes that are two-powers n = 2t.

2. Other parameters than the size (such as strides for different recursion steps) are negligible.

3. Scaled DFT codelets1 have been provided with the library for all sizes up to 32.

4. Right expanded DFT trees are known to be faster.

5. Large size codelets are known to be faster than small ones, up to some limit.

6. Small strided codelets2 (size 2 and 4) are particularly bad and should be avoided.

Obviously, this simple piece of code raises many questions, such as how do we know that this

heuristic is actually good, or how to extend it to odd sizes, onto different platforms, or to different

functionalities or different algorithms. With the large number of parameters that can go inside a

generated library (see for instance, Equation 3.31), it would be infeasible to derive heuristics by

hand for every computer-generated library.

The goal of this chapter is to describe two mechanisms to replace expert-written heuristics. The

first one, online adaptation, dynamically selects the degrees of freedom at runtime based on explicit

trials on the target platforms. The second one, offline adaptation, harnesses machine learning tools

to automatically generate such heuristics at installation time.

1Scaled codelets correspond to codelets that contain the twiddle factors. See [Voronenko, 2008] or [Frigo and Johnson,
2005] for additional information on the specifics of the DFT base cases.

2Strided codelets correspond to codelets that contain the final permutation. Again, see [Voronenko, 2008] or
[Frigo and Johnson, 2005] for additional information’s.
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if (divisible(32, n) && (n/32) >= 8) {return 32;}

else if (divisible(16, n) && (n/16) >= 8) {return 16;}

else if (divisible(8, n)) {return 8;}

else if (divisible(4, n)) {return 4;}

else if (divisible(2, n)) {return 2;}

else { error(‘‘no divisors’’);}

FIGURE 4.4: The heuristic developed by Voronenko to choose the DFT radix in function of the
input size in his doctoral thesis [Voronenko, 2008]. The only constraint on the output is that the
radix must divide the input size.
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FIGURE 4.5: Difference in the number of DFT algorithms, if base case termination is implemented
as a choice.

4.1.2 Structure of the Search Space

The above discussion of the exploration space assumed a naïve DFT implementation. In fact, the

complex optimizations needed to implement such recursive algorithms into state-of-the-art libraries

introduces additional degrees of freedom of quite different types.

Multiple base cases. All recursions require base cases to terminate. In the previous situation,

we implicitly assumed that a single base case was available, DFT2, but it is well known that bigger

base cases reduce the recursion overhead and enable better register level optimizations which results

in faster execution for all sizes. As an example, for the FFT, usually two-powers up to 64 are

provided as base cases inside a two-power DFT library.

In practice however, there is a tradeoff point where the reduction of the control and the increase

in instruction level parallelism is over compensated by the increased pressure for registers and in-

struction cache. As a consequence recursion unrolling ends up being detrimental if pushed too far.

To compensate for this effect, we choose to enable recursion on all sizes, even those that are directly

supported by base cases, leaving the choice of early termination up to the search mechanism. This

decision has a large impact on the size of the search space as can be observed in Figure 4.5.
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void dft(int n, cpx *y, cpx *x) {

if (use_dft_base_case(n))

dft_bc(n, y, x);

else {

int k = choose_dft_radix(n);

for (int i=0; i < k; ++i)

dft_strided(m, k, t + m*i, x + m*i);

for (int i=0; i < m; ++i)

dft_scaled(k, m, precomp_d[i], y + i, t + i);

}

}

void dft_strided(int n, int istr, cpx *y, cpx *x) { ... }

void dft_scaled(int n, int str, cpx *d, cpx *y, cpx *x) { ... }

FIGURE 4.6: FFTW 2.x-like implementation of the DFT. In this code, degrees of freedom are
implemented by the heuristics use_dft_base_case(n) and choose_dft_radix(n)—in
the FFTW code, these degrees of freedom would be searched online by the planning system. For
brevity, auxiliary recursion steps dft_strided and dft_scaled are not detailed entirely.

Recursion step closure. Deriving the recursion step closure explained in Subsection 3.1.2,

it is easy to see that the naïve four passes implementation can be actually reduced to only two

passes, hence improving locality. Such an implementation is used, for instance, in FFTW 2.x.

Namely, the explicit (and expensive) permutation Ln
k can be replaced with a readdressing in the

subsequent smaller DFTs and the scaling by T n
m can be fused with the subsequent DFTs. The

generated recursion steps are designated as shown below:

DFTn
︸  ︷︷  ︸

dft

=
(

(DFTk ⊗Im)T km
m

)

︸                      ︷︷                      ︸

dft_scaled

(

(Ik ⊗DFTm)Lkm
k

)

︸                       ︷︷                       ︸

dft_strided

, n = km.

The pseudo-code for such an implementation is displayed on Figure 4.6. Since the recursion

must eventually terminate, we assume that base cases are provided for all recursion steps in the form

of unrolled codelets of fixed size (denoted with a bc for base case in the code). The two degrees

of freedom we referred to earlier (choice of the radix and whether to use a codelet or not) are to be

specified using the functions choose_dft_radix(n) and use_dft_base_case(n)3.

The important thing to realize is that the two auxiliary recursion steps are nothing but DFTs

with a different interface and therefore also possess their own degrees of freedom. These degrees of

freedom depend on all cold parameters (see Subsection 3.1.3) of the recursion steps; so, in this case

they do not only depend on the size n but also on the strides str and istr. These extra choices

can be observed in Figure 4.7 which shows an augmented closure graph where the choices (white

diamonds) are represented together with the recursion steps (gray boxes). The outgoing edges of

3For the sake of the explanation, we make the dynamic assumption here which implies that the performance of the
recursion step only depends on the actual size n. The topic will be covered in depth later on.
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FIGURE 4.7: Augmented closure graph underlying the implementation from Figure 4.6. Note that,
in the case of radix choices, both children actually need to be computed.

choices are labeled with decisions and connect to spawned recursion steps. The outgoing edge of a

recursion step may connect to a choice or to another recursion step that it calls without choice.

The graph leads to further observations:

1. Choices of the same type (e.g., “base case?”) may occur multiple times inside the graph since

they correspond to different recursion steps.

2. The decision graph contains cycles due to the recursive nature of the search space. During

the decision process, the same choice box can hence be encountered several times (e.g., the

choice of radix for a strided DFT of size 128 and later the choice of radix for a strided DFT of

size 16). What is not evident from the decision graph is that the decision procedure eventually

terminates since the DFT sizes decrease.

3. A given recursion step is implemented using zero, one, or more recursion steps. Therefore,

open choices are of different nature: a recursion step is either implemented as a base case or

not, but an actual recursion always uses both recursion steps4.

Artificial restrictions. The library we just described offers many different ways to compute a

given functionality. The search space is in fact so large that some branches of the graph could be

removed while still guaranteeing termination for all cases. The advantage is a reduction in code size

(breakdowns and heuristics). In some cases, it may be possible to do without hurting performance.

For instance, Figure 4.8 depicts FFTW 2.x’s implementation of the DFT. It restricts the scaled DFT

recursion step to being a codelet.

Advanced implementations. The search space gets considerably more complicated with state-

of-the-art libraries. The reason is in the support for vectorization, multithreading, and advanced

memory hierarchy optimizations [Voronenko, 2008; Voronenko et al., 2009]. The latter includes

support for buffering and for on-the-fly twiddle factor computation. These optimizations require

transformations of Equation 4.1 that produce additional recursion steps together with additional

choices.
4In this particular example, there is no recursion step being implemented using a single other recursion step.
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FIGURE 4.8: Decision graph underlying the implementation from Figure 4.6 where the scaled DFT
recursion step has been restricted to being a codelet. FFTW 2.x functions exactly like this.
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FIGURE 4.9: Decision graph underlying a vectorized, multi-threaded and buffered implementation
of the DFT. Recursion step names are omitted for readability except for the initial dft recursion
step and two examples.

Figure 4.9 shows the decision graph of such a library generated by Spiral. Observe the increase

in the number of recursion steps and the associated increase in choices inside the library.

The above discussion holds not only for the DFT but also for most of the other functionalities

that Spiral can generate libraries for. Further, not all algorithms decompose a functionality into

functionalities of the same type. In this case the search space is further increased.

4.1.3 Online and Offline Adaptation

This chapter describes a mechanism to automatically determine the right decisions for a given ma-

chine. Within this adaptation goal, there are two different usage scenarios that make sense and we

call them online and offline adaptation. We just present here the two alternatives but we cover them

in detail in the coming sections.

Online adaptive libraries require search at time of use, namely every time the input specification

(typically the input size) changes. An example is FFTW where this process is called planning.

Because the exploration is done once for each problem, the user needs to compensate the search

overhead with multiple computations for the same specification.

In offline adaptive libraries, in contrast, the search is done only once for all problem sizes, at

installation time. An example of such a library is ATLAS: during installation, it automatically pro-

duces a tuned implementation of basic linear algebra subroutines (BLAS). The benefit of searching



4.1. Structure of the Exploration Space 75

Library type Non-adaptive Online adaptive Offline adaptive

Prototype IPP, FFTW-Estimate FFTW-Measure -

Generatable by Spiral [Voronenko, 2008] this dissertation this dissertation

Interface

{

d = dft(n)

d(X,Y)

{

d = dft(n)

d(X,Y)

{

d = dft(n)

d(X,Y)

Initialization cost O(n) > O(n log n) O(n)

Computation cost O(n log n) O(n log n) O(n log n)

Adaptation mechanism none online (planner at runtime) offline (at installation time)

User view

When problem changes - replan -

When platform changes rebuy replan reinstall

TABLE 4.1: Different general size library types and their properties using the n point DFT as an
example.

only once comes at a price: the decisions are not tuned to a specific problem size and therefore may

be less efficient than those found by online adaptation.

DFT example. A summary of the different properties of the libraries is presented in Table 4.1

using the discrete Fourier transform (DFT) as example. We note that FFTW also possesses hand-

written heuristics which provides mixed performance results as we will show later.

Observe that the interface in all libraries is the same, requiring two distinct calls in a way that

is similar to currying (partial application) [Curry et al., 1958]. In the first phase, d = dft(n),

the libraries perform initialization, which includes precomputation of the trigonometric constants

(called twiddle factors), and, in the case of online adaptation, the library searches for the fastest way

to compute the DFT of the given size n. The actual computation is only performed in the second

phase when the data is provided. The time for search is only amortized if many computations of the

same type (here size n) are performed. The advantage of non-adaptive and offline adaptive libraries

is that the initialization step is asymptotically faster than the computation step (O(n) vs O(n log n)),

but in practice it is still slower than the computation step, until n is at least several thousand points.

In an online adaptive library, the adaption process usually must perform at least one timing of the

entire computation, and thus is guaranteed to take longer than just the computation step. In practice,

for larger problem sizes, it may take several hours.

This interface conflicts with many legacy applications, which use a simpler one-call interface.

Non-adaptive and offline adaptive libraries can emulate the one-call interface without substantial

overhead. A caching system could be used to hide the online adaptation behind a legacy interface,

but this complicates usage, potentially increases memory footprint, and does not resolve the problem

of the high latency in applications with changing problem sizes.

Assuming a perfect implementation, offline adaptation enables the best of both worlds: low
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initialization overhead (which enables easier emulation of a legacy interface) and automatic adapta-

tion. Alas, the development is difficult since it requires the developer to come up with a framework

to automatically find suitable heuristics that have to work well for all problem sizes. In ATLAS this

was done successfully but the search space (which includes different blocking and unrolling sizes)

is BLAS-specific and cannot be used for other libraries, e.g., for the DFT. In practice however, on-

line adaptive libraries are tuned for any given size and are therefore expected to provide a better

performance than offline adaptive libraries.

Formal problem statement. We consider an adaptive performance library that provides a com-

puting function parametrized by one or multiple positive integers, typically the input size or sizes.

For simplicity, we assume in our problem formulation a single parameter n; the formulation for sev-

eral parameters is analogous. One parameter is sufficient for the DFT but not for all the subroutines

needed to compute the DFT (as shown before).

The library has degrees of freedom in the computation. We call every degree of freedom a choice

and model it as a set of positive integers C ⊂ N = {0, 1, 2, ...}. Examples include binary choices

{0, 1} such as “threading or not,” the choice of the number of threads, and the choice of radix. In the

ATLAS generator, choices include various tile sizes and the degree of unrolling. Making a decision

for a given choice C means choosing d ∈ C . The complete computation is specified by a finite

sequence (list) of decisions D = {d1, . . . , dk}. We denote the set of possible decision lists (which

may have different lengths) for input size n with D(n). Hence, in the library D(n) is the search

space for size n that is available for adaptation.

We now can formalize and distinguish the problems of online and offline adaptation for a given

library. Given a list D of decisions, let p(D) be the associated performance (higher is better) of the

computation with the library on the target platform.

PROBLEM 1 (Online adaptation) Given the size n and the platform P , find

DP
n = argmax

D∈D(n)
p(D)

PROBLEM 2 (Offline adaptation) Given the platform P , find a function

DP : n 7→ DP (n) = DP
n , where DP

n is defined as in above.

Note that in both problems, the optimum can only be obtained by exhaustive search which is not

feasible. Hence functions that approximate DP (n) will be called heuristics. For instance, FFTW

provides a mode called FFT_ESTIMATE that features such a hand-written machine independent

heuristic D(n) which provides mixed performance results as we will see later.

In addition, FFTW can solve Problem 1 using a dynamic programming search and the ability to

store the DP
n (called “wisdom”). ATLAS solves Problem 2 by providing a generic heuristic DP (n)

that is parametrized by several numeric values determined at installation time, all independent of
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the input size5; hence, DP (n) is mostly known and can be inlined in the code.

Related work. In the domain of high-performance library development, [Singer and Veloso,

2002] is the only paper, to the best of our knowledge, that deals with automatically designing

heuristics (which we denoted as Problem 2). Their heuristics are derived by predicting the run-

time of different linear transform algorithms. The features that they use are collected directly in

the transform algorithm SPL formula. Unfortunately, their work is not easily extensible to other

domains since it heavily relies on a number of signal processing observations and is also not eas-

ily reproducible since it only handles the DFT and WHT libraries and does not cover general-size

libraries which have more parameters than the radix.

In the larger domain of optimizing compilation, two different subjects directly relate to this

topic. First, iterative compilation (also called adaptive or feedback-driven) describes the process

of successively compiling and executing the code in order to find the best optimizations for one

given application. This topic is analogous, in a more general setting, to our Problem 1. Compilation

time issues have led to smart timing frameworks [Cooper et al., 2005] and various interesting search

methods whether ad hoc [Pan and Eigenmann, 2006] or rooting in machine learning [Cooper et al.,

1999] have been proposed.

The second trend in compiler research that relates to our subject is work on automatically tuning

the heuristics themselves, which in turn allows the compiler to perform better on all programs

(which is similar to our Problem 2). Early work on the subject [Moss et al., 1998] suggested to

use reinforcement learning in order to improve the scheduling of straight-line code. Closer to our

work, [Calder et al., 1997; Cavazos and Moss, 2004; Monsifrot et al., 2002] have suggested to learn

whether or not an optimization should be triggered by learning decision trees using algorithms

derived from C4.5. In contrast to our work, legality is never an issue for them and they only focus

on dealing with a single heuristic whereas we generate all the heuristics of the library with this

method. Other researcher have pursued the same goal with different search methods such as genetic

programming [Stephenson et al., 2003]. In this area, research essentially focuses on predicting

whether an optimization should be triggered but leaving the actual parameter choices to an heuristic.

Predicting the actual parameters is needed for our work and there are few reports on the topic

[Stephenson and Amarasinghe, 2005].

4.2 Online Adaptation

Online adaptation is only suitable for a user that computes multiple problems of the same size. It

logically follows from this assumption that it might be beneficial to spend more time upfront, on the

discovery of a faster implementation and amortize that one-time cost over the multiple computation

instances.

5Actually, in the case of ATLAS, the equivalent of the input size would be the dimensions of the matrices.
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In this sense, online adaptation should be understood as an optimization problem: The precise

size of interest is known, the computing platform is available, so the only thing that remains to be

done is to select the one alternative that maximizes the performance. This selection has to be done

in a reasonable amount of time, where reasonable actually depends on the user: there is more time

for adaptation if the function and size is supposed to run in an embedded system for the next decade

compared to one that is used only 10 times.

This section starts with a short overview of the planning system, which will help with under-

standing the different issues associated with online adaptation. We then present how dynamic pro-

gramming, the search strategy of choice from earlier versions of Spiral [Püschel et al., 2005], can be

updated in the context of general size libraries. Finally, we introduce a “bandit-based” optimization

algorithm, which was inspired by recent advances in computer Go.

4.2.1 Planning System

This section presents the architecture of the planning system which sits between the library user

and the generated library core. Its purpose is to enable online adaption while hiding the complexity

of the core. In particular, the system provides different search algorithms that works will all the

different supported libraries and hides it behind a convenient user interface.

After the presentation of a naïve online adaptation interface, we describe the structure of the

planners, which are a key component to simultaneously support different search strategies. Finally,

we quickly present some implementation subtleties that also drove the design choices.

Naïve online adaptation interface. The operation performed during online adaptation is equiv-

alent to the currying of the interface. For instance, we consider an MMMm,k,n library. In the ML

programming language [Milner et al., 1990], the type of such an interface would be

(int * int * int * double array * double array) -> double array

The exact addresses of the arrays play a minor role in the performance6 of the multiplication; they

are hot parameters (see Subsection 3.1.3). Therefore we curry the function in this way:

int * int * int -> (double array * double array -> double array)

Ideally, evaluating the function partially like above would allow a perfect compiler to get the

first triplet of integers, compute for some time and return a function optimized for arrays of the fixed

sizes that were specified in the first arguments. In practice however, the lack of perfect compilers

forces us to do the said transformation ourselves. And, in fact, the lack of functional languages

compilers suitable for high-performance computing even forces us to use imperative languages to

implement the above closure. In an object oriented language such as C++, partial application can be

emulated by first having the user build an object, the problem descriptor, and then, calling different

6This is a reasonable assumption if the addresses stay aligned to the vector length. A detailed study of the impact of
the offsets on the performance can be found in [Jalby and Lemuet, 2002].
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class Naive_Template_RStep {

Naive_Template_RStep(cold parameters);

void plan();

void compute(hot parameters);

};

FIGURE 4.10: Naïve interface for recursion steps in order to do online adaptation. The cold and
hot parameters vary for the different recursion steps (see Subsection 3.1.3).

methods of the said object. For instance, a matrix multiplication library could be called in the

following way:

descr = new mmm(m,k,n);

descr->plan();

descr->compute(A,B,C);

descr->compute(A2,B2,C2);

In the example, the descriptor is first created with the dimension of the matrices. At this point,

the planning system explores the many possible alternative implementations and selects just one.

Finally, the selected implementation can be used and subsequently reused on different arrays.

The above intuition is generalized in Figure 4.10. It describes a first interface that needs to be

implemented by all all recursion steps.

Planners. The interface we just described requires the search method to be directly coded

inside every recursion step which means that the process is neither convenient (modifying the search

strategy is complicated) nor robust (the same code is replicated needlessly). To solve this, we

introduce planners that decouple the search strategies from the recursion steps.

The organization of the planners arises naturally from the observation that any search strategy

works on two different levels:

• At the local level, one needs to provide all decisions that make up a plan. For this purpose,

planners must provide a function choose that is passed a vector of integers (the choice) and

simply returns one of the integers (the decision).

• At the global level, one needs to decide how to search and when to stop. It is necessary to

evaluate previous decisions and eventually modify the local strategy in consequence. This is

accomplished by a plan function whose purpose is to return an optimized recursion step.

To illustrate the need for both concepts, consider two different exploration strategies, the om-

niscient oracle and the standard Monte-Carlo. On one hand, the oracle logic is essentially local:

every time a decision is needed the right answer is produced; so, at the global level, everything is

done perfectly right from the first time. On the other hand, Monte-Carlo compensates a failing local

decider, choosing randomly, by a better global strategy, repeating the former for as long as possible

and finally returning the best seen answer.
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class Planner {

virtual void plan(RStep*)=0;

virtual int choose(RStep*, vector<int>)=0;

};

class RStep {

virtual void plan(Planner*)=0;

};

class Template_RStep: public RStep {

Template_RStep(cold parameters);

void compute(hot parameters);

void plan(Planner*);

};

FIGURE 4.11: Planner interface for online adaptation. Planners encapsulate the search strategies
which allows to easily swap from one to the other.

The interface in Figure 4.11 is based on these observations. It is designed for maximal flexi-

bility and, as a matter of fact, the two competitive search strategies we will describe in the coming

subsections are implemented based on it. Planners have also been developed by other members of

the Spiral group such as Eric Lee Turner who reimplemented the STEER evolutionary search plan-

ner [Singer and Veloso, 2001] for general size libraries and Volodymyr Arbatov who ported some

planners to the C language.

Implementation subtleties. One of the unexpected difficulties that the search mechanism needs

to deal with is that, sometimes, the search might get trapped in a dead-end. This situation is usually

triggered when a recursion step needs to be implemented but no rules actually apply. For instance,

we already illustrated such a situation in Figure 4.8, where a recursion step was artificially con-

strained to be implemented as a base case. If the search ends up in a branch that requires this

recursion step but its size is not provided as part of the codelets, the whole algorithm choice must

be forfeited as there is no way to implement it.

In our planning system, exceptions are used to signify such dead-ends and the system back-

tracks. We will not provide deeper details in this document, but it is important to realize that the

design and the quality of the planning is critical to the functioning of the adaptive library. In par-

ticular, the memory management during planning needs to be flawless since memory leaks tend to

snowball in the exploration phase.

4.2.2 Dynamic Programming (DP)

Theoretically, a general-size problem is equivalent to a fixed-size one as soon as a size is provided.

A simple idea to provide online adaptation to the general-size framework is therefore to port the

methods that were effective in the fixed-size framework [Püschel et al., 2005]. This paragraph de-
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scribes the most important search strategy, dynamic programming, as well as its specifics in the

context of a general-size library.

Dynamic programming assumption. Dynamic programming designates a class of algorithms

that efficiently solve complex problems by breaking them down into simpler steps. Such methods

are only applicable to problems that exhibit a property called optimal substructure: it requires the

best solution of a given problem to be only built out of optimal solutions to its subproblems.

The question of whether online adaptation presents an optimal substructure or not depends on

whether the performance of a given piece of code can be seen as function or not. Intuitively, the

fastest way to do a task containing multiple subtasks is to do each subtask as fast as possible —

dynamic programming should therefore be applicable for online adaptation. In practice however,

the performance of an algorithm is dependent on the context in which it is running because the

content of the cache is a side effect. For instance, it would be beneficial to maximize the cache

usage of an algorithm running on a single core but the same optimization would be detrimental if

two instances of the same algorithm were running simultaneously on two cores contending for the

same cache.

Implementation. It is possible to follow the dynamic programming guidelines even if the status

of the assumption itself is not settled. By doing so, the result of the search is not guaranteed to be

optimal but may still be good in practice.

Using the planner interface (Figure 4.11), the implementation of the dynamic programming

search method is strictly local, mimicking that of an oracle. When a choice is necessary, it checks a

hash-table to see if the same choice hasn’t been made earlier. If not, it times each possible decision

out of context by cloning the current recursion step and recursively planning it with the said decision.

Finally, the fastest decision is applied to the original recursion step and stored in the hash table. One

of the convenient features of the exploration mechanism is therefore that it can be interrupted and

restarted later since one only has to save the hash table in the process.

Enabling dynamic programming therefore requires that the recursion steps support three new

methods:

1. An id() method is necessary to recognize recurring recursion steps in the hash-table. Re-

cursion steps that have different cold parameters must be issued different IDs since decisions

involving, for instance, DFT8 and DFT4 might not the same.

2. All recursion steps must provide a clone() method that is used to test a strategy without

committing to it.

3. Finally, a time()method is required for all recursion steps. Dummy hot parameters need to

be created and fed in the computation during this process.

Results. In practice, our dynamic programming implementation has been shown to perform

well while being entirely generic. It is therefore featured in all the Spiral-generated libraries
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FIGURE 4.12: Dynamic programming powering five DFT libraries that differ by their code size
(expressed in kilo-lines of code). The libraries are non-vectorized single-threaded Cooley-Tukey
FFT. The platform is a 3GHz Intel Xeon 5160 and the libraries are compiled with icc 10.1. Since
the libraries differ by the size of the base cases they embed, producing the same graph without
online adaptation would have required to develop five different heuristics. FFTW code size is
presented for comparison but includes other transforms and supports non two-power sizes, and is
hence one order of magnitude longer.

[Voronenko et al., 2009] and constitutes the base line that all other search strategies need to compete

with.

The advantage of having a generic search method is indirectly illustrated in Figure 4.12. The

plot presents the possible tradeoffs between code-size and performance which arise by embedding

more or less codelets with the library. Without online adaptation, five different heuristics would have

been needed, one for each library, while dynamic programming provides a solution that exhibit a

very good performance.

As we will see in later benchmarks, the performance achieved by DP is generally very good,

except for very large transforms. DP terminates quickly for small and medium DFT sizes. How-

ever, for large sizes and certain libraries, the combinatorial explosion of choices slows DP as all

subproblems have to be solved before any solution is returned. For example, in FFTW, which also

implements DP, it can amount to hours in the case of large transforms on multicore systems. To mit-

igate this problem, the next subsection presents a different search strategy based on reinforcement

learning.

4.2.3 Bandit-Based Algorithm

As the search space becomes bigger, because of larger problem sizes or because of more complicated

libraries, two weaknesses of dynamic programming become apparent: the time to solution gets

prohibitive and the quality of the solutions degrades. The latter may be a waste since the library
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could have the ability to run faster. The former problem cannot easily be solved as DP needs to

terminate to provide any solution.

Our goal in this subsection is to provide an alternative to DP that helps solving both problems.

In particular, we want our search strategy to provide a continuum of solutions, that is, solutions that

get increasingly better as time passes. For instance, a user interested in waiting little time would

get a reasonable solution, while another user could wait a bit more and get a better library. An

algorithm that presents this property is said to be anytime—it can be stopped at anytime, a solution

being always available.

In this subsection, we describe a novel anytime algorithm that is inspired by recent advances in

computer Go. It can cut down the search time by an an order of magnitude compared to DP and, in

some cases, the performance of the implementations found is also increased by up to 10%.

4.2.3.1 Intuition

The key difficulty in developing good anytime search strategies for online adaptation is that it is

extremely difficult to evaluate the impact of a single decision: the decision itself might open addi-

tional choices and the evaluation of the performance only comes at the end, when all choices have

been decided. In other words, our situation is the one of a beginner in some board game: every de-

cision matters but victory or defeat are only known at end. This realization is exactly what triggered

our interest in finding connections with machine learning in general and reinforcement learning in

particular. After investigation, it became clear that the recent advances in developing good com-

puter Go players produced a class of algorithms that could be applied to our own online adaptation

problem.

Go is an ancient Chinese board game considered much more difficult to solve than chess for

computers [Müller, 2002]. The main reason of its difficulty is precisely that there is no known

function that evaluates properly intermediary positions due to the high number of possible moves

and the lack of simplifications as time passes, e.g. pieces are not removed from the board, but added

instead.

Yet, advances in the field have boosted the computer level from total beginner to advanced am-

ateur during these last years, and that even without proposing an evaluation function. These new

strategies all derive from traditional Monte-Carlo (sampling) methods [Metropolis and Ulam, 1949],

which have been heavily used in physics [Landau and Binder, 2005] and finance [Boyle et al.,

1997]. The basic idea of Monte-Carlo is simple: since there are so many possible moves, one might

as well play randomly and observe what works well [Bouzy and Helmstetter, 2003; Bruegmann,

1993]. More precisely, the move to be played starting from a given position is the move that leads

to the highest percentage of victories if both players were playing randomly (see Figure 4.13). The

underlying assumption is that the space explored by taking decisions uniformly is not biased in

comparison to the space explored by taking good decisions.

Note that this simple method is directly applicable to our problem and probably constitutes the
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Is this a good move?

...

Random white move Random black move Game over, black loses

So, no, it probably wasn’t.

FIGURE 4.13: Monte-Carlo Go. Assessing the quality of a move is done by playing randomly until
the game is settled. In practice, more than one simulation is done and the results are averaged.

simplest anytime strategy: each time there is a decision to take, one could choose according to a

uniform distribution7 . At the end of the descent, it evaluates (times) the library and then tries again.

At any point in time the user can interrupt the search to retrieve the best known candidate. Actually,

even if there seems to be little refinement in this method, such a sampling strategy works decently

well, both in Go and with Spiral-generated libraries8.

The big weakness of the traditional Monte-Carlo is that the uniform decision making means

that a lot of trials are wasted in irrelevant areas of the search space. A breakthrough to overcome

this limitation came in 2006 with an algorithm called Upper Confidence Bounds applied to Trees

(UCT) [Kocsis and Szepesvári, 2006]. The idea was to bias the trials in a way that emphasizes the

search along successful moves while still allowing for other moves to be explored. The balance is

done by using a bandit algorithm jointly with Monte-Carlo simulation. The method proved very

successful in Computer Go: all Go program that won the Go Computer Olympiads since 2007 have

used derivatives of the technique [Coulom, 2007; Gelly and Silver, 2007; Wang and Gelly, 2007].

Introduction to bandits. Historically, slots machines have been known as one-armed bandits

because they are operated by pulling a lever on their side and leave the gamers penniless. In statis-

tics, the problem of maximizing the expected sum of rewards of k slot machines with different pay-

out distributions is therefore designated as the “classical” k-armed bandit problem (Figure 4.14). A

concrete example of the problem is somebody that has been given a certain amount of tokens to

play slot machines in a casino and trying to maximize his or her gains. The key difficulty here is

managing the tradeoff between exploitation, that is playing the machine with the highest payout so

7Since at each step, there is an equal chance for all branches to be picked but branches are not laid out uniformly, the
overall online adaptation space is not sampled uniformly.

8It helps that many deterministic optimizations are already built-in all Spiral-generated libraries.
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bandit

D1

arm 1

D2

 arm 2

D3

arm 3

FIGURE 4.14: A 3-armed bandit. Arm i produces an output according to distribution Di.

far, and exploration, that is assessing if there are any better machines around.

Maximizing the cumulative reward is equivalent to minimizing the so-called regret which is the

loss since the algorithm does not always choose the best arm. Assuming that each arm i (1 ≤ i ≤ k)

if the machine has an unknown expectation µi and that ni is the number of times the arm i has been

selected during the first n steps. Let E denote the expectation, the regret R(n) is then defined by

R(n) =

(

n ∗ max
1≤i≤k

µi

)

−
k
∑

i=1

µiE[ni].

The other terms of the formula being fixed, the regret can only be minimized by minimizing E[ni].

[Lai and Robbins, 1985] provides a lower bound for this expression proving that the best possible

regret grows as Ω(ln(n)).

A simple algorithm called Upper Confidence Bound (UCB) achieves this bound and is therefore

asymptotically optimal [Auer et al., 2002]. Assuming µ̄i is the realized average reward for the arm

i so far, the algorithm advises to pull the arm ibest given by

ibest = argmax
1≤i≤k

h(ni),

with h(ni) =







µ̄i +
√

2 log(n)
ni

, if ni > 0

∞, else

In words, the left part of the sum (µ̄i) has a high value only if the current arm has given good

rewards so far—it represents the exploitation term which stresses that good arms should be favored.

The right part (the square root) is the exploration term that makes sure that good opportunities are

not lost—it gets bigger if the current arm has not been tested often (compared to the others). To

guarantee that all arms have a chance, we also assign an infinite weight to arms that have not been

tested at all.

4.2.3.2 Algorithm overview

Recent advances in computer Go have been mostly inspired by an algorithm called UCT whose idea

is to use the bandit-algorithm UCB to bias the Monte-Carlo simulations towards the best games.
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In this subsection, we introduce a novel online adaptation algorithm named Threshold Ascend on

Graph (TAG) that follows the same inspiration: Similarly to UCT, it gradually builds up a structure

by considering local bandit problems and by valuating the nodes with Monte-Carlo simulations.

However, it differs from UCT in two aspects: it optimizes for the single maximum reward instead

of shooting for the biggest accumulative reward and it does so over a graph instead of doing it over

a tree. Before presenting the algorithm itself, we start by abstractly formulating the library online

adaptation problem (Problem 1) as an optimization problem over the language generated by a large

acyclic formal grammar. Each word in the language generated by the grammar corresponds to a

recursion strategy the library can perform.

Grammar formulation. The online adaptation problem can be specified using a formal gram-

mar G = (T,N,P, S). The start symbol S is the functionality specification, including the problem

size, as entered by the user. The terminals T are the base cases, the set of problems that can be

directly solved by the library. The non-terminals N are the set of recursion steps, non base case

subproblems that could be needed to solve the problem. The production rules P breakdown a prob-

lem from N into one or more subproblems by fixing a degree of freedom. The function to maximize,

f , is the performance of the implementation. The acyclicity of the grammar is guaranteed by the

underlying algorithms that provably finish. Note that the grammar itself changes with the problem

size.

For instance, if a naïve DFT library based on Cooley-Tukey is used to compute DFT8, we

would define

S = DFT8 P = {DFT8 → (DFT2,DFT4),

T = DFT2 DFT8 → (DFT4,DFT2),

N = {DFT8,DFT4} DFT4 → (DFT2,DFT2)}

Formal problem statement. Below, we formally restate the online adaptation problem using

formal grammars.

PROBLEM 3 (Grammar Optimization) Given is an acyclic formal grammar F = (T,N,P, S) with

T the set of terminals, N the set of nonterminals, P the set of production rules or simply rules, and

S the starting symbol. L(F ) is the associated language and f is an objective function from L(F )

into the positive reals R+. We want to compute

wbest = argmax
w∈L(F )

f(w).

F has an associated derivation graph G = G(F ) which is directed, acyclic and weakly con-

nected as shown in Figure 4.15: S is the root, the directed edges (arrows) correspond to applications

of rules in P , the nodes are partially derived words in the language, and the sinks (outdegree = 0)
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T = {a, b, ac}
N = {S, A, B}
P = {S → AB,

A → a,

B → b,

aB → ac}
a b ac

S

AB

aBAb

FIGURE 4.15: Formal grammar F = (T,N, P, S) (left) and associated derivation graph G(F )
(right). S, A, B are nonterminals and a, b, c are terminals. The graph has two sinks (double
circled), i.e., the language L(F ) has two elements.

are precisely the elements of L(F ). Hence we can reduce Problem 3 to:

PROBLEM 4 (Graph Optimization) Given a weakly connected, acyclic, directed graph G = (V,E)

and an objective function f (as above) on the sinks S(G) of G. We want to compute

wbest = argmax
w∈S(G)

f(w).

We assume the graph G(F ) to be large such that it is impossible to generate and evaluate all sinks

in a reasonable time. Our goal is to find an algorithm that discovers a “very good” sink with a small

number of evaluations.

4.2.3.3 The TAG Algorithm

TAG is an anytime algorithm that determines an approximate solution to Problem 4. Due to the

size of the graph it is not meant to run until completion, in which case it would be equivalent to an

exhaustive search.

TAG finds solutions by incrementally growing and exploiting the subgraph Ĝ = (V̂ , Ê) of

G = (V,E): V̂ ⊂ V , Ê ⊂ E, starting with Ĝ = ({S}, {}). Evaluations are used to direct the

growth of Ĝ towards the expected bests sinks.

Assume the current subgraph is Ĝ. Then TAG proceeds in three high level steps visualized in

Figure 4.16:

1. Descend: G is traversed starting at its root. Each choice along the way is solved by a bandit

algorithm. The descent stops when it uses an arrow e that is not in Ê.

2. Evaluate: If e is incident with a vertex not in V̂ , this vertex is evaluated using a Monte-Carlo

expansion.
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S

sinks

G

G

Descend

S

f(w)

Evaluate

Monte
Carlo

S

store

f(w)

Backpropagate

FIGURE 4.16: Visualization of the three main steps in Threshold Ascend on a Graph (TAG)
[de Mesmay et al., 2009]. The problem of searching the best algorithm is equivalent to finding
the best valuated sink in a connected directed acyclic graph G. This algorithm essentially proposes
to grow a subgraph Ĝ in the direction of the best sinks. In a first phase, the most promising node
right outside of Ĝ is added to Ĝ by descending from the root S and considering each choice as a
maximum k-armed bandit problem [Cicirello and Smith, 2005; Streeter and Smith, 2006]. Starting
from that node, a sink is selected by randomly walking the graph. Every node along the descent
is finally back-propagated the value obtained by that sink so that the next descent step has more
information when choosing a new node. Note that Ĝ (shaded area) and G are not trees (e.g., see
Figure 4.15).

3. Backpropagate: The evaluation is stored in all ancestors of the vertex.

We proceed with introducing the bandit problem we use, describing the three steps in detail and

providing the pseudocode.

Background: maximum bandit. The “classical” bandit problem we just described does not fit

the context of online adaptation since we are interested in finding the fastest computation and not in

minimizing the overall length of the computations. We therefore have to consider a different version

of the problem called the maximum k-armed bandit in which the goal is to maximize the single best

reward obtainable over n̄ trials [Cicirello and Smith, 2005]. Formally, if each arm has distribution

Di and Rj(Di) denotes the j-th reward obtained on arm i, the goal is to solve

max
∑k

i=1
n̄i=n̄

max
1≤i≤k

max
1≤j≤n̄i

Rj(Di).

In this document, we use a straightforward variation: an anytime version of the problem where the

total number of pull n̄ is not known in advance. Only the n previous pulls and their associated

rewards are known.

Threshold Ascend (TA) is an algorithm that solves the maximum problem without making as-

sumptions on the form of the distributions [Streeter and Smith, 2006]. The main idea is to track

only the s best rewards and the arms they are coming from. Let si be the number of such rewards

among the ni rewards received by the arm i. Also, let δ be a positive real parameter. The algorithm
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bandit A

bandit  B

arm A1
 arm A3arm A2

arm B1 arm B2

FIGURE 4.17: The descent in the graph is done as a cascade of multi-armed bandits. Solid arrows,
circles and boxes are in Ĝ, dashed arrows and circles are in G \ Ĝ. For bandit A all arms had been
played before, and A1 is chosen based on the stored rewards. Bandit B will now choose B1, since
it is the only arrow not played before.

advises to pull the arm ibest given by

ibest = argmax
1≤i≤k

h(si, ni),

with h(si, ni) =







si+α+
√

2siα+α2

ni
, if ni > 0

∞, else

and α = ln(2nk/δ).

Descend. The goal of the descent step is to select the next edge to add to the subgraph Ĝ ⊂ G,

initially restricted to the root. The purpose of the descent is to select an arrow in E \ Ê that leads

towards the best expected rewards. It does so by tracing a path starting from the root and considering

each successor choice as a max k-armed bandit problem (Figure 4.17). For now, assume that a table

of positive real rewards R(v) has been maintained for each vertex v ∈ V̂ .

Let v denote the current vertex in the descent. Starting from v, there are multiple ways to

continue the path since it can follow any of the arrows originating from v (we denote these with

E(v)). The arrows in E(v) that are also in Ê(v) lead to vertices of V̂ corresponding to “arms” that

have already been played (they have previous rewards attached to them). The other arrows lead to

arms that have never been played. The bandit algorithm discussed above decides which arrow to

follow, which has to be one that was not followed before if such an arrow exists (due to the infinite

weight in h(si, ni)). If the arrow belongs to Ê(v) and the successor is not a sink, the successor

becomes the new descent vertex and the descent continues. If not, the descent ends.

Evaluate. Assume the descent ended on an arrow pointing to a vertex v that is not part of V̂ .

The arrow and vertex are then immediately added to Ĝ and v is evaluated.

If v is a sink of G, then f(v) can be directly computed. Otherwise a path to a sink of G is chosen

by “Monte-Carlo,” which means in each step a (uniformly drawn) random choice is made until a

sink w is obtained. The evaluation f(w) gives a value for v.
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Also, if the evaluation is better than f(wbest), the current best sink is replaced.

Backpropagate. After v has been evaluated, the reward is added to its reward list R(v) and to

the reward lists of all its ancestors.

Note that if the descent ended on an arrow pointing to a vertex v that is already a part of V̂ , we

just discovered a new way to connect to an already evaluated vertex. In this case, we add the new

arc to Ê and propagate the rewards of v only to the vertices that would not be ancestors of v without

the new arrow (since the other ancestors already have these rewards).

Pseudocode. Figure 4.18 summarizes the previous discussion by presenting the pseudocode of

TAG. After initialization, the graph Ĝ = (V̂ , Ê) is grown one arc at a time until the user signifies an

interruption. The vertex pointed by an arrow e is denoted head(e). BANDIT refers to the Threshold

Ascend algorithm summarized earlier. RANDOM refers to an uniform draw.

Remark. Practically, if the objective function is deterministic, it is useless to evaluate a sink

twice. It is therefore possible to modify the algorithm to guarantee that it never returns in a branch

where choices have been exhausted. This obfuscates the explanation without adding real benefits to

the pseudocode so we choose not to present this version here.

4.3 Offline Adaptation

In Section 4.2, we have presented a mechanism to provide online adaptation to a generated library.

That is, enabling the user of the library to tune to his own machine his size of interest (or set of

sizes). This scenario is not be suitable to all users for two main reasons: First, online adaptation

naturally complicates the library interface as the problem descriptor has to be exposed to the user.

Therefore, pre-existing legacy interfaces simply cannot be supported. Second, the usage profile of

some users simply might not fit the bill for online adaptation. In particular, if the user is changing

sizes often, the time spent in the planner will not be recovered during the computations.

In this section, we optimize a library for a target computer without having to specialize it for

a given size. This process is done at installation and automatically generates a set of specialized

decision trees that support all problem sizes and are traversed at runtime with little overhead. Key

advantages of the method include:

• The capability of factoring knowledge about some sizes to infer the general performance

profile of the library, resulting in an adaptive library that does not need to search for all sizes.

In related manner, it allows to concentrate search at installation time, making shared use much

more efficient (e.g., one time deployment on a super-computer).

• The possibility of providing a much simpler interface to the user, reducing the possibility

of misuses. This relaxation in the constraints makes it possible to match existing legacy

interfaces.
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TAG Algorithm

Ĝ← S
wbest ← ∅
R(V̂ )← ∅
while not interrupted do

e← BANDIT(E(S)) Descend

while e ∈ Ê & E(head(e)) 6= ∅ do

e← BANDIT(E(head(e))

end while

v ← head(e)
if v /∈ Ĝ or e ∈ Ĝ then

add v and e to Ĝ

e← RANDOM(E(v)) Evaluate

while E(head(e)) 6= ∅ do

e← RANDOM(E(head(e))

end while

w← head(e)

if f(w) > f(wbest) then

wbest ← w

end if

r ← f(w)

add r to R(v) Backpropagate

for a ancestor of v in Ĝ do

add r to R(a)

end for

else

for a ancestor of v in Ĝ do

mark a

end for

add e to Ĝ

for a ancestor of v in Ĝ do

if a is marked then

unmark a

else

add all R(v) to R(a)

end if

end for

end if

end while

return wbest

FIGURE 4.18: Pseudo-code for the Threshold Ascend on a Graph (TAG) Algorithm.
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FIGURE 4.19: The offline adaptive library creation stack: generation, installation and utilization.

• The faculty of developing a low-latency library as no mechanisms are used for loading and

interpreting plans. Incidentally, this provides much safer assurances on the robustness of the

library.

• The possibility of pruning complex libraries into simpler ones by cutting rules that are sub-

optimal.

• Finally, the generated decision tress provide a mechanism for the developer to understand

when certain choices are taken.

Offline search is very different from previous searches in that the sizes that are interesting to

the user are actually never specifically taken into account by the search mechanism. Therefore,

the offline search relies on the generalization capabilities of a learning algorithm working with a

restricted set of sizes that are assumed to be of general interest.

In practice, the generation of an offline adaptive library is characterized by two distinct phases:

1. An online adaptive library is generated as explained in Section 4.2. This library is then opti-

mized on the training set, a set of sizes that are known to be useful to most users. Any of the

search algorithms presented above can be used in this process.
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2. A statistical classifier generalizes the knowledge learned during the optimization of the train-

ing set and produces decision trees that can tackle any size. These decision trees are then

verified and, if needed, corrected, to enforce the applicability conditions of the rules. They

are then combined with the library core that was generated earlier to produce the final adapted

library.

To summarize the process, Figure 4.19 depicts how generation, installation and utilization play

together.

Obviously, the statistical classifier plays here the key role so we will first review the concepts

and mechanisms behind it before explaining how it can be used to derive a custom library.

4.3.1 Overview of the Approach

In this subsection we use a machine learning technique to solve Problem 2 while achieving similar

performance as search-based solutions of Problem 1. The function Dp(n) will be generated as a set

of decision trees.

Several efficient methods to solve Problem 1 have been proposed in Section 4.2. Hence, we

assume that Problem 1 is solved (even if time-consuming).

Our approach uses solutions Dp
n for several n as training set to solve Problem 2, i.e., to generate

the heuristic Dp(n). The approach is summarized in Figure 4.19. It decomposes in four phases:

1. Exploration: For a training set of sizes n, Dp
n are computed.

2. Statistical classification: We use the C4.5 classifier [Quinlan, 1993] to generalize the knowl-

edge learned during the exploration to produce Dp(n) in the form of a set of decision trees. If

needed, “hints” based on the library functionality are provided to help with the generalization.

3. Verification: The decision trees are verified and, if needed, corrected, to enforce the con-

straints that are imposed by the library.

4. Combination: Finally, the generated decision trees are inserted into the library as heuristics

and replace the parts where the online decision code was called. The final result is a library

that is adapted to the target platform.

4.3.2 Background: Inducing Classification Models

The goal of decision tree learning is to create a model that classifies records based on a training set

of already classified records. It is built by recursively partitioning the training set using well chosen

tests. The interest is two-fold: On one hand, it helps summarizing and understanding the already

known training data and on the other hand it gives a simple mechanism to infer a classification for

new cases. The most famous algorithm for producing such decision trees is probably Quinlan’s C4.5
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Outlook Temperature Humidity Windy Decision

sunny 85 85 false don’t play

sunny 80 90 true don’t play

overcast 83 78 false play

rain 70 96 false play

rain 68 80 false play

rain 65 70 true don’t play

overcast 64 65 true play

sunny 72 95 false don’t play

sunny 69 70 false play

rain 75 80 false play

sunny 75 70 true play

overcast 72 90 true play

overcast 81 75 false play

rain 71 80 true don’t play

TABLE 4.2: The famous “weather” machine learning data set.

[Quinlan, 1993] which is based on his earlier algorithm ID3 [Quinlan, 1986] but supports numerical

features. Their behavior is best understood by walking through an example and we will use for this

purpose the famous “weather” data set.

Example: golfing or not golfing. A golf manager has observed that the attendance varies

greatly depending on the weather (Table 4.2) and is trying to understand the pattern behind it in

order to manage his staff better. Before explaining the algorithm any further, we invite the reader

to directly look at Figure 4.20, which is the decision tree produced by C4.5 for such a data set.

Observe how the tree concisely captures the decisions in the table and also enables generalization

for cases that not in the table. The main difficulty is to determine which question should be asked in

order to partition the cases in the most meaningful way. Note that practical algorithms only consider

local decisions since the problem of learning an optimal tree has been proved to be NP-complete

[Hyafil and Rivest, 1976].

Entropy of an event. ID3 and C4.5 are both based on Occam’s razor, preferring simpler ex-

planations over complicated ones: the goal is to always maximize the information gain. To do this,

the algorithms rely on the concept of entropy, which is a measure of the information content of a

distribution, and was first introduced by Shannon [Shannon, 1948],

Formally, suppose that the final decision can take any of the values {d1, . . . , dn} (here: golfing

or not) and that the feature a (e.g., temperature) can take any of the values {a1, . . . , am}. We denote

by P (di|a = aj) the conditional probability that decision di is made given that a takes the value aj .

By definition, the quantity

H(a = aj) = −
n
∑

i=1

P (di|a = aj) log2 P (di|a = aj)
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FIGURE 4.20: Decision tree generated by C4.5 for the “weather” data set (Table 4.2).

is called the entropy of the event “a = aj” and measures the level of uncertainty that remains about

the final decision if the said event happens. It is computed in bits (a fair coin has an entropy of one

bit).

In our example, we can use Table 4.2 to first compute all conditional probabilities and then the

entropy of events such as

P (play|outlook=overcast) = 4/4 = 1

P (don’t play|outlook=overcast) = 0/4 = 0







⇒ H(outlook=overcast) = −(1 log2 1 + 0 log2 0) = 0

P (play|windy=false) = 6/8

P (don’t play|windy=false) = 2/8







⇒ H(windy=false) = −(6/8 log2 6/8 + 2/8 log2 2/8) = 0.81

We see that, once golfers know that the outlook is overcast, their decision is already taken (they will

definitely play). If it is not windy, uncertainty remains.

Entropy of a feature. Computing the weighted sum of the entropies over all the possible values

a feature may take yields the entropy of the feature:

H(a) =
m
∑

j=1

P (a = aj)H(a = aj)

The feature with the smallest entropy is the one that best partitions the training data set and is

therefore the one that should be placed at the root of the decision tree. Recursively applying this

process yields a full decision tree.

In our example, we observe that the “outlook” feature discriminates better than the “windy”
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Temperature 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Play? Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

TABLE 4.3: Possible split points (without merging) for the temperature feature of the weather data
set.

feature, hence it becomes the root of the decision tree in Figure 4.20:

H(outlook) = 5/14 ∗ 0.97 + 4/4 ∗ 0 + 5/14 ∗ 0.97 = 0.69

H(windy) = 6/14 ∗ 1 + 8/14 ∗ 0.81 = 0.89

Numerical features. In our example, “temperature” and “humidity” are both described by

continuous ranges rather than by discrete classes and therefore, cannot be directly taken into account

by the above algorithm. It is clear, however, that any numerical range can be split into two classes

using a threshold: one containing values that are bigger and the other containing values that are

lower or equal. This process is called discretization. The key question that remains is how to select

such a threshold.

C4.5 selects the threshold that provides the most information. Furthermore, no knowledge ex-

ists for values between split points; hence, at worst only as many split points as there are values

need to be considered. As a consequence, dealing with numerical features is more expensive than

dealing with classes and the splitting may have to be repeated. However, there are methods to re-

duce the number of possible split points and, in particular, it has been proved that it is useless to

consider a split point inside a range where the decision doesn’t change [Fayyad and Irani, 1993].

As a consequence, we show on Table 4.3 the possible split points for the temperature feature. In

practice, heuristics are also used to merge adjacent groups together, preventing any overfit caused

by potential outliers.

Shortcomings. C4.5 is limited to classifying rectangular regions in the feature space. This

is due to the conjunctive partitioning system that can only produce expressions of the type (x >

16) ∧ (y > 3) ∧ (x ≤ 70). Therefore, it fails at properly handling XOR and parity problems.

In the context of adaptive numerical libraries, C4.5 will therefore not be able, unless it is

“hinted”, to recognize a decision that is beneficial only if two features are equal (e.g., the input

and output strides). Also it will not be able to recognize number theoretic properties that may be

significant (e.g., divisibility for the radix choice).

4.3.3 Generating Decision Trees for Libraries

In this subsection, we first explain how statistical classification can be used to convert an online

adaptive library into an offline one. Then we explain two techniques, hinting and automatic correc-

tion that enlarge the class of problems that the classifier can tackle.
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4.3.3.1 Mapping of the Problem

The structure of the choices inside an adaptive library has been presented earlier in Figure 4.7,

Figure 4.8 and Figure 4.9. We remind the reader that each of these choices is qualified which means

that it depends on the parameters of the recursion steps: the questions read “should dft of size 1024

be threaded?”, “should the strided dft of size 16 and stride 4 be implemented as a base case?,” and

so on.

Using online adaptation and a training set, it is fairly easy to collect a choice (e.g., “should dft

of size n be threaded?”) and the corresponding answers (e.g., for size 256 and 1024, no threading

is required but it is needed for size 4096). Using C4.5, we then integrate all the answers in a single

decision tree that constitutes a heuristic for the choice. More details are provided below.

Features. Selecting relevant features is usually the crucial problem for machine-learning based

compilation. However, in our case, it is quite natural to assume that the best decisions only depend

on the cold arguments of the recursions steps since it is what we already assumed for dynamic

programming9. For example, in Figure 4.6, the only relevant feature for the heuristics of dft is the

size n; for dft_strided, it is the size n and the input stride istr.

Decisions. The set of choices is fixed by the underlying online adaptive library. Since each

choice is either binary or takes a numerical value, C4.5 is clearly applicable.

Training set. The training set for the main recursion step has to be selected by the developer of

the library. As we will show in Section 5.5, it is interesting to choose a variety of sizes that encom-

passes the different performance regimes of the library. Note that training cases for the additional

recursion steps are automatically derived, since they consist in the different possibilities that stem

from the main recursion step.

4.3.3.2 Advanced Manipulation of the Decision Trees

C4.5 is limited from a learning point of view and might require good hints to produce good results.

Due to the finite character of the training set, it might also generate trees that cannot be generalized

as heuristics and therefore require an automatic correction pass.

Hinting. C4.5 can only cut the feature space into orthogonal rectangles and can only consider

one dimension at a time. In some cases, these restrictions prevent a good generalization which in

turn leads to a disappointing performance.

For instance, we have seen that, in DFT libraries, the choice of the radix must divide the size

so the performance actually depends on the prime factorization of a number. Since multiples of 2

and multiples of 3 are interleaved and even mixed on the real axis, C4.5 is not able to discover by

itself that both groups naturally exhibit a very different behavior. The tree C4.5 then produces treats

individual cases, shows no global understanding of the problem and, ultimately, performs poorly.

9Note that TAG solutions can be forced to comply to the assumption by making sure that subtrees of the same algo-
rithms are necessarily implemented in the same way.
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However, it is possible to drastically improve the quality of the trees by providing “hints” to the

classifier. A hint is a function that is directly computed from the features and fed to the classifier

as if it was an extra feature. For instance, in the above case, hints that could be provided are the

number of powers of 2 and of powers of 3 in the prime decomposition of the size. In practice,

this creates two new dimensions, which enables the selection of meaningful groups using only

rectangles. Finally, note that designing hints is not pushing the burden onto developers: anybody

using DFTs knows that powers of two sizes are inherently very different from non-powers of two.

Writing a hint is only giving this information to the classifier without explaining the implications of

such a difference—the classifier will figure that out for itself.

Figure 4.21 shows a generated heuristic that chooses a radix as a function of the size. The

functions nfactor(f, n), that computes the number of times the factor f appears inside n were

provided as hints to the classifier. The comments in the code display the effect of the automatic

correction which is the topic of the following paragraph. It can be noticed that, for this recursion

step, this library and this training set, the chosen radix is often, but not always, the largest integer of

{2, 3, 4, 6, 12, 18} that divides the size.

Automatic correction. The C4.5 classifier is, in some way, short-sighted: it can come up with

decisions that are not correct in the general case but were true inside the finite training set. For

instance, if the classifier trains only on the set {12, 14, 16, 18, 20, 22, 24}, it might conclude that the

best radix for any number divisible by 3 is 6 (since all numbers of the set divisible by 3 are also

divisible by 6), overlooking the fact that choosing such a radix also needs a factor 2 which might

lead to unpleasant surprises at runtime.

Consider Figure 4.21. We want to make sure that the returned radix is always valid, that is,

always divides the input size. As an example, we focus on the first return 8. It is easy to prove

that 8 is always a correct radix because the above condition, nfactor(2, n) <= 3 is false so

n is necessarily a multiple of 8. If we focus on the return 18 line now, we observe that n is only

guaranteed to be divisible by 6. A correction needs to take place there.

In our system, this verification phase is mechanized by traversing each tree and automatically

correcting decisions (leaves) that cannot be justified by the information contained in the internal

nodes. Correcting means that decisions are either changed to more conservative ones or additional

internal nodes are added. We also insert a errors in case all tests are failed which means that the

situation was not learned during training.
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choose_dft_radix(int n) {

if ( nfactor(3, n) <= 0 ) {

if ( nfactor(2, n) <= 2 ) {return 2;} //Corrected to: error()

else {

if ( nfactor(2, n) <= 3 ) {return 4;}

else {return 8;}

}

}

else {

if ( nfactor(2, n) <= 1 ) {

if ( nfactor(2, n) <= 0 ) {return 3;}

else {

if ( nfactor(3, n) <= 1 ) {return 2;}

else {return 6;}

}

}

else {

if ( nfactor(2, n) <= 3 ) {

if ( nfactor(2, n) <= 2 ) {

if ( nfactor(3, n) <= 1 ) {return 6;}

else {return 12;}

}

else {return 18;} //Corrected to: return 6

}

else {return 12;}

}

}

}

FIGURE 4.21: A computer-generated heuristic for choosing the radix in the implementation from
Figure 4.6. The function nfactor(f,n) returns the number of times the factor f appears inside
n and constitutes an hint. After the generation of the heuristic, the automatic correcter enforces the
divisibility policy (the effect of which is displayed in the comments).





CHAPTER 5

Experimental Results

In this chapter, we show experimental results that we obtained with our library generation and

adaptation work. We start with performance results for the OL specific functionalities we presented

in Chapter 2 and Chapter 3: matrix-matrix multiplication and Viterbi decoding. We then present

some of the capabilities of the Java back-end that we developed using linear transforms as example.

Finally, we conclude with the evaluation of both the online and the offline adaptation mechanisms

from Chapter 4.

5.1 Matrix-matrix multiplication

Experiments on x86. We generate a single and a double precision GEMM libraries on the model

that was described in Section 3.4. We perform different series of experiments but in all cases, the

operation count is 2mnk.

The libraries are compiled using the Intel Compiler 10.1 and benchmarked on a 64-bit Linux

platform using a 3 GHz Intel Xeon 5160 processors. We compare our generated libraries to Goto

BLAS 1.26 and MKL 10.0. The input to our system are the three blocking rules and the general-

size library generated is depicted in Figure 3.10. Online search is conducted with the dynamic

programming algorithm. Timing is done by repeating the functionalities without emptying the cache

between runs. We compile the library using the Intel compiler (icc) 10.1.

In the first test scenario, Figure 5.1, we measure the performance of tightly packed square mul-

tiplications (m = n = k) focusing on smaller sizes. We observe that we reach two thirds of the

peak, at equality with GotoBLAS in the single precision case. However, both competitors are still

ramping up in the end whereas our generated libraries plateau. This is most likely due to buffer-

ing optimizations (copying intermediate matrix blocks into contiguous memory) that are not yet

supported in our framework.
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FIGURE 5.1: GEMM library performance on x86, square case, single-threaded. (a) single precision
(the peak performance is 24 GFlop/s). (b) double precision (the peak performance is 12 GFlop/s).
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FIGURE 5.2: GEMM library performance on x86, non-square heatmaps for k and m with n = 16,
single precision (a) and double precision (c). The corresponding speedup against MKL 10 is also
shown (b) and (d).
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FIGURE 5.3: Performance of rank-k updates on x86 for k = 2, 4 (double precision) and k = 4, 8
(single precision).

In the second test scenario, Figure 5.2, we present heatmaps corresponding to variable m and

k dimensions while n is fixed to 16. We observe that performance is globally regular across the

slice; the regular line and dots patterns that we can distinguish on the double precision performance

figure are due to the divisibility by the vector length. The comparisons with MKL 10 shows that our

libraries are relatively better when one of the dimensions is very small. In fact, the hyperbolic shape

of the isolines of the speedup graph reveals that MKL routines often require a larger number of

operations to be efficient. The reason here may be that the MKL developers focused on optimizing

the most common cases while the automatic search adapts to these cases without discrimination.

In the third test scenario, Figure 5.3, we focus on rank-k updates which are standard matrix

multiplications where k is small. These are important building blocks in various linear algebra

algorithms such as LU factorization. Because of their special shape, library vendors such as MKL

have to develop specific kernels to handle them efficiently. As we see in the plot, our generated

libraries outperform these routines, for small values of k.

Performance on an IBM Cell SPU. We evaluate now the generator on a different platform, a

Synergistic Processing Unit (SPU) of the IBM Cell Broadband Engine (BE). This time, we generate

fixed sizes libraries as the amount of memory available in the local stores of the SPU is very limited.

The input to our generator are the same blocking rules as before and we restrict the library to the
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FIGURE 5.4: GEMM library performance on an IBM Cell SPU, square case. The white triangle
represents the performance reached by the assembly routine from [Hackenberg, 2007] that exclu-
sively supports the multiplication of 64x64 matrices.
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that returns are diminishing and there is a point where growing the library does not yield any
additional improvements.

tightly packed interface. Vectorization is supported through the Altivec intrinsics and the library is

compiled using the GNU compiler (gcc) 4.1. Only single precision libraries are generated since the

SPUs are not competitive in double precision [Williams et al., 2006]. This work has been done in

collaboration with Srinivas Chellappa who developed the Cell backend for Spiral [Chellappa et al.,

2009].

We compare our generated library with the hand-coded routine from [Hackenberg, 2007] that

multiplies 64x64 matrices nearly at peak performance. While the generated library achieves only

70% of the peak, observe that many more sizes are supported. The plot does not show bigger sizes

since we reach the upper limit of the SPU local memory.

Size-performance tradeoff. Our generator allows us to add additional base cases which im-

proves performance but increases the code size. In another experiment on the x86 platform, we gen-
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FIGURE 5.6: Web Interface to the Viterbi Decoder Software Generator, directly available at
http://www.spiral.net/software/viterbi.html. The user either chooses a pre-
set or enters a custom convolutional code. The target decoder is then live generated and returned to
the user. At the time of this dissertation, more than 5000 decoders have been generated.

erate four different libraries with base cases chosen inside [1, n]×[1, n]×[1, n] where n = 2, 4, 8, 16.

Figure 5.5 shows the impact of adding more base cases on the overall code size Not surprisingly,

there is a saturation point after which growing the number of base cases makes no sense. The rea-

son is that the best base cases for this type of computations are very tightly scheduled loops and

therefore, there is no need for having larger loop bodies.

5.2 Viterbi decoding

The performance critical forward pass of the Viterbi algorithm is captured in the Operator Language

in Equation 2.29, from which we generate fixed input size Viterbi decoders. Our generator sup-

ports any valid combination of rate, polynomials, quantization, frame length, and constraint length.

Vectorization is available for all convolutional codes and for processors that are SSE-compatible

through 4-way (32 bits), 8-way (16 bits), and 16-way (8 bits) intrinsics. It is directly accessible on

the Internet (see [de Mesmay, 2008]) through the web interface shown in Figure 5.6.

http://www.spiral.net/software/viterbi.html
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FIGURE 5.7: Performance comparison between the generated and hand-optimized decoders. A
missing light-gray bar means that the hand-optimized implementation is not provided by [Karn,
2007].

Experimental setup. All experiments are performed on an Intel Core 2 Extreme X9650. All

code is compiled using the Intel Compiler (icc) Version 10.1 and the performance in each case

is measured by entirely decoding (forward pass and traceback) multiple frames. Initialization and

precomputation (one time costs) are excluded.

Performance comparison. We first compare our generated decoders against Karn’s hand-

written decoders [Karn, 2007]. The forward error correction package provides decoders for four

codes, available for different SSE vector lengths. The codes are r = 1/2, K = 7 nicknamed “Voy-

ager,” r = 1/2, K = 9, r = 1/3, K = 9, and r = 1/6, K = 15 nicknamed “Cassini.” Karn does

not support all vector lengths for all codes. The forward pass in [Karn, 2007] is written separately

in assembly for each combination of code and vector length.

In Figure 5.7, we show the performance results for the four codes and for all vector lengths,

including scalar code. The performance is reported in kbit/s so higher is better. Karn’s decoders

are displayed in light-gray, our generated decoders in dark gray. A missing light gray bar signifies

that the implementation is not provided by Karn. Analysis of the plots shows that our generated

decoders have roughly equal performance compared to [Karn, 2007] while supporting all vector

lengths. However, our generator is not restricted to these four codes, as discussed next.

Performance of supported codes. To show the generality of our generator and the consistent

performance, we generated decoders for the “good” convolutional codes of various rates collected

in [Larsen, 1973] and [Chambers, 1992] and for all four vector lengths 1, 4, 8, 16. Figure 5.8a
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FIGURE 5.8: Performance of generated decoders for rates 1/2, 1/3 and 1/4. (a) Performance with
respect to the constraint length. (b) Speedup of vectorized decoders compared to their scalar coun-
terparts.

shows the performance results for N = 2, 3, 4 and K = 6–16.

As expected, the lines show an exponential decay in performance with increasing constraint

length. In contrast, changing the rate does not noticeably change performance. The speedup ob-

tained through vectorization is consistent and investigated next.

Quality of vectorization. Figure 5.8b shows the speedup achieved by the vectorization of

Figure 5.8a. The baselines are the non-vectorized scalar decoders.

We observe a consistent speedup of about 3.5 for 4-way, 6 for 8-way, and 10 for 16-way vec-

torization. This should be close to the achievable optimum, given that longer vectors require more

shuffle operations L2ν
ν that consume time without performing computations. The peak for both 16-
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FIGURE 5.9: Performance of generated Java libraries. (a) Comparison with JTransforms on DFT.
(b) Comparison with JTransforms on DCT2. (c) Comparison with a naïve implementation on FIR
filter. Graphs are taken from [Voronenko et al., 2009].

way and 8-way with short constraint length is caused by the reduction of the memory footprint due

to the use of shorter data types.

5.3 Generated Java Libraries

To show the versatility of the generative approach, we developed a Java backend and evaluated it

with general-size linear transforms. Note that Java does not offer any mechanism to access SIMD

vector units and that we did not take the time to implement support for Java threading pools. How-

ever, we did provide online search through a dynamic programming planner.

Clearly, interpreted performance libraries do not have a mainstream use but they are sometimes

required, mainly for security and portability reasons (e.g., inside smartphones user-land). Using

a library generator and an automatic search mechanism enables the retargeting of Java libraries

for these niche uses at a very low cost. On the other hand, porting an entire C or C++ library

by hand would be not only time consuming but would also require new development since the
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performance tradeoffs and choices that were made for native code can be wildly different from

those for interpreted code.

Experimental setup. Three different libraries are generated: a DFT library based on the

Cooley-Tukey FFT (Equation 2.6), a DCT-2 library based on Equation 2.13 and Equation 2.14

and a Finite Impulse Response (FIR) filter library based on blocking rules not stated in this thesis

(see [Voronenko, 2008]).

All generated libraries are run with Java HotSpot 1.6.0 which includes a just-in-time compiler.

The adaptive timing routines work around the just-in-time compilation by “warming” up the code

path to make sure that the code is compiled when it is measured. The benchmark is done on a 64-bit

Linux platform using two dual core 3 GHz Intel Xeon 5160 processors. The operation count for the

complex DFT on n points is assumed to be 5n log2 n (standard practice), for the DCT2 on n points

2.5n log2 n, and for the k-tap FIR filter on n points (2k − 1)n.

We compare our generated libraries to JTransforms which is an open-source high-performance

linear transform library [Wendykier, 2008]. Filters are compared to a naïve double loop implemen-

tation since we did not find competitors.

Experiments. Interestingly, JTransforms is very fast on the DFT and, as can be observed in

Figure 5.9a, the generated library only has a slight advantage, mainly due to the inline base cases.

On less common functionalities such as DCT-2 , Figure 5.9b, the generated library shows a clear

advantage, likely since the human developer did not spend the same time optimizing this less used

functionality. A generator is oblivious to such considerations. Finally, we show FIR performance

results in Figure 5.9c: a 3–4x speedup over naïve code.

5.4 Online Adaptation

In this section, we evaluate the performance of three different online search algorithms: Monte-

Carlo (MC), Dynamic Programming (DP) and our novel Threshold Ascend on a Graph (TAG). As a

target, we use a generated complex DFT C++ library. The library is vectorized using intrinsics and

threaded using OpenMP. It is compiled using the Intel Compiler 10.1 and benchmarked on a 64-bit

Linux platform using two dual core 3 GHz Intel Xeon 5160 processors.

We display performance using pseudo mega floating-point operations per second (MFlop/s); the

complex DFT operation count is again assumed to be 5n log2 n.

Parameter tuning for TAG. As explained in Subsection 4.2.3, TAG requires two parameters,

δ and s. We tune the s parameter on a specific problem: DFT219 . The sensitivity of the algorithm

to variations in the s parameter of the bandit algorithm is relatively minor as shown in Figure 5.10,

which plots performance of solution found against search time. Since s is the size of the best rewards

vector, a low s tweaks the bandit towards exploitation of previous good branches, while a bigger s

leads to the exploration of new promising branches. We find that δ = 0.1 and s = 30 work best and

we use them for all following experiments.
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FIGURE 5.10: Sensitivity of TAG with respect to the parameter s. Data is averaged over 100 runs
with DFT219 . The parameter s = 30 is best in this particular example (and others not shown), we
fix it for all further experiments.
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FIGURE 5.11: Comparison between TAG and Monte-Carlo: (a) Mean performance and standard
error of the mean (which is so small it is barely visible), and (b) standard deviation for DP and
Monte-Carlo on DFT218 . The data is an averaged over 100 runs.

Comparison with Monte-Carlo. We compare the performance of TAG and MC on DFT218 .

Figure 5.11a and Figure 5.11b show that TAG performs better (higher performance found in the

same search time) and more reliably (lower standard deviation) than Monte-Carlo. Note that the

plots are done with respect to a fixed "wall clock" time and not with respect to a fixed number

of simulations. This is a realistic assumption because the simpler MC algorithm performs more

simulations than the more complex algorithm in the same time frame. Also it is worth remembering

that, asymptotically, TAG and MC will converge since they both eventually explore the entire search

space.

Comparison with dynamic programming. Figure 5.12a shows the comparison of TAG with

DP for DFT216 . We observe that TAG finds the same performance as DP faster than DP and finds a

10% better performance in the same search time as DP. Performing this experiment for several sizes,
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FIGURE 5.12: Comparison between TAG and dynamic programming. (a)Average performance of
TAG compared with DP on a single problem size. (b)Search time of TAG and DP to achieve the
same performance on different libraries.
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FIGURE 5.13: Comparison of DP and TAG together with concurrent FFT libraries. Data is aver-
aged over 100 runs.

we show in Figure 5.12b the time it takes TAG to get results of the same quality as DP. We observe

that TAG finds solutions of equal performance an order of magnitude faster than DP in these cases.

Comparison with other FFT libraries. Figure 5.13 shows the best performance achieved by

the Spiral-generated library (with TAG and DP) and its competitors. We compare against FFTW

3.2 alpha 2 and Intel IPP 5.3. We use FFTW in the mode that does platform adaptation by dynamic

programming. As far as we know, IPP does not use search and branches out to a specialized imple-

mentation for each platform. The plot shows the competitiveness of the generated library that we

used for the experiments in this section. TAG performs slightly better than DP in all cases.
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5.5 Offline Adaptation

In this section, we analyze the performance of the offline adaptation mechanism that we proposed

in Section 4.3. As a target, we use different generated online adaptive complex DFT C++ libraries.

Using our mechanism, these are then directly converted into offline adaptive libraries.

Experimental setup. Our benchmark platform has two dual core 3 GHz Intel Xeon 5160 pro-

cessors (server version of Core 2 Duo) with 4 MB of shared L2 cache per processor, running Linux

in 64-bit mode. Libraries are compiled using the Intel C/C++ Compiler 10.1. We compare against

FFTW 3.2 alpha 2 and Intel IPP 5.3. We generate two libraries based off the Cooley-Tukey FFT:

one that is vectorized and threaded and the other that is neither. The decision graph in Figure 4.9

corresponds to the multi-threaded library.

All libraries were timed out of the box. In particular, slightly better performance for FFTW

and Spiral-generated libraries could have been achieved in the mid-range by ensuring that only two

threads are used and pinning them properly to processors. However, these choices are not handled

automatically by the library, hence we did not consider them.

As before, we show performance in pseudo GFlop/s assuming a (real) operations count of

5n log2 n for the complex DFT of size n.

Comparison with existing heuristics. In Figure 4.4, we presented the hand-written heuristics

developed in [Voronenko et al., 2008a] to choose the radix as a function of the input size for DFTs.

Figure 5.14 shows the automatically produced heuristic for the same choice in the non-threaded non-

vectorized library. The radix choices of both heuristics as a function of the DFT size are contrasted

in Figure 5.15b. Both strategies produce similar performance profiles (Figure 5.15a) except for

mid-range sizes where the generated heuristic even performs slightly better.

Clothesline experiments. We want to demonstrate that heuristics can be learned. To do this,

we show that the larger the training set becomes, the better the heuristics perform on the test set

(which is not part of the training set). Such an experiment is presented in Figure 5.16 using the

vectorized and threaded DFT library whose decision graph with 11 choices is shown in Figure 4.9.

The competitiveness of this library is shown in Figure 5.16d by comparing to FFTW and IPP.

In Figure 5.16a, the training set consists of only two small sizes (24 and 28, marked by a cir-

cle). For these sizes, threading is irrelevant so the generated heuristics avoid it, which yields bad

performance for bigger sizes. In Figure 5.16b, the training set includes four sizes that are well dis-

tributed so all regimes (in- and out-of-cache, threaded or not) of performance can be captured by

the heuristics. In Figure 5.16c, the training set is so large that the offline library is almost as fast

as the online one in all sizes. The nature of these plots motivate our notion of “clothesline exper-

iments”: a larger set of clothes pins (training set) yields a garment that hangs closer to the rope

(performance obtained by search). Note that one given training size contains much more than one

piece of information since there are multiple heuristics and they can be used multiple times due to

the recursion.
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if ( n <= 65536 ) {

if ( n <= 32 ) {

if ( n <= 4 ) {return 2;}

else {return 4;}

}

else {

if ( n <= 1024 ) {

if ( n <= 256 ) {return 8;}

else {return 32;}

}

else {

if ( n <= 4096 ) {

if ( n <= 2048 ) {return 8;}

else {return 4;}

}

else {return 8;}

}

}

}

else {

if ( n <= 262144 ) {

if ( n <= 131072 ) {return 16;}

else {return 32;}

}

else {return 16;}

}

FIGURE 5.14: A heuristic automatically crafted to replace the expert-written heuristic in
Figure 4.4.

(a) (b)

FIGURE 5.15: (a) Performance and (b) radix choices of two different DFT heuristics. The expert
written heuristic is from Figure 4.4 and the automatically generated one is from Figure 5.14.

Mixed sizes experiments. The learning approach becomes particularly relevant if we consider

a much larger set of sizes by including non-two-powers. We do so in the second experiment which

considers all sizes up to 256K that decompose into prime factors smaller or equal than 19. We
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(b) Training set: 24, 29, 214, 219

 0

 3

 6

 9

 12

 15

 4  16  64  256 1k 4k 16k 64k 256k 1M

Complex DFT, double precision, up to 4 threads
Performance [GFlop/s]

input size

learned heuristics

online search

training set

(c) Training set: 2k, k odd
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(d) The library is competitive

FIGURE 5.16: (a), (b), and (c) are all clothesline experiments, demonstrating the effectiveness
of heuristic generation. An online adaptive library first searches to find the best decisions for all
powers of two (up to size 1M)—this line is the ground truth and plays the role of the rope. A subset
of sizes is then picked to training set to generate the heuristics in an offline adaptive library—these
sizes constitute the clothes pins. Finally, the performance of this new library is evaluated on all
sizes—this line is the cloth. We simply want to verify that, the more clips are added, the straighter
the cloth hangs, which shows that heuristics can pick up and generalize the knowledge provided by
the nearby training sizes, even, (d), in the context of a highly optimized competitive library that is
threaded, vectorized and buffered.

generate two offline adaptive libraries that differ in the size of their training set which respectively

amounts for 1% and 6% of all 218 sizes. Figure 5.17a shows the performance of the latter one and

the performance of IPP on all 218 sizes. The performance varies greatly depending on the prime

factorization of the size. However, it can be seen that the performance of our offline adapted library

provides a somewhat more stable performance, i.e., the cloud is less scattered than IPP’s.

Next we measured the performance for all sizes up to 256K for all considered libraries that are

not online-adaptive: IPP, FFTW with the heuristic activated by the FFT_ESTIMATE flag, and our

generated offline adapted libraries with 1% and 6% training set. To reason about the performance

across all sizes, we computed a logarithmic regression of order 6. The resulting four lines are
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FIGURE 5.17: Both (a) and (b) present the DFT performance of different libraries on all numbers
smaller than 256K that decompose in prime factors smaller or equal than 19. As can be seen on (a),
the performance is not continuous with respect to the input size since fast algorithms depend on
the prime factor decomposition of the size, which makes it difficult to read. For better readability,
sixth order logarithmic trendlines of the same performance are presented in (b). Four libraries are
evaluated: IPP, FFTW (only the heuristics were timed, online search would have performed better
but it would have been too long to train), and too libraries whose heuristics were trained on 1% and
6% of the whole space.

plotted in Figure 5.17b. First, we observe that the library that is trained on the larger training set

(6%) performs better than the one with 1%. Second, we observe that the 6% generated-heuristics

library performs better than IPP and is the overall fastest for these sizes. Precise computation shows

that the average performance gain is 10.7%. Finally, the poor performance of the hand-written

heuristic mode of FFTW shows that writing heuristics is no simple task. We note that FFTW’s

heuristic does work reasonably well for 2-power sizes.





CHAPTER 6

Conclusions

We restate from introduction:

The goal of the thesis is to extend Spiral’s high-performance library generation frame-

work in two orthogonal ways:

1. We extend the formal framework and the generator to new functionalities be-

yond linear transforms, notably matrix-matrix multiplication and Viterbi de-

coding.

2. We enable the automatic generation of adaptive general input size libraries. We

provide both novel online (at runtime) and offline (at installation time) adapta-

tion mechanisms that can be inserted into Spiral-generated libraries.

In this thesis work, we have presented the framework and developed a prototype of a library

generator that achieves the above goals. The key to achieving the first goal is the new operator

language (OL) that we introduced. As we have shown, this language can at least capture algorithm

knowledge and necessary transformations for three computational domains: basic linear algebra,

convolutional decoding, and linear transforms. For the latter it reduces to the prior signal process-

ing language (SPL). All difficult tasks in the library production, including vectorization, base case

generation, and the computation of the recursion step closure, are automated through carefully de-

signed OL rewriting systems. We achieved the second goal through a modular backend that enables

the insertion of different online adaptation (search) mechanism into our generated libraries. Further,

we presented a method that converts an online adaptive library into an offline adaptive library.
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We implemented all the contributions into one flexible library generation infrastructure that

encapsulates and extends prior components developed for linear transforms such as the general-size

library generation infrastructure, parts of the original SPL compiler, and existing SPL rewriting

systems. The infrastructure supports fixed and general input size functionalities, different target

languages, and various other options.

Across the functionalities that we support, we showed that our libraries have a performance

that is roughly comparable with existing state-of-the-art libraries that are written by experts who

carefully optimize their code.

In summary, our prototype demonstrates that “push-button” generation of high-performance

adaptive domain-specific libraries is not only possible but also that the general infrastructure of

such a system can be actually used for different domains. And while it can seem redundant at first

to generate libraries that are adaptive, the generative and adaptive approaches actually complement

each other. The former greatly increases the speed at which developers can modify their libraries

while the later offers increased flexibility to users and augments the reliability and thus extends the

lifetime of the library.

Limitations. Like any work, ours exhibits a number of limitations at this point. We briefly

discuss the most important ones.

One of the main limitations of the library generation framework is the absence of support for

tile copies, which are necessary to achieve optimal performance for large matrix multiplications.

Indeed, the entire purpose of the recursion step closure is to eliminate explicit copies which are

usually detrimental to performance. However, in some rare cases, a very limited amount of copying

can actually help by contiguously packing data to reduce cache or page misses. It is clear to us that

another mechanism is needed to introduce them but we were not able to unite this specification with

the termination of the closure and the possibility of online search.

We have introduced the general tensor definition for two operators but have only implemented

support for it when one of the operators is “unitary” which means that it is either an identity, a

point-wise multiplication, a Kronecker product, or a scalar product. Adding a more general support

would enable the capture of a larger space of algorithms as we already hinted in Equation 2.24.

However, one of the reasons this is not done yet is that implementing such tensors would require

implementing some meta-programming into Spiral which is not supported at the moment.

Finally, the last major limitation of the current framework is that not the entire cross-product

of functionality, algorithms, platforms, languages, and search methods is actually available. The

reason here is more one of development time issue than a theoretical limitation.

Future directions. Besides removing the mentioned limitations, there are many avenues for

future research. One obvious direction is to gradually capture an increasing number of domains

and an increasing number of platforms into the library generator since the general infrastructure is

reusable. Both directions are already pursued in the Spiral project. Examples include extensions of

OL to capture the domains of synthetic aperture radar imaging and the physical layers of software-
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defined radios.

Another route might be equally or even more promising: the development of a specialized

iterative compiler for generic recursive functionalities. The intuition there is that the occurrence

of the concept of recursion step closure in both the transform and linear algebra domain hints that

it may be a more general concept. It could therefore be ported to a generic loop manipulation

framework such as the polyhedral model or others. This way, this crucial optimization in the domain

considered here (and in the prior work on transforms) could possibly be extended into the “general

purpose” compiler world.
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