Design, Optimization, and Implementation of a Universal FFT Processor

A Thesis
Submitted to the Faculty
of
Drexel University
by
Pinit Kumhom
in partial fulfillment of the
requirement for the degree
of

Doctor of Philosophy
March 2001

(© Copyright 2001

Pinit Kumhom. All Rights Reserved.

To my father...

Dedications

i

iii
Acknowlegements

This work was partially supported by DARPA through research grant DABT63-
98-1-0004 administered by the Army Directorate of Contracting. Additional support
was provided by MathStar, Inc. I would like to thank the Royal Thai Government

for the scholarship I received.

I would like to thank my advisors, Dr. Prawat Nagvajara and Dr. Jeremy Johnson.
Not only have they provided me with knowledge and advice, but also with patience
and support. Without them, I cannot imagine myself finishing this thesis. I greatly

appreciate everything that they have done for me.

I also would like to thank my friends and colleagues in our research laboratory,
Mike Balog, Ryan Buchert and Sompan Chansil to name a few. I had my share of hard
times during my studies here, and I would like to thank my friends from Thailand
who helped me through my surgery. Without them, I don’t know if I could have
gotten back to work so quickly. Ken Towshend and his family provided me a second

home during my stay in the U.S.; and I appreciate their friendships and generosity.

Finally, T would like to thank my family in Thailand for their patience. They were

in need of me for a very hard time at home, but allowed me to finish my studies.

v

Table of Contents

LIST OF TABLES. .. e viii
LIST OF FIGURES ... oo e e xvii
AB S T R A C T L XX
1.0 INTRODUCTION . .. 1
2.0 MATHEMATICAL FORMULATION OF THE FFT 11
2.1 Mathematical Background 12
2.1.1 Tensor Product o 12

2.1.2 Indexing and Basis Vectors ... 15

2.1.3 Permutation Matricesoooiiiiiiiiiiiiiii i, 19

2.1.4 Tensor Permutationsoooiiiiiiiiiiiiiiiiiiiiia 25

2.1.5 Twiddle Factor and Diagonal Matrices 32

2.2 Fast Fourier Transform (FET).......ooooii i 36
2.2.1 Cooley-Tukey Algorithm, 37

2.2.2 Pease Algorithmo 44

2.3 Multidimensional DFE'T 47
2.4 Dimensionless FFT ... 53
2.5 FFT Dataflow......oooi 62

3.0 FFT PROCESSOR AND MAPPING METHODOLOGY 68

3.1 Distributed Memory Architecture...............ooiiiiiiiiiiiii i, 70
3.1.1 Interconnection Networkccoiiiiiiiiiiiiiiiiiiiin., 71
3.1.2 Processor Element and Memory ..., 71

3.2 Mapping FFT Formulas to the FFT Processor......................o...... 75
3.2.1 Input Loading...........ooiiiiii 76
3.2.2 FFTT Tasks ..o 77
3.2.3 Round-robin Scheduling................. oo 84
3.2.4 Address Generationiiiiiiiiii i 86
3.2.5 Twiddle Factor Generationcooiviiiiiiiininin.... 95

4.0 PERFORMANCE MODEL AND OPTIMIZATIONc..oooiiii. 104

4.1 Search Problem Statement..................co i 105

4.2 Performance Model...... ..o 106
4.2.1 Token Protocol.........ccovuiiiiii i 106

4.2.2 Performance Model for a Distributed-Memory FFT Processor... 107

4.3 Search and Results Analysis..........coooiiiiiiiiiiii i 111
4.4 The Optimal Algorithmo 113
5.0 IMPLEMENTATION OF THE FFT PROCESSOR..............cooiin... 117
5.1 Implementation of Tensor Permutations.................................... 118
5.1.1 Implementation using MUXS ..ot 118

5.1.2 Implementation using Adders...............oooiiiiiiiiiiiiin... 120

vi

5.2 Universal FFT Engine.........oooo i 123
5.3 I/O Interface Unit........cooiiiiiiiiiii e 124
5.4 Interconnection Networko 127
5.5 Processor Element 128
5.5.1 Computation Unit (CU) ... 129

5.5.2 Address Generator (AG) ... 130

5.5.3 Data Control Unit (DCU)cooiiiiiiiiiiiiiii 131

5.5.4 Address Generation Unit (AGU)ccooviiiiiiiiiiiiin.. 132

5.5.4.1 Implementation using MUXs ..., 133

5.5.4.2 Implementation using Adders 140

5.5.5 Twiddle Fraction Generation (TFG)....................ooo. 142

5.5.5.1 Implementation using MUXS ..., 144

5.5.5.2 Implementation using Adders 145

5.6 Implementation of Optimal Algorithm on the Wildforce’™ Board 149
6.0 VERIFICATION AND PERFORMANCE ... 151
6.1 Verification 151
6.2 Performance. 152
7.0 CONCLUSION S . . e 155

BIBLIOGRAPHY .. 158

Vil

APPENDIX A EXAMPLES ON 64-POINT FET ... 164
A.1 Example 1: The Pease Algorithm, 165
A.1.1 Formula Representing the Pease Algorithm 166
A.1.2 Mapping the Pease Algorithmo . 171
A1.21 Address Mapping.........ooevuiiiiiiiiiiiiiiiiiian. 171

A.1.2.2 Twiddle Factor Mappingcovvviiieiineiinn.. 175

A1.3 Implementationcoooiiiiiiiiiii e 181
A.1.3.1 Address Generation ..., 182

A.1.3.2 Twiddle Fraction Generatorc..o.oo.. 187

A.2 Example 2: The Optimal Algorithm, 190
A.2.1 Formula Representing the Optimal Algorithm 190
A.2.2 Mapping the Optimal Algorithm 197
A.2.2.1 Address Mapping........coovvuieiiiiiiiiiiieiiainaann.. 197

A.2.2.2 Twiddle Factor Mappingccoooiiiiiiiiaaan... 200

A.2.3 Implementationcoooiiiiiiiiii 202
A.2.3.1 Address Generation Unit ..., 203

A.2.3.2 Twiddle Fraction Generator 207

A.3 Tables for 64-point Pease Algorithm, 210
A.4 Tables for 64-point Optimal Algorithm, 241

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

viil

LIST OF TABLES

Initial permutation and twiddle factors for computing all possible di-

mensional DFT of size 16 points using the dimensionless Pease algorithm 61

Initial permutation, P, and twiddle factors for computing 1-D 16-point
DFT (Fig), 2-D (4 x 4)-point DFT (Fy; ® Fy) and 3-D (2 x 2 X 4)-
point DFT (Fy ® Fy ® Fy) using an alternative algorithm specified by

permutations in Equation 2-51. 65

Permuted bits for generating butterfly addresses following the Pease

algorithm of size 16 pointsot 79

Sequence of butterfly addresses following the Pease algorithm of size

16 POINES. . oo e 79

Sequence of twiddle factors of a 1-D 16-point DF'T using the Pease

algorithm . ..o 80

Sequence of twiddle factors of a 2-D (4 x 4)-point DFT using the Pease

algorithm ... 81

Permuted bits for generating butterfly addresses of the alternative al-

OTTE I 81
Addresses sequence for the alternative algorithm 82

Sequence of twiddle fractions for a 1-D 16-point using the alternative

algorithim . ..o 84

Sequence of twiddle fractions for a 2-D (4 x 4)-point using the alterna-

tive algorithm o 84

3.9

3.10

3.11

3.12

3.13

3.14

4.1

4.2

4.3

4.4

4.5

4.6

ix
Address schedule corresponding to the Pease algorithm of size 16 points 85

Address schedule corresponding to the alternative algorithm of size 16

Source MID, target PID and local addresses in a 4-processor system

at stage i when P; = L% or 0, = (3,0,1,2) c.ooiiiiiiiii 88

Bit patterns for generating local addresses in PE number (p,,, 1 -+ po)

using the Pease algorithm o 95

Bit patterns for generating “target PID” in PE number (p,,_1---po)2

using the Pease algorithm o 95

Bit patterns for generating “source MID” in PE number (p,,_1 - po)2

using the Pease algorithm o 96
Local vs. remote memory accesses for Pease and optimal dataflow...... 111
Performance of 64-point Pease and optimal dataflow 111

Performance of 64-point Pease algorithm and optimal dataflow with 4

processors and different delay parameters.........................oL 112

Permutations o; and o; ' specifying the optimal algorithm of size 2"

POINES ON 2™ PrOCESSOTS ..ottt t ettt ettt et e et et e e e e ean 114

Permutation bits the optimal algorithm of size 2" points on 2™-processor

Twiddle fractions for one-dimensional DF'T of size 2" using the optimal

algorithmo 116

4.7

5.1

5.2

5.3

5.4

5.9

5.6

6.1

6.2

A-1

A-2

A-3

A4

Bit patterns for generating local addresses, target PID, source MID,
and twiddle fractions using the optimal algorithms of size 2° points on

23 PIOCESSOTS .. v ettt e e et e e e e et 116

MUXs selects for the generation of local address following the Pease

algorithm ... 134

MUXs selects for the generation of target 1D following the Pease algo-

Mask for generating twiddle fractions of the Pease and optimal algorithms145
Twiddle fractions for Pease algorithms of size 2" where m < mn < 10.... 147

MUXSs’ selects for generating twiddle fractions of Pease algorithm for

FET of size 2", 2 < < 10 it 148
Performance measured in number of clock cycles 153
Performance measured in micro secondso.eiiiiiiiiiiiiia... 154

Bit patterns for generating local address, target PID and source MID

using the Pease algorithm 175

Twiddle factors of the Pease algorithm for one-dimensional 64-point

DFT and two-dimensional (16 x 4)-point DFT............................ 180
Twiddle factors of the Pease algorithm written in term of wosg 180

Twiddle fractions of Pease algorithm for one-dimensional 64-point DF'T

and two-dimensional (16 x 4)-point DFT ... 181

xi
A-5 MUX selects for generating local address, target PID and source MID

of the 64-point Pease algorithm........... 183

A-6 Increment and initial numbers for generating address of Pease algo-

rithm using adders.o 185

A-7 Addresses generated following Pease algorithm of size 64 points during

stage 3 using adderso e 186

A-8 Generation of twiddle fractions for Pease algorithm of different dimen-

SIONS USING MASKS .ottt e 188

A-9 Generation of twiddle fractions before masking (TF1) following Pease

algorithm of size 64 points using adders ..., 189

A-10 Twiddle factors of optimal algorithm for one-dimensional 64-point DFT

and two-dimensional (16 x 4)-point DFT ..., 196

A-11 Bit patterns for generating local address, target PID and source MID

using the optimal algorithm....... 201

A-12 Twiddle factors of optimal algorithm for one-dimensional 64-point DFT

and two-dimensional (16 x 4)-point DFT ... 201

A-13 Twiddle fractions of optimal algorithm for one-dimensional 64-point

DFT and two-dimensional (16 x 4)-point DFT..................cooee. 202
A-14 MUX selects for generating local address of the optimal algorithm...... 204
A-15 Increment and initial number for generating address using adders....... 205
A-16 Addresses generated during stage 3 using adders.......................... 206

A-17 Generation of twiddle fractions for the optimal algorithm of different

dimensions using masks 207

xii

A-18 MUX selects for generating local address of the optimal algorithm...... 208

A-19 Increment and initial number for generating twiddle fractions of opti-

mal algorithm using adders o i 209

A-20 Generation of twiddle fractions at stage 6 before masking (TF1) fol-

lowing optimal algorithm of size 64 points using adders 209
A-21 Addresses sequences for 64-bit Pease algorithm at stage 1, 2 and 3 211
A-22 Addresses sequences for 64-bit Pease algorithm at stage 1, 2 and 3 (cont.)212
A-23 Addresses sequences for 64-bit Pease algorithm at stage 4, 5 and 6 213
A-24 Addresses sequences for 64-bit Pease algorithm at stage 4, 5 and 6 (cont.)214

A-25 Addresses mapped to PEO and PE1 for 64-bit Pease algorithm at stage
L, 2 and 3. 215

A-26 Addresses mapped to PEO and PE1 for 64-bit Pease algorithm at stage
A5 and B. ..o e 216

A-27 Addresses mapped to PE2 and PE3 for 64-bit Pease algorithm at stage
L, 2 and 3. 217

A-28 Addresses mapped to PE2 and PE3 for 64-bit Pease algorithm at stage
A5 AN 6. 218

A-29 Source MID, target PID and local addresses generated in PEO and PE1

at stage 1 and 2 following the Pease algorithm 219

A-30 Source MID, target PID and local addresses generated in PEO and PE1

at stage 3 and 4 following the Pease algorithm 220

A-31 Source MID, target PID and local addresses generaged at stage 5 and
6 in PEO and PE1 following the Pease algorithm 221

A-32 Source MID, target PID and local addresses generated in PE2 and PE3

at stage 1 and 2 following Pease algorithm

A-33 Source MID, target PID and local addresses generated in PE2 and PE3

at stage 3 and 4 following Pease algorithm

A-34 Source MID, target PID and local addresses at stage 5 and 6 in PE2

and PE3 following Pease algorithm....................o ..

A-35 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 1 to 3...... .o

A-36 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 1 to 3 (cont.)..............oooooiiii..

A-37 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 4 t0 6.........coooi i

A-38 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 4 to 6 (cont.)...........ooooiiiiiiiiiiiin...

A-39 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm mapped to PEO and PE1 at stage 1 to 3................

A-40 Twiddle factors, represented by fractions, for 1-D 64-point FFT using

Pease algorithm mapped to PEO and PE1 at stage 4 to6................

A-41 Twiddle factors, represented by fractions, for 1-D 64-point FFT using

Pease algorithm mapped to PE2 and PE3 at stage 1to3................

A-42 Twiddle factors, represented by fractions, for 1-D 64-point FFT using

Pease algorithm mapped to PE2 and PE3 at stage 4 to6................

A-43 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 1 to 3

xiil

226

228

Xiv
A-44 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 1 to 3 (cont.)..........coooiiiiiiiiiiaiin... 234

A-45 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 4 t0 6 ... 235

A-46 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 4 to 6 (cont.).............oooiiiiiiiiiii... 236

A-47 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm mapped to PEO and PE1 at stage 1 to 3................ 237

A-48 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm mapped to PEO and PE1 at stage 4 to 6................ 238

A-49 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm mapped to PE2 and PE3 at stage 1 to 3................ 239

A-50 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm mapped to PE2 and PE3 at stage 4 to6................ 240
A-51 Addresses following the optimal algorithm at stage 1, 2 and 3........... 242
A-52 Addresses following the optimal algorithm at stage 1, 2 and 3 (cont.) .. 243
A-53 Addresses following the optimal algorithm at stage 4, 5 and 6........... 244
A-54 Addresses following the optimal algorithm at stage 4, 5 and 6 (cont.) .. 245

A-55 Addresses mapped to PEO and PE1 at stage 1, 2 and 3 following the

optimal alogrithm..... 246

A-56 Addresses mapped to PEO and PE1 at stage 4, 5 and 6 following the

optimal algorithm 247

A-57 Addresses mapped to PE2 and PE3 at stage 1, 2 and 3 following the

optimal algorithm.......

A-58 Addresses mapped to PE2 and PE3 at stage 4, 5 and 6 following the

optimal algorithm.....

A-59 Source MID, target PID and local ddresses in PEO and PE1 at stage

1 and 2 following the optimal algorithm

A-60 Source MID, target PID and local ddresses in PEO and PE1 at stage

3 and 4 followig the optimal algorithm...........

A-61 Source MID, target PID and local ddresses in PEO and PE1 at stage

5 and 6 following the optimal algorithm

A-62 Source MID, target PID and local ddresses in PE2 and PE3 at stage

1 and 2 following the optimal algorithm

A-63 Source MID, target PID and local ddresses in PE2 and PE3 at stage

3 and 4 following the optimal algorithm

A-64 Source MID, target PID and local ddresses in PE2 and PE3 at stage

5 and 6 following the optimal algorithm

A-65 Twiddle factors of 1-D 64-point FFT following optimal algorithm at

Stage 1 60 3.

A-66 Twiddle factors of 1-D 64-point FF'T following the optimal algorithm

at stage 1 10 3 (COMEL) wuvirintt e

A-67 Twiddle factors of 1-D 64-point FF'T following the optimal algorithm

at stage D 10 6. ..o

A-68 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

at stage 5 10 6 (COME.) . .iiiii e

XV

A-69 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

mapped to PEO and PE1 at stage 1 to 3.,

A-70 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

mapped to PEO and PE1 at stage 4 to 6................ oo,

A-71 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

mapped to PE2 and PE3 at stage 1 to 3.............. .o,

A-72 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

mapped to PE2 and PE3 at stage 4 to 6.

A-73 Twiddle factors of 2-D (16 x 4)-point FFT following optimal algorithm

at stage 1 60 3. oo o

A-74 Twiddle factors of 2-D (16 x 4)-point FFT following the optimal algo-

rithm at stage 1 60 3 (CONt.) ...oooviiiii i

A-75 Twiddle factors of 2-D (16 x 4)-point FFT following the optimal algo-

rithm at stage 560 6 ...

A-76 Twiddle factors of 1-D (16 x 4)-point FFT following the optimal algo-

rithm at stage 5 t0 6 (cont.) ...

Xvi

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

4.1

4.2

4.3

xXVil

LIST OF FIGURES

The proposed design methodology, 8
TensSOT COUNTETt e e e e 31
Basic butterfly operation 40
Dataflow diagram of the 8-point Cooley-Tukey algorithm 41

Dataflow diagram of the 8-point Cooley-Tukey algorithm in parallel form 42

Dataflow diagram of the 8-point Cooley-Tukey algorithm in parallel

form and combining permutations between stages 43
Dataflow diagram of the 16-point conjugate Pease algorithm 47
Dataflow diagram of the 16-point Pease algorithm........................ 48

Dataflow diagram of the Pease algorithm for computing 2-D (4 x 4)-
POt DE L . 53

Dataflow diagram of the dimensionless Pease algorithm of size 16 points 59

Dataflow diagram of an alternative FFT algorithm described by inter-

nal permutations in Equation 2-51 i 64
The architecture 70
Processor element architecture............ 74
Top-level performance model 107
PE performance model 109

Performance histogram for all stage 5 permutations 112

4.4

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

Performance distribution 10,000 random dataflows 113
The FFT Engine architecture..............co i, 117
Implementation of tensor permutation using MUXs 119
Adder used for generating sequence of permuted numbers 121
I/O interface Unitoo 124

Target MID Generator for FFT Engine capable of computing 1-D, 2-D

Or 3-D DEF T 126
Processor Element 128
Address generator.o 130
Data Control Unit (DCU).......oiii 131
Interface entity of an address generation unit 132

Address generator for FFT of size 2"-points on 2™-processor system

USING MUXS o e 133

Generation of MUX'’s selects for address generator of Pease algorithm

of S1Z€ 2™ 10 200 138

Address generator for optimal FFT algorithm of size 32 to 1024 points

USING 3-10-1 MU XS, ..ot 139
Twiddle fraction generators for FFT of size 5 to 10 using MUXs........ 142
Two steps for generating twiddle fractions................................ 143
Generation of mask for computing twiddle fractions...................... 144

Twiddle fraction generators for FFT of size 2™ to 2'0 using MUXs 146

5.17

5.18

5.19

A-2

Xix

Generation of one-dimensional twiddle fractions of the Pease algorithm

USIng adders e 148
Wildforce™ Architecture ..o 149
Processor Element’s datapath 150

Address generator for Pease FF'T algorithm of size 64 points using MUXs184

Address generator for optimal FFT algorithm of size 64 points using
B-10-1 MU XS .+ttt 204

XX
Abstract

Design, Optimization, and Implementation of a Universal FFT Processor
Pinit Kumhom
Prawat Nagvajara Supervisor
Jeremy Johnson Co-supervisor

There exist Fast Fourier transform (FFT) algorithms, called dimensionless FFTs !,
that work independent of dimension. These algorithms can be configured to compute
different dimensional discrete Fourier transforms (DFTs) simply by relabeling the in-
put data and by changing the values of the twiddle factors occurring in the butterfly
operations. This observation allows the design of a universal FF'T processor, which
with minor reconfiguring, can compute one, two, and three dimensional DFTs. In this
thesis a family of FFT processors, parameterized by the number of points, the dimen-
sion, the number of processors, and the internal dataflow is designed. Mathematical
properties of the FFT are used systematically to simplify and optimize the processor
design, and to explore different algorithms and design choices. Different dimensionless
FFTs have different dataflows and consequently lead to different performance char-
acteristics. A performance model is used to evaluate the different algorithmic choices
and their resulting dataflow. Using the performance model, a search was conducted
to find the optimal algorithm for the family of processors considered. The resulting

algorithm and corresponding hardware design was implemented using FPGA.

'L. Auslander, J. Johnson and R. Johnson, Dimensionless Fast Fourier Transform Method and
Apparatus, Patent #US6003056, issued Dec. 14, 1999.

1.0 INTRODUCTION

There are many computation devices available that can execute Digital Signal
Processing (DSP) algorithms [1]. The spectrum of such devices ranges from a general-
purpose processor to special-purpose hardware designed to compute a specific algo-
rithm. These two choices represent the extremes in tradeoff between performance
and design cost. Special-purpose hardware provides higher performance, but lacks
the flexibility provided by a general purpose processor. The more flexible solution,
provided by a general purpose processor, can be amortized over multiple applications
whereas less flexible special-purpose hardware generally must be redesigned for each
application. There are a variety of compromises that attempt to balance performance
and flexibility and hence design cost. From the general-purpose processor end, there
exists a class of processors designed to boost the performance of DSP algorithm while
providing the flexibility of a general purpose computer. From the special-purpose
hardware end, flexibility is provided using parameterized designs known as Intellec-
tual Property (IP) cores [2]. These cores provide designers with a range of design
choices during the design process. Designers can customize their designs in term
of parameters such as data word length, size of problem and choices of arithmetic
units. However, once the parameters are set, they can not be changed during run-
time. For many DSP algorithms such as the fast Fourier transform (FFT), some
run-time flexibility can be provided through the use of run-time parameters. This
thesis demonstrates a design methodology for special-purpose hardware that extends
the flexibility not only during design process but during run-time as well. The basic
idea is to restrict the design space to a limited class of well-structured algorithms and

then to use properties of the family of algorithms to systematically explore design

choices and to provide a rich set of run-time parameters that can be used to provide
maximal coverage during execution. The proposed methodology is illustrated and
carried out with the design of a family of special-purpose processors for computing

multi-dimensional discrete Fourier transforms (DFTs).

Many DSP applications make heave use of the FF'T, which can be a computation-
ally intensive task due to the large amounts of data that must be processed. In some
applications, FFTs of different size and dimension are required. To this end, engi-
neers and scientists rely on approaches such as highly-tuned code for uniprocessors [3],
DSP processors [4-11], ASIC [12], IP cores [13], and reconfigurable architecture [14],
to meet the performance requirements with respect to other design constraints such

as physical space and power limitations.

The study in this thesis, which is part of the SPIRAL project [15], focuses on using
mathematical properties of the FF'T in the design and implementation of a parame-
terized high-performance FFT processor. We design and implement a universal FFT
engine that is parameterized by the number of points and dimension of the transform
during run-time, and by the choice of algorithm during the design process. The pro-
posed design and design process uses a class of FFT algorithm called “dimensionless

FFTs” ' [16] and a family of distributed memory parallel architectures.

The architecture is comprised of multiple processing units and memory units con-
nected via an interconnection network. The data is distributed over the memory
modules while the tasks are deterministically distributed to processing units. The
deterministic distribution, which is done during the design process, allows us to have
localized control for each processing unit. The use of localized control provides scal-

ability in terms of the number of processing and memory units. This deterministic,

IT.. Auslander, J. Johnson and R. Johnson, Dimensionless Fast Fourier Transform Method and
Apparatus, Patent #US6003056, issued Dec. 14, 1999.

decentralized control unit is obtained using mathematical properties of the dimen-

sionless FF'T algorithms under consideration.

A dimensionless FFT is an algorithm which, with very minor changes, can compute
any multi-dimensional DFT on a fixed number of points independent of dimension.
These algorithms can be configured to compute different dimensional DF'Ts simply by
relabeling the input data and by changing the values of the twiddle factors occurring
in the butterfly operations?. This observation is what allows the design of a universal
FF'T processor, that can be parameterized to compute one, two, and three dimensional

DFTs.

A dimensionless FFT algorithm can be derived as a matrix factorization, which
can be concisely described by a mathematical formula consisting of structured matri-
ces built using the tensor product (Kronecker product) of a two-point DFT matrices,
permutations and diagonal matrices called twiddle factor matrices. The permuta-
tion matrices in the formula precisely define the dataflow of the algorithm. The
twiddle factor matrices provide the correct coefficients needed to compute different
dimensional DFTs. An algorithm described by such a formula can be mapped to
our processor. This mapping is done during the design process. For each algorithm,
permutation matrices produce the sequence of addresses needed for butterfly oper-
ations while the twiddle factor matrices produce the corresponding twiddle factors
used in those butterfly operations. The butterfly operations are distributed (mapped)
to the processors which include an “address generator (AG)” and a “twiddle factor
generator (TFG)” and a control. The permutations in the matrix formula serve as

parameters for the design of the address generator and the twiddle factor matrices

2A bufferfly operation is the basic computation in the FFT and consists of a complex multipli-
cation of one of the inputs with a constant, called a twiddle factor, and a complex addition and
subtraction.

serve as parameters used in the design of the twiddle factor generator. Since the
assignment of butterfly operations is done at design time through the construction
of the address and twiddle generators, the complete execution schedule is known in
advance and localized control at each individual memory and processor is possible.
Furthermore, it is possible to optimize memory usage at design time by considering

different algorithms with their corresponding schedules at design time.

For a fixed size FFT, there exist many dimensionless FFT algorithms. Each algo-
rithm has different performance characteristics. Because algorithms are characterized
mathematically, it is possible to optimize the design systematically through the use
of mathematical transformations and classification results rather than using more
traditional ad-hoc approaches. Optimization is established as a well-defined search
problem over the space of mathematical formulas that can represent dimensionless
FFT algorithms. The search is performed using a performance model based on ap-
proaches presented in [17-20]. The technique of finding optimal algorithms through
searching is similar to the techniques used by FFTW [3], ATLAS [21] and the SPI-
RAL project [15]. However, we apply the technique to hardware design and use a
high-level performance model to evaluate the cost of different algorithms rather than

execution time.

Since the performance cost of an FFT algorithm on a distributed memory ar-
chitecture is dominated by the cost of memory-access [22], the performance model
emphasizes the cost of memory access and contention of the interconnect. The per-
formance model simulates the memory access patterns and the behavior of the in-
terconnect in our processor while introducing parameterized delays for the necessary
computation. The performance model is implemented in VHDL using the ADEPT

tool [19]. In order to find an optimal algorithm, we used the performance model to

simulate the execution of many different dimensionless FFT algorithms parameter-
ized by the permutations occurring in the corresponding matrix factorizations. A
search was performed, using the cost returned by the simulation, for the algorithm
with minimal cost. A simulation was performed for different input sizes and using dif-
ferent numbers of processing elements in our processor family. The algorithms found
by the search exhibited some interesting patterns and properties. A generalization of
the formulas discovered was used as the basis of our implementation. We conjecture
that this class of algorithms is optimal in general for our processor model. It is inter-
esting to note that while the optimal algorithm found maximizes locality of memory
access, as would be expected, it also incorporates a schedule of tasks that seems to
minimize contention for the interconnect. Algorithms with the same memory locality
can be differentiated using our performance model which captures, in addition to the

different memory access times between global and local access, memory contention.

It is also worth pointing out that similar locality could have been obtained by
using a higher radix FF'T algorithm; however, we obtain the same locality properties
using a radix two approach. This is important since it simplifies the twiddle factor
computations and easily supports the dimensionless FFT. Standard higher radix ap-
proaches would have to be modified to obtain the additional properties that reduce

contention.

After selecting what is believed to be an optimal design, the final step in our
methodology is to implement the selected design using the proposed architecture.
This involves completing the detailed design necessary to compute the appropriate
addresses and twiddle factors for the scheduled butterfly operations. In addition,
control must be added for the processing elements, computation units, memory units,

and interconnect. Here too, the mathematics of the FF'T can be used to speed up

and simplify the design process. In fact, it should be possible, using the ideas in this

thesis, to automate this process.

The implementation process consists of the following steps. First, the necessary
arithmetic units such as floating point adders and multipliers are designed. These
units can be varied and optimized. For example, one may choose to implement a
fixed-point arithmetic instead of floating point. The advantages/disadvantages of
these choices are beyond the scope of this thesis. For our prototype, single precision
floating point arithmetic conforming to the ANSI/TEEE 754 standard was used. The
floating point units, an adder and multiplier, were implemented using a pipelined
design. This part of the process follows standard design techniques and can utilize
existing IP cores. Second, using the arithmetic units, we assemble a computation unit
that performs butterfly operations and computes the necessary twiddle factors. The
resulting computation unit was designed to be independent of the FFT algorithm
selected. Algorithmic specific information is passed as control information to the
computation unit. Specifically, for each butterfly operation, it receives three inputs
namely a fraction called “twiddle fraction” that is used to generate a twiddle factor
and two inputs data used for computing the butterfly operation. These inputs are
provided to it by the twiddle factor generator and the address generator respectively.
The address generator and the twiddle fraction generators are the two units that

depend on the algorithm.

Hence, the final step of the implementation process is the design of the twiddle
factor and address generator. It is this part of the design process that is aided by
our mathematical description of the FFT. Two implementation techniques, based on
MUXs and adders respectively, are investigated. Both implementations are derived

directly from the permutation and twiddle factor matrices in the description of the

dimensionless FFT algorithm. In addition to general techniques that apply to every
dimensionless FF'T, special properties of the optimal algorithm are incorporated into
the design. These additional properties further simply the resulting implementation.
Specifically the logic for the address and twiddle generators using either implemen-

tation approach is greatly reduced.

Not only does the optimal algorithm provides a simple implementation of address
and twiddle factor generators, it also provides a simple communication pattern. The
simplified communication pattern allows the interconnection network to be optimized.
For the optimal algorithm in a 2™-processor system, there are only m stages that need
the interconnection. Moreover, the interconnection is used in a pair wise fashion with
the pair of communicating processors fixed for each stage. Therefore, only m network
configurations are needed and each processor needs to be able to connect to m—1 other
processors as opposed to 2™ processors in case of general interconnection network.
Since this information is known at compile time the interconnection network does
not have to support general communication patterns and consequently can be greatly

simplified and can provide higher performance.

For proof of concept, the design was implemented on the Wildforce? [23] recon-
figurable (FPGA) board. The design was implemented using synthesizable VHDL,
and was verified in two stages. First a VHDL simulation was used to test the logic
of the design and then the actual configured board was validated. The validation
process completely tested the implementation by applying the FFT computation for
a set of fixed sizes to a basis and comparing the results to those specified by the DFT
matrix. After validating the implementation we benchmarked the processor to study
the efficiency and scalability of the implementation. A future implementation may

use ASIC technology for the floating-point (complex numbers) arithmetical cores and

the FPGA technology for the parameterized flow control units. Figure 1.1 summarizes

the purposed design methodology.

Algorithirs desenbed n
mathermtical forrmilas
Hardware parametenzed by
the mathermtical formuias
|
Optimization using Iimplemertation te chrigues
performance model of parametenzed hardware
Trrplementation of optimal
hardware

Figure 1.1 The proposed design methodology

The resulting design and implementation has some similarities to existing FF'T
processors [24,25]; however, we believe that the following properties make it unique:
(1) it implements the dimensionless FFT, (2) it uses completely localized control for
address and twiddle factor generation, (3) it utilizes a scalable distributed memory
architecture optimized to the FFT with an interconnect and schedule designed to
minimize contention. Since we have optimized the design to the FFT, the resulting
processor is quite different than other more general distributed memory architectures.

More important than the particular design is the process in which it was obtained.

In conclusion, the novelty of this thesis is threefold. First the FFT processor is
based on the dimensionless FFT [16] which allows a single hardware design to com-
pute one, two, and three dimensional DFTS. Second, a framework for systematically
mapping alternative FF'T algorithms onto parameterized scalable hardware is pro-
vided. This is obtained by mapping a mathematical description of the FFT, based
on matrix factorizations [26], to hardware that implements flow control and genera-
tion of the necessary roots of unity (twiddle factors). By incorporating information
about the algorithm in the design stage many simplifications in the resulting hardware
were obtained; particularly the support needed for task allocation and communica-
tion. Third, the optimization of the design was performed using a systematic search.
There are many different FFT algorithms, each with different dataflow, and conse-
quently different performance characteristics. Thus our hardware design becomes an

optimization problem over the space of possible FFT dataflows [22].

The remainder of the thesis is arranged as follows. Chapter 2 provides the neces-
sary mathematical background. In particular the dimensionless FFT is reviewed and
the space of possible dimensionless FFT algorithms is described. Chapter 3 introduces
the architectural framework and and the methodology for mapping FFT algorithms
to the architecture. Chapter 4 discusses the performance model and shows how the
performance model was used to optimize the design of the FFT processor. Chap-
ter 5 presents an implementation of the optimal design using the Wildforce™ FPGA
board. A detailed discussion of the implementation and design of the address and
twiddle factor generators is presented. Chapter 6 discusses the verifcation and the
performance of the resulting implementation. Finally, conclusions and suggestions
for future research are available in Chapter 7. To make concrete all of the ideas in

this thesis we provide a detailed example, in the appendix A, using a 64-point FFT

computation with four processors.

10

11

2.0 MATHEMATICAL FORMULATION OF THE FFT

One of the main themes of this thesis is that domain-specific knowledge should be
utilized in the design and implementation of special-purpose hardware. In the design
of an FFT processor the extensive knowledge available about the FFT should be
incorporated. This knowledge is most conveniently expressed using a mathematical
description of the FFT. In this chapter we review the mathematics needed to analyze
and fully understand the FFT. Special emphasis is provided to material utilized in

the design and optimization of our processor.

The discrete Fourier transform (DFT) is conveniently expressed as a matrix-vector
product, and fast algorithms for computing the DFT are obtained from factorizations
of the DFT matrix into a product of structured sparse matrices. The matrix formula-
tion of the FFT has been presented and promoted in the books by Tolimier et al. [27]
and Van Loan [26]. Some of the material and notation in our presentation is derived
from the paper [28] which not only emphasizes the role of matrix factorizations in
deriving and describing FF'T' algorithms, but shows how the mathematics can be used
in implementing FFT algorithms. In this chapter we review the relevent material on
the matrix formulation of the FFT, present the dimensionless approach [16] to mul-
tidimensional FFTs, and discuss the space of FFT algorithms that are considered for

the design of our processor.

The chapter is organized as follows. Section 2.1 presents the basic mathemati-
cal properties of the tensor product, permutation matrices, and a family of diagonal
matrices called twiddle factor matrices. Section 2.2 presents a class of FFT algo-
rithms using matrix factorizations, and interprets different factorizations in terms of

dataflow. Section 2.3 describes the multidimensional Discrete Fourier Transform, and

12

the dimensionless FFT algorithm is presented in Section 2.4. Finally the concept of
an FF'T dataflow is introduced in Section 2.5. The analysis of the different dataflows

that can occur in an FFT algorithm is crucial to the optimization of our processor.

2.1 Mathematical Background

As discussed in the introduction to this chapter, the FFT can be described as
a factorization of the DFT matrix into a product of structured sparse matrices. In
this section we review the necessary concepts from matrix algebra and introduce the
matrices that occur in the FET. This includes a discussion of the tensor (or Kronecker)
product, the direct sum, permutation matrices, and twiddle factor matrices. We also

relate the tensor product to the indexing operations occuring in FF'T algorithms.

2.1.1 Tensor Product

The tensor product provides a tool for describing and manipulating a class of

block structured matrices.

Definition 1 (Tensor Product). Let A and B be p X ¢ and r X s matrices re-

spectively. Then, the tensor product of A and B, denoted by A ® B, is the pr x qs

matrix
apoB a1, B apq—1B
(A®B) - al,.oB al,'lB . az,q'_lB | 2.1)
ap-10B ap_ 1B ... ap_14,.18

where a;;, 0 < i < p and 0 < j < q, is the element at the (i + 1)* row and the

(7 + 1)t column of matriz A.

The tensor product satisfies many basic properties used for factoring block struc-

tured matrices like the DFT. The following list is provided as a reference.

13

Property 1 (Tensor Product Properties). The tensor product satisfies the fol-
lowing basic properties, where I, is the p X p identity matriz, indicated inverses ewist,

and matrix dimensions are such that all products make sense.
1.1 (tA)® B=A® (aB) =a(A® B)
1.2 (A+B)C=(A®C)+ (B ()
1.3 A(B+(C)=(A®B)+(A®()
1.4 1 A=AR1=A
1.5 A(BR(C)=(AB)®C
1.6 (A B)!=A"® B!
1.7 (AB®CD)=(A®C)(B® D)
1.8 (A®B)=([,®B)(A®I,)=(A®1,)(I,® B)
1.9 (Ai®@ --A)Bi®---®B)=(A1B1®--®ADB)
1.10 (A1, ®By)---(A44®3B)=A,---A,®B,--- By
1.11 (I, ® By-+-B)) =(I,®@ By)--- (I, ® By)
1.12 (A®B)'=A"1® B!

118 I, 1, =1,

All of these identities follow from the definition or simple applications of preceding

properties (see [29]).

Another matrix operation used in this thesis is the direct sum.

14

Definition 2 (Direct Sum). Let A and B be two matrices of arbitrary sizes, the

direct sum of A and B, denoted by A ® B, is

A tensor product of the form I, ® A can be written as a direct sum of p copies of

A. This can be interpreted as a parallel operation when I, ® A is applied to a vector.

Property 2 (Parallel Form of the Tensor Product).

A

p
LL®A= =P 4 (2-3)
A i=1

The computation of (I, ® A)z can be obtained by dividing the input, x into p

segments and applying A independently to each segment.

In general the tensor product is not commutative (ie. A® B # B® A). In
particular, A ® I is naturally interpreted as a vector operation rather than a parallel

operation.

Property 3 (Vector Form of the Tensor Product). Let A be an p X p matriz.

Then
CLO’()Iq N CL()’p_qu

AR = (2-4)

ap_l’()]q ap_Lp_qu

The computation of y = (A® I,)z can be performed using vector operations. Let
x; be the i-th segment of the input vector and y; be the j-segment of the output

vector y. Then
p—1
Yj = E Ajili,
Jj=0

where the sum consists of scalar-vector products and vector additions.

15

Using Property 1.8 an arbitrary tensor product can be factored into a parallel and
vector operation. Computing y = (A® B)z as y = (A® I,)(I, ® B)x corresponds to
the row-column algorithm commonly used for computing two-dimensional DFTs. To
see this, we remark that if A is a p X p matrix, B is a ¢ X ¢ matrix, and X and Y are
the p X ¢ matrices obtained by placing consecutive elements of the vectors z and ¥ in

the rows of X and Y respectively, then
Y = AXB'. (2-5)

Corresponding to the factorization y = (A ® 1,)(I, ® B)z, Y is computed by first
appling B to the rows of X and then applying A to the columns of the intermediate

result.

2.1.2 Indexing and Basis Vectors

A key component of an FFT program or an FF'T processor is the calculation of
addresses of data elements. Address computation can be expressed using mixed-radix
numbers. Mixed-radix numbers are related to the tensor product and consequently
naturally arise in the FF'T. In this section we review mixed-radix numbers and relate

them to the tensor product.

Definition 3 (Mixed-Radix Number System). Let N = N, | X --- X Ny and
0 <1 < N;,0<j <t Then, the number whose mized-radiz representation is

(t4-1,...,1%0) is equal to
(Nt_g v No)it—l + (Nt_g e No)it_g + -+ Noil + 'i().

Arranging the mixed-radix number (i;_1, ..., %) in lexicographical order is equiv-

alent to counting from 0 to N — 1.

16

Example: Let N=3x2x3=18and 0<i; < 3,0 < iy < 2,0 < i3 < 3. Then,

(19,11, 19) denotes the mixed-radix representation of the system, where
i = (i9,11,70) = (3 - 2)ig + 31y + ip.

For instance, (1,0,1)=(2-3)-14+3-0+1=T7.

Counting (is, 41, 140) from (0,0,0) to (2,1,2) in lexicographical order results that i

is counted from 0 to 17; that is

i .0 1 2 3 .17
(in,i1,30) : (0,0,0) (0,0,1) (0,0,2) (0,1,0) --- (2,1,2)

When N = 7!, mixed-radix numbers become radix-r numbers. For convenience,

we will use the following notation for the radix-r number system.

Let b; be the ;™ digit of t-digit radix-r number, denoted by (b;—1,- - ,bo),. Then,

t—1
(b1, bo)e = D bjr?s by € {0,1,+- ,r —1}
j=0

For the binary number system (r = 2), where b; € {0,1}, we drop the commas and

the notation becomes (by_1 - --bg)2

When dealing with matrix factorizations, indexing operations are obtained using
standard basis elements. The set of inputs to an FFT algorithm of size N are the set
of N-tuples of complex numbers (other domains are possible, but in this thesis we
will restrict the FFT to complex data), which forms a vector space denoted by CV
(for a review of vector spaces and linear algebra see [30]). The elements of CV can
be uniquely written as a linear combination of N basis vectors. For our purposes it

is convenient to use the standard basis.

17

Definition 4 (Standard Basis). The standard basis for the vector space of N-tuple

of the complex number, CV, is
{e) |0<i< N}, (2-6)
where € is the vector with 1 in the i component and zeros elsewhere.

Let x € CV. Then, we can write x uniquely as the linear combination of the

standard basis as follows.

N-1
X = (.’EO,...,ZL’N_l)t = szef\r (2-7)
1=0

Using the standard basis, it is easy to go from the abstract notion of a linear

operator to the concrete notion of a matrix.

Property 4 (Linear Operator). A linear operator A on CV is a mapping from

from CN to CN which satisfies the following properties.
4.1. Alox) = a(Ax)
4.2. Alax + By) = A(ax) + B(fy) = a(Ax) + B(Ay)

It is easy to see that any matrix is linear, in particular the DFT is linear. The
computation of a linear operator applied to an arbitrary vector is known once it is

known what it does to a basis.

N-1 N-1
Ax = A(Z ziel) = Z z;AelN (2-8)
1=0 =0

Given a linear operator, A, on CV it is easy to obtain the corresponding matrix.

Property 5 (Matrices and the Standard Basis). Let A be an N x N matriz.

Then Ael is the i column of A.

18

If A is given abstractly as a linear operator (think of a black box program which
when given an input x returns the output vector y and satisfies the linearity prop-
erties) then the matrix corresponding to A is obtained by appling the operator to
each of the elements in the standard basis. Each computation returns a column of

the matrix.

When a matrix is equal to a tensor product of matrices it is easier to compute
with tensor product of basis elements. The following property describes the tensor
product of basis vectors. This property relates the tensor product to mixed-radix

numbers.

Property 6 (Tensor Product of Standard Basis Elements).

ef@el=¢e}l,; 0<i<p0<j<g (2-9)
More generally,
Ni_
e, ® - ® efXO = ef\{t_l,...,io), (2-10)
where (iy_1,...,1) is the mized-radiz number defined in Definition 3.

This property illustrates that the collection of vectors eg:l R ef-\ofo with

0<i; < Njforj=0,...,t —1 forms the standard basis for C".

19

Example: Let x = (z9,21)" and y = (Y0, 1, %2)". Then,

1 2
_ E: 2 _Z 3
i=0 j=0
1 2
_ 2 3
XQYy = E rie; ® E yje;
i=0 §=0

1 2
= Z Z Tiyie; @ e?

i=0 j=0

1 2
_ 6
= LilYi€3;y 4

i=0 j=0

_ ¢
= («Toyoa«'L’oyla«’1’0212,$1Z/0,3U1y1,351y2)

O

To see why it is convenient to use the tensor product of basis vectors with com-
puting with tensor products, observe, using Property 1.7, that (A ® B)(e} ® €f) =

Ae? ® Beg, the tensor product of the i-th column of A and the j-th column of B.

2.1.3 Permutation Matrices

An essential component of FFT factorizations are permutation matrices. These
matrices provide addressing and dataflow information. In this section, we collect the

definitions and properties involving the permutation matrices.

First, we introduce a class of functions called “permutation” defined as follows.

Definition 5 (Permutation). A permutation, o, of degree N is a one-to-one map-

ping from {0,--- N —1} to {0,--- , N — 1}. We denote o by

0 1 . N -1
o= <0(0) o(1) ... o(N-— 1)) (2-11)

20

which mean the function maps i — o(i), 0 < i < N. For convenience, we often drop

the first row and use the following notation.
o= (0(0),0(1),...,0(N —1)) (2-12)

Example: The permutation

01 2 3
a_<1 > 3 0>_(1,2,3,0)

is the mapping 0 - 1,1 — 2,2 — 3 and 3 — 0. U

Two permutations of the same degree can be combined, by composition, to form
another permutation; i.e. if 0 and 7 are two arbitary permutations of the same degree,

then

The inverse of the permutation o is the permutation which when composed with
o is the identity permutation (i.e. the permutation that maps ¢ to ¢ for all 7). It is

easy to see that the inverse of o is the permutation that maps o (i) to i.

Example: The inverse of the permutation
o 0 2 3
N1 30

(0123
7=\l 3 01 2
0,

Composing these permutations we see that 0 -0, 1 — 1, 2 — 2, and 3 — 3. Il

N —

is the permutation

Associated with permutations is a class of matrices called permutation matrices,

whose product, is equivalent to the composition of permutations.

21

Definition 6 (Permutation Matrices). Let o be a permutation of degree N. Then,

the N-by-N permutation matriz P, can be defined by
Prel = el (2-13)

Since P,el is the i'h column of P,, we can construct P, from the definition.

Example: Let o0 = (1,2,3,0). Then,

and
P, = (e e e €f)
0 0 01
1000
o 01 00
0010

O

Multiplying a permutation matrix with a vector, P,x, permutes the elements of
the vector corresponding to the inverse of o. The result of P,x can be viewed in two

perspectives described by the “duality” property.

Property 7 (Duality). Let z be a vector of size N and P, be a permutation matriz
of size N x N specified by permutation function o. Then, the permuted vector P,x
can be viewed in two perspectives. From the perspective of permuting the basis, we
have

X = Z xief»v

1=0
N-1 N-1

P;x = Z ziPrel = Z xiet]fv(i)

22

N

This means that the basis €y

;) s moved from the o(i)-th position to the i-th position.

Let Pye}’ = e}’. Then,

i J 7)
_ 1
i = o (J)
Therefore,
N-1 N-1 N-1
_ p N _ N _ N
P,x = z;Pye; = rie; = To-1(j)€;
=0 =0 7=0

This means that the element xs-1(;) is moved from the o~ (j)-th position to the j-th

position.

Example: Let x = (z9, 71, %9, 73)", 0 = (1,2,3,0) and 0! = (3,0,1,2). Then,

3 3
_ D oad 4
Px = E z;Pye; = E Ti€4 ;)

4 4 4 4
= Zo€ + 1€ + To€s + x3€

4 4 4 4
= x3€; t+ xp€] + Tr1€5 + To€3
3

_ 4 _ t
= E Lo=1(j)€5 = (373,330,331,302)
J=0

The following list collects the basic properties of permutation matrices.

Property 8 (Properties of Permutation Matrices).
8.1. [Product] P,P, = P,,
8.2. [Identity] P,y = Iy, where id = (0,...,N — 1)

8.8. [Inverse] P,-1 = (P,)™' = (P,)!

23

8.4. [Permuting Rows] P,-1 A permutes rows of A by o.

8.5. [Permuting Columns| AP, permutes columns of A by o.

8.6. [Conjugation] A7 = P;YAP,, where (A%);; = (A)o(i),0()-

8.7. [Direct Sum] P, & P; is a permutation matriz denoted by Pye,

8.8. [Tensor Product]| Assume that o is a permutation of degree m and T is a
permutation of degree n. P, ® Py is the permutation matriz that maps €' @ e

to e;”(i) ® eZ(j) and is denoted by P,g;.

All of these identities follow from the definition or simple applications of preceding

properties (see [26,27,29].)

The following example illustrates the product property.

Example: Let o0 = (1,2,3,0) and 7 = (1,0,3,2). Then, computing P, P, by

definition, we have

P,P, =

o O = O
o = O O
— o O O
o O O =
o O = O
o O O =
o O O
o = O O
O = O O
O O = O
o O O
_ o O O

Applying the product property, we construct the permutation P,, as follows.

4 4 _ 4 4 4 4_ 4 4
P,Prey = Fyreg=¢€, =€, P,Pej=PF,e =¢e;q =¢€

4 4 _ 4 4 4 4 _ 4 4
PyPre, = Fyrey =€, =¢€ DP,Pre;=PF e;=¢€,.3 =¢€;

o= O O
o O = O
o O O
_— o O O

The following example shows the inverse property.

Example: Let o0 =(1,2,3,0) and 0! = (3,0, 1,2

000 1
1000

P = 0100 | F=
0010
000 1 01 0
1000 00 1

Polp-r = 0100 000
0010 100

O = O O

). Then,
010
0 01
000
1 00
0
0
| Tk
0

24

O

Using the same permutation, the following example illustrates the conjugation

property.

Example: o= (1,2,3,0)

01 0O Qp,0 Go,1
A7 — P_lAP _ 0 010 (1,1’0 CL171
g 7 0 0 01 G20 Q21
1 00 O as,o a3,1
0100 dp,1 Qo2 do3 do,o
_ 0010 ai1 Gr2 @13 A1
0001 Q2,1 G292 G23 G20
1 0 00 as,;1 Q32 G33 0430
First, permuting the columns of A with o, we have
Qop,1 Ap,2
_ a a
A = P YAP, = P, L1 T2
g1 (2,2
as,;; 3.2

Qo2 Qo3
Q12 A13
Q22 A23
a2 (33
ai1
_ 2,1
as3;1
Qo,1
ao,3 ap,0
a3 Aa1o
23 A20
a3z aso

Then, permuting the rows of the resulting matrix, we have

ay,1

A7 =P;lAP, = | ©1
=P, =

a3l

Qo,1

Q12 G13 010
Q2,2 Q23 20

a3z 33 0A30
Qo2 @p,3 ap,0

1,2
29
as,2
Qo,2

o O = O

o O

o

a3
23
as3,3
Qo,3

_— o O O

OO =

ai,o
2.0
as3,0
Qo,0

25
2.1.4 Tensor Permutations

The following definition introduces an important class of permutations related to
mixed-radix numbers. These permutations are defined by permuting the digits in
the mixed-radix number system. Because of the relationship of mixed-radix numbers
to the tensor product and the definition below, we call these permutations tensor

permutations.

Definition 7 (Tensor Permutation Matrix). Let N = N,y X --- X Ny and o

be a permutation function of degree t. Then, the N x N tensor permutation matriz,

NN e defined by

Ta(-Nt—lx"'XNO)eNt_l ® .. ® eNO — eﬁf(tzzil) ® P ® eNO (2-14)

it—1 io a(io)

In the case that Ny = Ny = .-+ = N;_; = 2, we replace the superscipt by the

product of the radices and the tensor permutation becomes
i
TZe} ©--@e), = e 1O Qe (2-15)

Example: Let 0 = (1,2,3,0). Then

24/ 2 2 2 2\ _ 2 2 2 2
To’ (ebg ® ebg ® ebl ® ebo) - ebo ® ebg ® ebz ® ebl'

26

The corresponding permutation matrix is obtained by setting each bit, b;, to 0 and

1. This is shown using the binary numbers (b3bab1bg)2 — (bobsbaby)s.

(0000); — (0000),
(0001); — (1000),
(0010); — (0001),
(0011); — (1001),
(0100); — (0010),
(0101), — (1010),
(0110); — (0011),
(0111); — (1011),
(1000); — (0100),
(1001); — (1100),
(1010); — (0101),
(1011); — (1101),
(1100); — (0110),
(1101)y — (1110),
(1110), —» (0111),
(1111); — (1111),

O

When all of the radices are equal, the product of two tensor permutations is
a tensor permutation and generally the tensor product of tensor permutations is a

tensor permutation.

27

Property 9. Let o1 and oy be two permutations of degree t specifying tensor permu-

tation matrices of size 2 x 2!, denoted by T2 and T2, respectively. Then,

9.1. T2'12?" =T

017 02 0102

9.2. TZ T =T

o1@o2

There are two subclasses of the tensor permutation called “stride” and “bit-
reversal” permutations that arise in common DF'T factorizations. Stride permuta-
tions permute the indices of a vector by gathering them at a given stride. They can

be defined as tensor permutations.

Definition 8 (Stride Permutation Matrix). The stride permutation, L®, is the

s s

tensor permutation matriz of size rs X rs defined as follows.
Lie;®e; =ej®e; (2-16)

] S A s
Since e @] = e,

we see that the basis elements are permuted at stride r.
Using the duality property (7) we see that when a stride permutation is applied to a

vector the elements of the vector are gathered at stride s.

Example: Let N =4 x 2. Then,

8.8 _ 18 4 2 _ 2 4 _ 8 _ .8
L2i_L2ei1®ei0—ei0®ei1—e4i0+i1—ej

Then, counting (i1,7y), 0 < 43 < 4, 0 < iy < 2, lexicographically generates the

corresponding j = 449 + ¢;. That is the mapping from ¢ — 7 is

01 234567
041526 37

28

Therefore,

8 8 8 8 A8 8 A8
€, € €5 € €; €3 e7)

h
N 0o
I
—~
®
(Yoo}

SO DO DODO OO
O OO OO OO
S OO OO o —~O
SO OO o OO
SO O o o+ O
SO O O O o oo
S o oo+, O oo
— o O O o o oo

The following list provides the basic properties of the stride permutation matrices.

Property 10 (Stride Permutation Properties). The stride permutation satisfies

the following basic properties.
10.1. LTstLyst = L3t
10.2. (L))"t =Lr*
10.3. L3 = L7 = I

Previously it was mentioned that the tensor product is not commutative. However,
(A® B) and (B® A) only differ by a permutation. More specifically they are obtained

from each other by conjugating by a stride permutation.

Theorem 1 (Commutation Theorem). Let A be an r X r matriz and B be an

s X s matriz. Then,

A®RB=L"*(B® AL,

The second special case of tensor permutations is called the bit-reversal permuta-
tion. In the case when all of the radices are equal to two this permutation is obtained
by reversing the bits of the binary representation of the indices of a vector. More

generally we give the following definition.

29

Definition 9 (Bit-Reversal Permutation Matrix). Let N = N;_; X --- X Np.

Then, the bit-reversal permutation, RNt=1<->No) s defined as following.
RWNi-1 ><'--><N0)eNt71 R - ® eNo — Mo R---® eNt*1 (2—17)

Tt—1 10 10

For N =2 x---x2 = 2" we will drop the superscript and denote the bit-reversal

with Ry. That is
Rye;, ®---Qe, = € Q- --®¢€, _; 0<b <2 (2-18)

The following list gathers the basic properties of the bit-reversal permutation

matrices.
Property 11. The bit-reversal Ryt satisfies the following properties.
11.1. (Ron)' = (Ryn)™!' = Ron
11.2. Ron = (Ry @ Ron-i) L2}
11.8. Ron = (I3 @ Ryn—1)L3"
11.4. Ry = [y (Ipn—s ® L%)

Note that Ry = I, and Ry = Li.

Let N =2 x 2 x 2. Then,
8 2 2 2 _ 2 2 2 _ .8 _ .8
Rge; = Rgey,, @ €y, R e, =€, @e, D€, =€y oy 1ps = e;

Then, counting i = (byb1by)s lexicographically generates the corresponding j =

(bgb1by)2. That is the mapping from i — j is

01234567
04261537

30

Therefore,
Ry = (ef e} e ef e} e} e} &)
100 00O0O0O
000O01O0O0T®O
001 0O0O0O0TO0
. 0000O0O0OT1F O
N 01 00O0O0O0TO0
000O0O0OT1TO0T®O0
0001O0O0O0®O0
000O0O0O0OTUO0T1

The following examples illustrate Property 11.

1. Ry = (I, ® L3)L5. Applying both sides to an arbitrary basis vector, we have
(L ® Ly)Lyey, ® ey @ ey, = (L@ Ly)e;, @ e, @ej,
= e ®Lje; Qe
= e, ®e;, ®ep,
which is the same as Rg(e}, ® ef ® e},).
2. Ris = (Ry® Ry)L}5. Applying both sides to an arbitrary basis vector, we have
(R ® Ry)ej, ®e;, @€, ®e; = (RiQ@Ry)e;, Qe; @e; ®ep,
= R4e§0 ® ezo ® R4e§3 ® e,§2

_ 2 2 2 2
- ebo ® eb1 ® ebz ® eb3

which is the same as Rig(e}, ® e}, ® e}, @ e},). O

By the definition of a tensor permutation, there is one-to-one mapping from per-
mutations of degree ¢ to the permutations of degree N. Let N = N;_; X -+ x Ny and

o be permutation of degree t. Then, the tensor permutation, T,, can be written as

31
where 7 is the permutation of degree N (see previous examples),

i = (ig=1,...,00) = (Ny—a -+~ No)ig—1 + (Ny—3 -+ - No)ig—2 + ... + Noiy + 49, and
(@) = (lo@t-1), " +%0(0))
= (Ny@t—2) - No(0))io@t—1) + (No@—3) - - No(0))lo(t—2) + - - - + No(0)io(1) + ia(0)
The permutation v of degree N can be generated by using a counter with adaptive

carry propagation specified by Ny;_1) X -+ X Nyq). By the duality property, 7,

permutes a vector x by v~ which can be generated by using ¢~! instead of o;

Y = (ig-1g-1), " io-1(0))

= (No-—l(t42) S Ng(o))ia—l(tgl) +...+ Ng—l(o)’ig—l(l) + ia—l(o).

by --- by}, (bsny - boiy),
n-hit I a-l -

counter

Figure 2.1 Tensor counter

For N = r!, where a radix-r number is used, the permutation v can be generated
by the counting (i;—1,--- ,%),, 0 < 4; < r — 1 and permuting the radix-r digits with
the permutation o as shown in Figure 2.1. for N = 2!, the counter is simply an
n-bit binary counter and the permutation o can be implemented using multiplexers
(MUXs). In Chapter 5, two implementation techniques for generating permuted

numbers is presented.

Example: Let N=2x2x2and o = (1,2,0) and o' = (2,0,1). Let (byb1bp)o,

0 <bj <2and 0 < j < 2, be a binary number. Then, permuting (bab1by)2 with o

32

result in (bg—l(g)bg—l(l)bg—l(o))g = (blbobg)g. Counting 1= (bgblbo)g = b2 -4+ bl -2+ b(]

lexicographically generates the corresponding number j = (bybgbs)s = by -4+bg- 2+ bo.

That is
(bobibo)s : (000)y (001)y (010)s (011)s (100)s (101)y (110)y (111)s
(bibobs)s : (000)y (010)3 (100); (110)s (001)s (011)y (101)y (111)s
01234567
72(02461357)

2.1.5 Twiddle Factor and Diagonal Matrices

Another important class of matrices arising in FFT factorizations are diagonal
matrices containing roots of unity. These diagonal matrices are called twiddle factor
matrices. This section collects useful properties of diagonal matrices especially those

containing twiddle factors.

Definition 10 (Diagonal Matrix). Let D be a diagonal matriz of size N x N.
Then, (D);; =0 if i # j. Let d; be the (i,1)" element of the diagonal matriz. Then,

we write the diagonal elements of the diagonal matriz as follows.
N-1
D = diag(dy,dy, - ,dy_1) = P d; (2-19)
i=0

Conjugating a diagonal matrix with a permutation result in a new diagonal matrix

whose diagonal elements are permuted.

Property 12 (Conjugated Diagonal Matrix). Let D be a diagonal matriz of size
N x N. Conjugating D with permutation P, results in a new diagonal matriz whose

diagonal elements are permuted by o.

N-1

P;'DP, = diag(dy(0), do(1), - - - » do(n—1)) = @ de (i) (2-20)

=0

33
Example: Let o0 = (1,2,3,0) and D = diag(do, di, ds,d3). Then,

P7'DP, = diag(dy(0), do(1), do(2), do(3))

= diag(db d27 d37 dﬂ)

O

A tensor product of diagonal matrices is another diagonal matrix defined as fol-

lows.

Definition 11 (Tensor of Diagonal Matrices). Let Dy and Dy be two diagonal

matrices of size r X 1 and s X s respectively. Then,

Dl = diag(do, dl, Ce ;dr—l)

D, = diag(ep,e1,...,€5-1)
r—1 s—1

Di®D, = PEP die; (2-21)

i=0 §=0

Example: Let D; = diag(dy,d;) and D, = diag(eg, €1, €2). Then,

€ 0 0
D1: <%0£>,D2: 0 €1 0
! 0 0 ey
doey 0 0 0 0 0
0 d061 0 0 0 0
_ d0D2 0 _ 0 0 d0€2 0 0 0
Dhieb, = < 0 d1D2>_ 0 0 0 |de 0 0
0 0 0 0 d1€1 0
0 0 0 0 0 dies

1 2
= DD
=0 j=0
= diag(doeo, doel, d0€2, dleo, dlel, d162)

34

The diagonal matrices occuring in FFT factorizations consist of roots of unity.
An N-th root of unity is a number w such that w® = 1. The N-th root of unity,
w, is a primitive root of unity if N is the smallest positive exponent k such that
w® = 1. In the complex domain there are exactly N N-th roots of unity, namely the
complex solutions of the equation # — 1. The N solutions of 2V — 1 are equally
spaced on the unit circle and are equal to exp(27ij/N) for j =0,1,..., N — 1. All
of these solutions are obtained as powers of the primitive N-th root of unity equal
to wy = cos(27/N) + isin(27/N). Since the N-th roots of unity all have absolute
value equal to 1, their inverses are equal to their complex conjugates. In particular,
wy' = Wy = cos(2m/N) —isin(27/N). Observe that wy' is also primitive as are wk
for any k that is relatively prime to N. Finally, we remark, that if N = rs, then w},

is a primitive s-th root of unity.

A diagonal matrix containing coefficients for computing the DF'T is called a twid-
dle factor matrix. The common form of twiddle factor matrices found in an FFT
algorithm is P~!(I, ® T'*)P. The following properties and definitions show how to

compute with twiddle factors in this form.

Definition 12 (77°). The twiddle factor matriz, denoted by T7*, is a diagonal matriz

defined by
T(ef®e) = wi(ej®e)), 0<i<r, 0<j<s (2-22)
r—1 s—1 r—1
e = wry, = Wslw,,))' (2-23)
i=0 j=0 i=0
where

W,(a) = diag(l,a,---,a™"). (2-24)

35

Example:
8 A2 4 dje2 4
Tie; ®e; = wi(ej®e;)
13
8 ij
I = DD«
i=0 j=0

— 0-1 0-2 0-3 1-0 1-3
= d1ag(w8 yWg ,Wg ", Wg —, Wy awg awg awg)

= diag(1,1,1,1,1,ws, w3, w;s)

O

Twiddle factor matrices in alternative FFT algorithms are obtained by taking
tensor products of identity matrices and the basic twiddle factor matrix 7;%, and by

conjugating by tensor permutations.

Property 13 (Conjugating Twiddle Factor). Conjugating T;* with L}* result in
T e
LUTrsLrs =T (2-25)

Example: Conjugating 7} with L}, we have

8878 .4 2 _ 18784 2
L4T4L2ei®ej = L4T4ei®ej
_ JiT 8.2 _ji4 2
= w8L4ej®e ==uwge; Q€
4 1
81818 __]
LiTIL; = DD
i=0 j=0

_ 01,10 11 20 21 3.0 31
= diag(wy®,w§ " wg® wy Wit Wit Wi wi)
= diag(1,1,1,ws, 1, 1,w3:, 1,wd)

gL, 1, 1,ws, 1, , Wg, L, Wg
By Definition 12,

8.4 o 02 i (ad o a2
Tye; ®e; = wi(e; ®ej)

==
(==

36

which is the same as L§T} LS. O

Property 14 (Twiddle Factor I, ® T7°).

(I, @T")el®ejwe; = wi(e]®e] e (2-26)
qg—1 r—1 s—1
LeT = @ wik (2-27)
i=0 j=0 k=0
qg—1 r—1
= (Ws(wrs))j (2_28)
i=0 ;=0

Example: Consider Li*(I, ® T})L32.

2L eT) L gel0el = LPLoTe!oeloe! = ulie! ge! @ el

3 3 1 3 3
LP(LOTY)LE = P i = P P Wa(wy))
i=0 j=0 k=0

i=0 j=0
. 1 0
Wi(wg) = diag(l,wg) = (0 wy)

LE(L,@TLY = diag(l,1,1,wg, 1,ws, 1wy, 1,1, 1w, 1,wg, 1, wi,

1,1,1,wg, 1,ws, 1,ws, 1,1,1,w, 1, w3, 1, wy)

2.2 Fast Fourier Transform (FFT)
In this section, the class of FFT algorithms is described as factorizations of the
DFT matrix.

Definition 13 (Fourier Matrix). The Discrete Fourier Transform (DFT) of a

vector x of size N is the matriz-vector product Fyx, where

Fy = (W), where wy = exp (%), 0<p,g<N andi=+—1, (2-29)

is the N X N discrete Fourier matriz [26].

37

Example:

1 1 1 1 1 1 1 1
1wy wi w -1 —wy —wi —wi
1 wi -1 —w?@ 1 wi -1 —wi
|t wi —w? owy -1 —wd Wi —wy

*“l/tr -1 1 -1 1 -1 1 -1

1 —wy wp —wi -1 wy wi wi

1 —w? -1 wi 1 wl@ -1 Wi

1 —wd —w? —w, -1 wi Wi w

Note that we apply the properties that w§ = 1 and wg = —1. O

The class of algorithms called Fast Fourier Transform (FFT) can compute the
DFT of vector x in O(N log (N)) operations instead of the O(N?) operations required
when computing the DFT by definition. Many authors [26-28,31] have shown that
different factorizations of the DFT matrix correspond to different FF'T algorithms.
In the following subsections, we describe the two well-known FFT algorithms, the

Cooley-Tukey and Pease algorithms, using matrix factorizations.
2.2.1 Cooley-Tukey Algorithm

The FFT algorithm was popularly introduced by James W. Cooley and J.W.
Tukey [32] in 1965. The following theorem describes the Cooley-Tukey algorithm

with matrix factorization.

Theorem 2 (Cooley-Tukey Theorem). Let N = rs. Then, the FFT algorithm

introduced by Cooley-Tukey can be derived using the following factorization.

Fro=(F, @ I)T7*(I, ® F,)L"* (2-30)

Proof: The proof of the theorem can be found in [28]. O

38

Example: The Cooley-Tukey algorithm for 8-point DF'T can be written as the

following factorization of Fg.
Fy=(FI)T (I, ® Fy) LS

Applying necessary properties described in previous sections, we show that the fac-

torization is valid.

(F®)T ® F) = Gi _%4) <% W4(()w8)) <];4 1(7)4>
_ <I4 Wy (wg)) <F4 0)
Iy —Wiy(wy) 0 F

- (7 Maor)

Since
1 1 1 1 1 0 0 O
Bo=1y 5 1 =1y g owe oo | and
1 1 1 1
W()F _ Wg wg —Wg _wg
g \Wg) 'y = wg _wg wg _wg)
Wg Wy _Wg’ —Wg
we have
1 1 1 1 1 1 1 1
1 w? -1 —w? wy w) —wy —wd
1 -1 1 -1 w —w@ wi —w?
1 —w, —1 we wd we —-w —w
8 _ 8 8 8 8 8 8
(B @ L)Ti (1 ® F1) = 1 1 1 1 -1 -1 -1 -1
1w -1 —wl —wy —wi wy w
I -1 1 -1 —w? w —w? W
1 —wy —1 wy —wi —wg wi wy

39

Permuting the columns of the resulting matrix with stride 4, we obtain

1 1 1 1 1 1 1 1
1 wy wi wp -1 —wy —w? —w
1 w? -1 —w? 1 wi -1 —w?
3 2 3 2
(F, @ I)T} (L ® Fy) L = } f? ;)8 C_ui 11 _aig C‘is _uig = Fy
1 Wy w% —wg’ -1 wg —wg wg’
1 —w% —1 wg 1 —w% —1 wg
1 —wd —w? —wy -1 wd Wi w

O

The factorization in Equation 2-30 can be applied recursively and naturally leads
to a recursive FF'T algorithm. An iterative version of the Cooley-Tukey algorithm
is described by the following theorem. The interpretation of DFT factorizations as

programs can be found in [28].

Theorem 3 (Iterative Cooley-Tukey Algorithm). Let N = 2". Then, the fol-
lowing matrix factorization describes the iterative Cooley-Tukey FFT algorithm.
n—1 ,
Fyn = {H(Iy ® F ® Ipn—i-1) (I ® T;Z_‘Z_l)} Ragn (2-31)
i=0
Proof: This follows by induction using Theorem 2 and properties of the tensor

product in Property 1 (see [28]). O

The following example shows the derivation of the 8-point iterative Cooley-Tukey

algorithm.

Example: The iterative Cooley-Tukey algorithm for the 8-point DF'T, following

Theorem 3, is

=R} (Lo FeL) (LT (I4® F,)Rs (2-32)

40

Fy = (Fh®1)T{ (I, ® Fy)L§ Theorem 2
(F2 X I4)Tf([2 X (F2 X IQ)T24(IQ X FQ)L%)LASL Theorem 2
(F2 ® I4)Tf([2 ® F2 ® IQ)(IQ ® T24)(.[2 ® IQ ® FQ)(IQ ® L%)Li Property 1.11
(F2 X I4)Tf([2 X F2 X .[2)(_[2 X T24)(I4 X FQ)Rg Property 1.13
= (BT} (Lo e L) (IheTy)(Iy® Fy) R Property 11

O

Note that the theorem can be extended to a multi-radix factorization, where N is

factored into V;_1 X -+ - X Ny (see [28]).

An FFT factorization can be interpreted as a dataflow diagram (sometimes called
a signal flow graph) which depicts the computation as a graph showing the arithmetic
operations and their dependencies. Given an FFT factorization, we can construct the

corresponding FFT dataflow.
a L=a+TWh
Figure 2.2 Basic butterfly operation

An FFT factorization typically consists of n stages of the form (I, ® F, ® I,)T,
where T is a twiddle factor matrix. The dataflow diagram can be drawn where each
column corresponds to a stage in the factorization. Figure 2.3 shows the dataflow dia-
gram for the 8-point Cooley-Tukey algorithm described by by Equation 2-32 (see [1]).
Note that the dataflow diagram is read from left to right, whereas the FFT factor-

ization is computed from right to left.

Since the twiddle factor matrix is a diagonal matrix, it is translated into the vector
product of the input vector to each stage and the vector storing the diagonal elements

of the matrix. In the dataflow, the operation is represented by placing the twiddle

41

R, LOFT, LOF®LT, (Fy®)T,

Figure 2.3 Dataflow diagram of the 8-point Cooley-Tukey algorithm

factors over an edge in the graph. When data traverses the edge it is multiplied by

the corresponding twiddle factor.

The results from a column of twiddle factor multiplications become the inputs
to the operation (I, ® F, ® I,), which consists of pg copies of Fj, and is translated
into pq bufferfly operations which add and subtract the inputs (addition is depicted
by a node in the graph). A butterfly operation, F, combined with twiddle factor

multiplication, is shown in Figure 2.2.

If after each stage the temporary results are stored in memory, then the inputs
to a bufferfly operation can be indicated by a pair of addresses. The corresponding
addresses for the four butterfly operations corresponding to the factor (I, ® F; ® I5)

can be computed as follows.

(LeFRhohlee e = e;@khe e = (Lo F® L))

42

0
2
]
X +
i
Wl]

X7 7

Figure 2.4 Dataflow diagram of the 8-point Cooley-Tukey algorithm in parallel
form

The two addresses of the inputs to a butterfly operation are obtained by setting 7 = 0
and j = 1 respectively; i.e. the two addresses are equal to 47 + k and 47 + k + 2.
Counting (i, j, k) lexicographically while computing 4i + 2k + j, we generate the

sequence of addresses needed by the butterfly operations.

(¢,7,k) - (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
a: 0 2 1 3 4 6 5 7
The dataflow in Figure 2.3 groups the butterfly operations corresponding to (F» ®
I,) so that they can be interpreted as a butterfly operation on a vector of size p. Using
the Commutation Theorem (Theorem 1), (F,®1,) = LIQJI’(IP®F2)L§”, and the compu-
tation can be reorganized into a parallel form with a sequence of butterfly operations
whose inputs are accessed at stride. The permutation Lgp specifies the butterfly ad-
dresses. Figure 2.4 shows the dataflow of the 8-point Cooley-Tukey algorithm when

grouping all operations in the parallel form. The columns between stages represent

43

i

Figure 2.5 Dataflow diagram of the 8-point Cooley-Tukey algorithm in parallel
form and combining permutations between stages

memory where the intermediate results are stored, and each butterfly operation ex-
plicitly refers to a pair of addresses in memory. Combining the permutations between

stages, we obtain another variation of the dataflow of the Cooley-Tukey algorithm as

shown in Figure 2.5.

In the remainder of this thesis we consider FFT algorithms in the parallel form

with explicit addressing between stages.

Definition 14 (Parallel In-Place FFT).
n—1
{H P (I ® F2)Pz} R
i=0
where P;, fori=0,...,n—1 and R are tensor permutations. Since each computation
(Iyn-1 ® Fy) is conjugated by a permutation, it can be done in-place. This means that

the input and output addresses for each butterfly operation are the same.

44
2.2.2 Pease Algorithm

In this section we review an FFT algorithm developed by M. C. Pease [33] that
is in the parallel form (Definition 14). Pease originally presented his algorithm as
one well suited for parallel processing. Moreover, he combined the permutations
between the stages and observed that each permutation as identical. Conseqently
his algorithm is sometimes called a constant geometry algorithm. Since we want an

in-place algorithm we present Pease’s original algorithm and a modified version.

Theorem 4 (Pease Algorithm). Let N = 2". Then,
n—1
Forn = {H Lgn (IQn—l X FQ)Tn_Z} RQn, (2'33)
i=0
n—1
Fon = {H ng—i—1 (I2n—1 03¢ FQ)Tn—ing‘l} RQ"’ (2-34)
i=0

Tn—i — LgZ—i—l (Izw X T221j—_zl—1)L§:z+1 (2-35)

Proof: Both factorizations in this theorem can be derived from the iterative
Cooley-Tukey factorization (Theorem 3) using the Commutation theorem (Theorem 1)

and properties of stride permutations. (see [28].) O

Both factorizations (Equation 2-33 and 2-34) have the same twiddle factors
described by Equation 2-35. Using twiddle factor properties (Section 2.1.5) and tensor
product product properties (Section 2.1.1), we can write the twiddle factors 7,,_; as

a direct sum.

Let r =2""""! s =2/ and N = 2rs = 2". Then,

T,, = La . (Iy @ T2) L2 = LS (I, @ T)L,

n—1

45

and

T, e eexe = L (,T")L3% @e ® e
= LP(LoL e @e; e,
= LT ®e’xe")
= wi(L"ey e ®e))

_ a-c(T s 2
= Wy (ea ® eb ® ec)
r—1 s—1 1

T,, = P Puws. wherer=2"""1 s=2"(2-36)

a=0 =0 c=0

The following example illustrates the derivation of both forms of the Pease algorithm.

shown in the following example.

Example: By the Theorem 4, the Pease algorithm of 16-point DF'T is described

by
F16 — L%6 (Ig ® FQ)T4L;6 . Li6(18 ® FQ)TgLi6
LéG(Ig ® FQ)T2L§6 . (Ig ® FQ)T1R16 (2-37)
F16 - L%6 (Ig & FQ)T4L2 . L%6(Ig & FQ)T3L§ .
Li¥(Iy ® Fy)T,LS - Li¥(Is ® Fy)T) Ry (2-38)
where

T, = Iy :diag(l,l,1,1,1,1,1,1,1,1,1 1,1,1,1,1)

T, = L¥(Li®Ty)L @@@w

a=0 b=0 c=0
= diag(1,1,1,1,1,1,1,1,1,w,, 1,w,, 1,w,, 1, w,)

46

3 1 1
Iy = L¥(LeT)L’ = DD Pw

a=0 b=0 c=0
= diag(1,1,1,1,1,wg, 1, wg, 1,ws, 1, w3, 1, ws, 1, w3)

7 1
T, = LPTLY = PP uwse

a=0 c¢=0
= diag(1,1,1, w4, 1,wis, 1, wis, 1w, 1, wis, 1, w8, 1, wl)
Both Equation 2-37 and 2-38 can be derived from the iterative Cooley-Tukey as

follows.

Fo = (BROKT (LE L)(LoT)):

(IQ X F2 X IQ)(IQ (%9 T24) . (I4 (%9 Fg) . Rg (Theorem 3)
= Llﬁ(I8 ® F) LT . LI(I, @ I, ® Fy) L% (I, ® TS)-
(IQ X 14 (59 FQ)L%G(LL (%9 T24) . (Ig (59 Fg) : R16 (Property 104)
— L16(Ig ® F2)L16T16 Llﬁ(Ig ® FQ)LA{(;(IQ ® Tf)
L16(Ig & FQ)L16(I4 ® T4) (Ig ® FQ) R16 (Property 113)
= LIy ® Fy)T,LL - LI (I ® F,)T,LL°-
LIy @ BT, LY - (I Fy)T, - Rig
where
T1 -]g
T,L8 = LS(L®TY <T,=LP1,®THLLYE
T, = LS(L®TY) Ty =L, TLIS
T,LIS = LIT)S & Ty = LISTI LS

This is the same as Equation 2-37. The dataflow for the conjugate form of the Pease

algorithm is shown in Figure 2.6.
Combining the permutation between stages, we obtain Equation 2-38.

Fig = L(Ig® Fy)T, - LEL*(Is ® Fy)Ty - LI L (Is ® F)T, - LI (I ® F3)T, - Ry
= L3 @)T, - LI @ Fy)Ty - L (Is @ Fy)T, - LI (Is @ Fy) - Ryg

Figure 2.7 shows the dataflow diagram of the Pease algorithm for 16-point DF'T when

the permutation between stages are combined. O

47

-
-

% [0] 0] 0] 0] 0] %,
| 1} 1 I} 1 1] — 1
Xsim_ L G!I_ L t-:l_] N LX1
A) N W e B 5 El 2 Ll — B — 2| %
x| 3| m“_ 3 o:n“._ 3 c-:n“_ <] =N 3| %
B4t T4 L 4] — 4] —] 4]
oD o Wb BT PR N B\
v [Ml NI IRy 0% N 5 P e 5 =3 5| %
x:? 1 — ? 1 — ? 1 — ? — ?X
| |- | |- | / [| [~ |
xul mu_ 7 m“% T mi'_ T E T %
n |8 ——=—g] L H L B —] 2| 2,
il] .]) B 2]
oo E N o) “% oY D 9 % 9| e
% [1I0——=—10 L 10 L= 10] — 10| g
1 o — + — 4 | |
x13£'52'_ ﬂ m% H r:.:n_ ﬂ é Hxn
© 12—z 1% 12 L= 12 % 12|
] 1] — + — o | -
e e e E e e P S E| AN 2 AN ey | P
%7 {114 L] 14 L] 14 — 14] =0,
1 1} 1 + 1 o — 2 1
e e e s e I —— 15| X
W=

Figure 2.6 Dataflow diagram of the 16-point conjugate Pease algorithm

2.3 Multidimensional DFT

In this section we define the multidimensional DFT and review common algo-
rithms for computing the multidimensional DFT. We also show by an example how
to relate the computation of the multidimensional DFT to the computation of the
one-dimensional DFT. This leads into our discussion of the dimensionless FF'T in the

next section.

Definition 15 (Multidimensional DFT). Let X(ay,...,a;) be a function of t
variables, where 0 < a; < N;. The t-dimensional (N7 X --- x Ny)-point DFT of X is
X(bl, cee bt) = Z e%albl e e%atth(al, . at)

0<a;<n;
The multidimensional DFT can be interpreted as a matrix-vector product. Let

x and x be the vectors of size N obtained by ordering the elements of X and X

[ElG[SE]Ele[=][=]a]w]s[w]w]-]=]

i Y — 1 — 10— 1 —
xsT el e el el
A] — 1 — 10— 10—
xu? am? A a? o' [
% |4 L 1 — 11— 1 —
— T
w5 '’ C-J':'X ' WX
e — 1 — 10— 1—
o X : X
e |7 | Ly s i (g s
o] — 1— 10— 11—
Xg? e’ m>.< ' m+>.<
% 10—l 1— 10— 11—
— o B4 ‘ DL
w3 7] ot o) |
12— M— il — M—
g X u X
i : i :
7 (1AL] 1 — 1 1
o m? [y at 7
sl g - - - Lol
m=m|ﬁ

Figure 2.7 Dataflow diagram of the 16-point Pease algorithm

lexicographically. Then, x = (Fy, ® - -

Fourier matrix defined in Definition 13.

Example:

0<a; <4and0 <ay <4. Then, the two-dimensional DFT of X is

b].) b?

PP

a1=0 as=0

27rz albl

ia2b2X(a17 a?)

—
N

48

® Fy,)x, where Fy, is the N;-point discrete

Let X (aq, as) be a function of 2 variables denoted by a; and as, where

Let X and X be two 4 x 4 matrices storing elements of X and X respectively.

Then,

b e e

49

A~ ~

X(0,0) X(0,1) X(0,2) X(0,3)
X =)?(1)0))?(171) 3(1’2))?(173)
X(2,00 X(2,1) X(2,2) X(2,3)
X(3,0) X(3,1) X(3,2) X(3,3)

Let x and x be the vectors of size 16 obtained by ordering the elements of X and

X lexicographically; that is

xooy [o0
X(0.1) x(0,1)
X(0,2) X(0,2)
X(0,3) X(0,3)
X(1,0) X(1,0)
X(1,1) X(1,1)
X(1,2) X(1,2)

| x@,3) | X(1,3)
T x20 [0 *T| X0
X(2,1) X(2,1)
X(2,2) X(2,2)
wr ||
X(3.1) ﬁ(g’g)
X(3.2) X3 1)
X(0,3) X(3.2)
X(3,3)

Then, x = (Fy ® Fy)x, where F} is 4-point discrete Fourier matrix.
O

We can compute the 2-dimensional (N7 x Ny)-point DFT in many different ways.
The common algorithm is called the “row-column” algorithm which can be described
by the following factorization.

X Fy, X Fy,

p'e

(FNI ® FNO)X = (FNl ® INO)(INI ® FNO)X

The “row-column” algorithm applies the Ny-point, Fl,, to the rows of X resulting in

X = X Fy,. Then, it performs N;-point FFT on the column of X. The factorization

20

(Fn, ® In,x)(In, ® F,) can also be interpreted as the row-column algorithm. Using

the Commutation Theorem (Theorem 1),
X = L™ (Ing ® Fvy) Ly ™ (I, ® Fivg)x (2-39)

This factorization can be interpreted as the row-column algorithm with an explicit
transposition (corner turning), when the stride permutations are performed as run-

time permutations of the data.

The following example illustrate the “row-column” algorithm for (4 x 4)-point

DFT.

Example: Consider again (4 x 4)-point FFT. Let

X0 X(Z,O)
1 x1 L X(Z,].) .
X = s | 7 where x; = X(i,2) , 0<i< 4,
X3 X(Z,3)

is the 7" row of X. Then, (I, ® F)x is the computation F on the rows of X; i.e.

(F4 X F4)X = (F4 X 14)(14 X F4)X

_ 0 F4 0 0 X1 _ F4X1
= WOy o p oo |x | FON | b,

0 0 0 F4 X3 F4X3
= (F4®I4)}_(

The vector operator (F; ® I4)X is the computation of Fy on the columns of X. Fol-

lowing the commutation theorem (Property 10), we have
(F4 & 14))_(= L}l6(I4 & F4)Li6}_€

That is L}% permutes X in stride 4 resulting that

X0 X(O,Z)
16— X _ X(1,4) :
= —— _ <
Li°x % | where X;)5(2,2) , 0<1 <4,
7_(3 X(37Z)

o1

That is X; stores the i*" column of X. Therefore,

Xo F4)_(0
16 X e | Faxa
L4 (I4 ® F4) - 5(2 - L4 F4i2
X3 F4f(3
Note that the permutation L1° permutes the result back to the original order. O

The row-column algorithm illustrated for a two-dimensional DFT can easily be

extended to an arbitrary multidimensional DFT.

Theorem 5 (Multidimensional FFT).

t

Fy,®--®Fy, = H(IN(i—l) ® Fn, ® In/n())

=1

t
= H L%i (IN/Ni ® FNi)

i—1
Proof: This follows by induction using properties of the tensor product in Prop-

erty 1 (see [28]). O

If instead we replace Fy, in Fiy, ® ---® Fl, by the iterative Cooley-Tukey factor-
ization and use properties of the tensor product to manipulate the resulting equation,
it is easy to derive a factorization similar to the iterative Cooley-Tukey factorization
for multidimensional DFTs. The following example illustrates this factorization for
Fy ® Fy.

Example: Applying the iterative Cooley-Tukey factorization in Equation 2-30

to Fy in Fy x Fy, we have

FA@F, = (Fie1L)(1i® Fy)
= ((F® L)T}(I>® F5)Ry ® I)

(It @ [(Fy ® L) Ty (I, ® F3) Ry

52
Applying tensor product properties (Property 1), we obtain

FieF = (KoL) (TyL) (Lo F,® L) (R I,

(Is ® F») (14 ® T24)(I4 ® F,® 1) (Iy ® Ry)

The permutation Ry ® I, occuring in the middle of this factorization can be moved

to the front since (A® I)(I ® B) = (I ® B)(A® I). The resulting factorization

(Fe L) (T @Ly) - (I, ® F @ 1y) -

(L@ FR)1,2T)) (Lo Fel) - (R ® R,

resembles the factorization in the 16-point iterative Cooley-Tukey algorithm exept

that the twiddle factor matrices are different.

Similar to how the 1-D Pease algorithm was derived from the iterative Cooley-

Tukey factorization, we obtain a Pease algorithm for the 2-D DFT F, ® F).

F,oF, = LY(Ig® F)T,L - Li°(Is ® Fy)T,Ly° -

L (Is @ Fo)T,Ly° - (Is ® F»)T, - (Ry @ Ry)

where

T, = LTy ® L)Ly
T, = I
T, = LY(L®Ty)L
T, = Lg

Except for the twiddle factor matrices and the initial permutation (R4 ® Ry) the
factorization is exactly the same as the Pease algorithm for one-dimensional DFT

shown in Theorem 4. O

23

The same process can be extended to the t-dimensional DFT, Fy, ® -+ ® Fy,.

This leads us to a class of algorithms called “dimensionless FFT” by which any mul-

tidimensional DF'T of a fixed size can be computed. The following section describes

the dimensionless FFT.

2.4 Dimensionless FFT

There exist a class of FF'T algorithms called “dimensionless” FFTs which can be

used to compute an arbitrary multidimensional DFT of a fixed size [16]. The only

change in the algorithm that is necessary when changing dimension is a relabeling of

the input and output points and a modification of the values of the twiddle factors.

-

—

%

=1 i E S R R E R E B RN)
2

% [0] 0] 0] 0]
|]] i]] -
o) 1] (5] ey Ty w 1]) A 1] N
% a 1 — 2 1 — a 1 — 7 —
o [3elAy T3]/ el STl ABIAL AT 23
w414 L 4] — 4] —]
o] [-z N mﬂX_ 5 el 5] é
%5 |6 —L—— 5| 11— i 1 — & —
1 et — i — i —
s = e AN E 7 AT 7 é
ulal2—s] L 2] L B —
1 et — " — " —
i == S EIVE A K oy D 9 é
x5 (1010 L] 10 H— 10] —
] 1] 1 + 1 1} — -
e = PN AN, ﬁ A 11 K
X [l 2———12 L 12 3 12) —
1 1] 1 ! 1 1} — -

e 13 @ e fil % 13 i D r K
s (1414 L 14 L 1] —
] 1] 1 + 1 1} — +
3 S S 15— s
=0
Figure 2.8 Dataflow diagram of the Pease algorithm for computing 2-D (4 x 4)-

point DFT

o4

To illustrate the idea of a dimensionless FF'T, let us consider the two-dimensional
(4 x 4)-point DFT described by Fy ® Fy. In Section 2.2.2, we introduce the Pease
algorithm for one-dimensional 2"-point DFT. Figure 2.6 shows the dataflow of the
one-dimensional 16-point DFT (Fjg) using the Pease algorithm. The two-dimensional
(4 x 4)-point DFT can be computed using the same dataflow with the exception that
(1) the input data is provided in a different order and (2) the twiddle factors are
modified. Figure 2.8 shows the dataflow of the Pease alogorithm when the order of

input and the twiddle factors are modified for computing the (4 x 4)-point DFT.

The one-dimensional 16-point Pease algorithm is described by the matrix factor-

ization

F16 — L%6 (Ig ® FQ)T4L%6 . L}f([g ® FQ)TgL}f .

L (Is @ Fy)ToLg® - (Is @ Fy)T) - Ryg (2-40)
where

T, = ILg=diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

T, = LI, ®Ty))L¢ =diag(1,1,1,1,1,1,1,1,1,wi, 1, wis, 1, wis, 1, wis),

Ty = L%(L@TY)LY =diag(l,1,1,1,1,w?%, 1,w%, 1w, 1w, 1,08, 1,0%),
T, = LETILY =diag(1,1,1,w, 1, w?, 1w, 1, wis, 1w, 1, Wb, 1,w’).

(2-41)

The two-dimensional (4 x 4)-point Pease algorithm can be described by the same
factorization except that the permutation R;¢ and the twiddle factors 17, T5, T3 and T}
are different. The following example illustrate the derviation of the two-dimensional

(4 x 4)-point Pease algorithm.

95

Example:

F4 X F4 = (F2 X IQ)T4(IQ X FQ)R4] [(FQ X IQ)T24(_[2 X FQ)R4] (Theorem 3)
[

[
((F2 Y .[2) (.[2 ® FQ)] ® 14) (Prop. 1.7
(I4 ® [(Fg &® IQ)T ([2 ® FQ)]) . (R4 (%9 R4) and 18)
= (BeLRL)(TYeL) (I, K IL)-
(I4 X Fg X _[2)(_[4 & T24) . (I4 (024 _[2 X FQ) . (R4 X R4) (Prop. 111)
(F @ LI)(Ty @ Iy) - (I, @ F> ® Iy)-
(I4 ® F2 ® .[2)(.[4 &® T24) . (Ig &® FQ) . (R4 X R4) (Prop. 113)
= LIy @ R)LIS(TE @ I) - LS (I, ® I, ® Fy)L1°-
L16(12 X 14 (%9 FQ)L16(I4 (%9 T4) (Ig (% Fg) . (R4 % R4) (PI’Op. 104)
— LlG(Ig ® FQ)T L16 LlG(Ig ® FQ)T L16
LlG(Ig ® FQ) L16 (Ig &® FQ)T (R4 X R4) (PI‘Op. 1.13)

where

Tile=1=1T = Ig=diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
DL =LS(LoT)) =T, = LS(LeTHLE
= diag(1,1,1,1,1,1,1,1, 1, wjs, 1, wis, 1, wig, 1, wis),
L =L =T = Ig=diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
LLS =L@ L) =T, = LT ® L)LY = Ly (L ®Ty) Ly
= diag(1,1,1,1,1,1,1,1,1,wis, 1, wis, 1, wie, 1, wis),

(2-42)

Notice that we achieve the same form of matrix factorization as those for Fis. The
only differences are that R is replaced by R4 ® R4 and the twiddle factor matrices

in Equation 2-41 are replaced by the above twiddle factor matrices. U

The dimensionless FF'T generalizes this computation to an arbitrary multidimen-

sional DFT.

Theorem 6 (Dimensionless FFT Algorithm). Let Fy denote an arbitrary mul-

tidimensional DFT of size N = 2"™. There exist a fized set of permutations P;,

26

t = 1,...,n, such that for any factorization N = Ny x ... x N, there exist an

initial permutation Py, and diagonal matrices T;, i = 1,...,n such that

Fn = Fny®---® Fy,

n—1
- {H Pl(Ipn1 ® FQ)Tt_iPn_i} P. (2-43)
1=0

The “internal permutation” P;,v = 1,...,n remain fized independent of the dimen-
ston, and consequently define a dimensionless FFT. Only the initial permutation Py

and the twiddle factors depend on the dimension t.

Proof: The existence of a dimensionless FFT follows from a calculation similar
to the one in the beginning of this section. A complete description, including proofs,

of these algorithms can be found in [16]. O

There are many possible dimensionless FF'T algorithms. The one-dimensional

Cooley-Tukey algorithm can be extended so that it becomes dimensionless.

Theorem 7 (Dimensionless Iterative Cooley-Tukey Algorithm). Let N =
Ny X -+ X Ny = 2", where N, = 2™, 1 < k <t, and n = 2221 ng. Then, the

following factorization describes the dimensionless Cooley-Tukey algorithm.

Fn = Fny®---® Fy,

n—1
_ {H(Iy QRF® [Qn_i_l)Tn_i} B, (2-44)

1=0

where Py and T,,_;, 0 <1 < n, depend on the dimension specified by ny,--- ,n;.

Let k be an index counting from 1 to t and for every value of k, let j be an index

counting from 0 to ny — 1 and let d be a function defined as

k—1
j=1

o7

Then, the index © in Equation 2-44 can be written as
i = d(k)—ng+ 7,

and the twiddle factors T, _; and the intial permutation Py in Equation 2-44 are defined

by

T, = Iy ®T2 1 & Ly-aw (2-46)

Po = Rgnt—l Q@ RQno (2'47)

Proof: This can be proved by substituting the iterative Cooley-Tukey factoriza-
tion (Theorem 3) into the factors of the multidimensional row-column factorization
(Theorem 5) and then applying some simple tensor product manipulations. These

steps are outlined below.

1. Factor Fy, ® ---® Fl, to the general case of the row-column factorization.

t

Fy, @ - Q@ Fn, = H(IQd(k)—nk ® Fonp ® IQn—d(k))
k=1

For example, for t = 3, we have

F‘N1 X FN2 X FN3 = (Fin ® Iony ® Izﬂ:a)(Iin Q Fony ® Iznz)(IQM ® Iomy ® F2n3)
== (Fin ® 12n2+n3)(12n1 ® F2n2 ® Izn3)(_[2n1+n2 ® F2n3)
= (IQd(l)—nl ® Foni ® Izn—d(l))(IQd(Q)—nz ® Fony ® Izn—d(?))

(IQd(S)—ng, ® Fons ® Izn—d(3))

2. Replace Fyny, with the iterative Cooley-Tukey factorization. This results in the
following factorization.

t np—1 .
Fn = H(IQd(k)—nk, & { H (Iyi @ F5 @ Iynj—j—1) (I ® T;::—_j]—1)} Ry, ® Lynaw))

k=1 §=0

28

3. Apply necessary tensor product properties to obtain Equation 2-/4.
O

Following the derivation of the Pease algorithm from the iterative Cooley-Tukey al-

gorithm, we obtain the dimensionless Pease algorithm from the dimensionless Cooley-

Tukey.

Theorem 8 (Dimensionless Pease Algorithm). Let N = Ny x --- x N, = 2",
where N = 2™ 0 < k < t, and n = 2221 ng. Then, the dimensionless Pease
algorithm is described by
n—1
Fy = hng@H®RMLJ£H}&, (2-48)
i=0
where Py is defined in Equation 2-47, andT,,_;, 0 < i < n, depending on the dimension

specification (ny,--- ,ng) is defined as the following.

T, , = Laii(Iy T2 @ Iynawy) Lo, (2-49)

n—i 2

where k 1s an index counting from 1 to t, j is an index counting from 0 to ny — 1,
d(k) is the function defined in Equation 2-45 and i = d(k) — ng + .
Proof: This follows from Theorem 7 in exactly the same way that Theorem 4

was proved.]

Using definitions and properties in Section 2.1.5, we obtain the twiddle factor
matrices of the Pease algorithm in a simple form paramertized by the dimension

specfication.

29

Let p = 27— g = 2n=dk) p = 20 = 24k)=m+J and 2" = 2pgr. Then, applying

basis vector to both sides of Equation 2-49, we have

L3 i (Iy @ TR 1 ® Lynmaio) Ly (€} @ of ® €] @ €)
=L (TP L) (el ®el el @ el
= Ly-ia(ef @ TP (e @ €h) @ &)
=wilLy (e, ®@el®el ®ef)

_ad(ap q T 2
= wy'(e) ® ey ®e, ®ey)

Thoi = @ @ @ wg;l; p=2m Il g =9on=dk) and r =2 (2-50)

Tg [o] - [0] [0] (0] [o] Zo
o f—1 1 7] 7] iz
Ty 117] ﬁ B 5] 22
o -] l,!,\' a) 5
4 |4 4 4 4 4 4
ool [W DAVARWAS 5 s
i e i 2

6 [S— —9] SN ’ B 6] Lo
L7 [—— —7] ’\)‘4‘_”\)‘ 7] L7
75 [s—] M BN ok
L9 [9}—— ——o] 9] AHA 9] 9] Zo
L1000 —— 19 19 10 1 10
1111 { 11 11 ‘ 11 1] T11
T19/12} 1 12| 12| 12| 2] T12
T1ge— 3 E w I | 213
L14— 14 14 14 14 14
T15|15) { 15| 15| 15| 15| 15

Figure 2.9 Dataflow diagram of the dimensionless Pease algorithm of size 16 points

Example: To illustrate the dimensionless FFT, let us consider N = 16 = 2*.
A Fourier transform on 16 points can have dimensions equal to 1 (Fig), 2 (F ® Fg,
Fi@F;,and F3QF),3 (B, F, ;@ F; @ Fy, and F, @ F, ® Fy), or 4 (F», ®
F, ® F, ® F,). According to the dimensionless FET theorem, all of these transforms

can be computed using the same algorithm with adaptive twiddle factors and initial

60

permutation. Let us choose the dimensionless Pease algorithm (Theorem 8). Then,

the following factorization describes the dimensionless Pease algorithm of size 16.

LY (Is ® F)TyLYS - LI (Is ® Fy)T3LLE - LY (Is ® Fy)ToLYS - (Is ® Fy)Ty - Py

In order to compute different dimensions of 16-point Fourier transform using the
Pease algorithm, we need to change only the initial permutation, F,, and the twiddle

factors, 11, T, T3 and T}.

In Section 2.2 and the previous example, we have shown that there exist the
twiddle factors for computing Fig and Fy ® F} (see Equation 2-41 and 2-42). Here we
demonstrate how the twiddle factors of a specific dimension can be computed from

Theorem 8.

For three-dimensional (2 x 4 x 2)-point DFT, where

ny = 17”2:2777'3:17

d(l) = nlzl,d(2)2n1+n2:3, and d(3) =n3=mn; +ng+ng =4,
we have

k=1,j=0i=0,=>T, = L (L OTYHL = I

— diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

1 1 1 1
k=2j=0i=1=T = LLT/ L)L =P P P«
a=0 b=0 c¢=0 d=0
= diag(1,1,1,1,1,1,1,1,1,w,,1,w,, 1,w,, 1,w,)
k=2j=1i=2=T, = L{(L,@T}® L)L’ = I
= diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
k=3,j=0,i=3,=T = LSL®T})L®=1I;

— diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

61

Table 2.1 Initial permutation and twiddle factors for computing all possible dimen-
sional DFT of size 16 points using the dimensionless Pease algorithm

= Ryg
1-D T1 diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Fig T, = diag(1,1,1,1,1,1,1,1, 17‘*’167 17“’167 1,w16, 1,w16)
T3 = diag(1,1,1,1, 1,w16, 1 ww, 1 w16, 1 w16, 1,w16, 1, w%)
T, = diag(1, 1, 1,w4, 1, wi, 1, wig, 1, wig, 1, wig, 1,wls, 1,wls)
Py =Ry ® Rg
2-D T, = diag(L,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
F, ® Fy T, = diag(1,1,1,1,1,1,1,1 17‘*’167 17“’167 1,w16, 1,w16)
Ts = diag(1,1,1,1,1,w¥, 1, wis, 1, wig, 1, wig, 1, ¥, 1,w%)
T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
Py=R4s® Ry
2-D T, = diag(L,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
Fy® F, T, =diag(1,1,1,1,1,1,1,1, 1, wig, 1, wig, 1, wis, 1, wig)
Ty = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
T, =diag(1,1,1,1,1,1,1,1, 1, wig, 1, wig, 1, wis, 1, wig)
Py =Rs® Ry
2-D T, = diag(L,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
Fy® F T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
T5 = diag(1,1,1,1,1,1,1,1, 1, wig, 17“"1167 l,w‘fﬁ, 1,w16)
T, =diag(1,1,1,1, 1, w?, 1, wig, 1, wis, 1,wis, 1, wis, 1, wb)
Py=Ry®Ra® Ry
3-D T, = diag(L,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
F,®@ Fr, ® Fy Ty = diag(L 1,1,1,1,1,1,1, 17w1167 17w1167 17w1167 17w116)
Ty = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1)
Ty = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
Po=Ry®Ri® R
3-D T =diag(L,1,1,1,1,1,L,1,1,1,1,1,1,1,1,1)
ReoFoF |T,=dagl1,1,1,11,11,11111111)
Ts = diag(1, 1, 1,1,1,1,1, 1, L, wlg, 1, wl, L, wig, 1, wlg)
Ty = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1)
Py=Ri®R® Ry
3-D T =diag(l,1,1,1,1,1,L,1,1,1,1,1,1,1,1,1)
FReoFReoF |T,=dagl1,1,1,1,1,11,11111111)
T, = diag(L L L LLLLLLLLLLLLT)
Ty = diag(1,1,1,1,1,1,1, 1,1, wlg, 1, wlg, L, wlg, 1,)
P0:R2®R ® Ro ® Ry = I
4-D T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
R F,Q F, fOI"L 1,2,3,4

62

Applying the theorem to all combinations of 2! = N; x --- x N;, we obtain the
twiddle factors for computing the corresponding multidimensional DFT using the
dimensionless Pease algorithm. Table 2.1 summarizes all configurations of the initial
permutation , Py, and the twiddle factors, 17, T5, T3 and T}, for computing all possible

multidimensional DF'T of size 16 points.

Figure 2.9 shows the dataflow of the 16-point dimensionless Pease FF'T, where
the input vector and the twiddle factors are configured according to the specified

dimension. O

2.5 FFT Dataflow

This section introduces the space of dimensionless FFT algorithms that we consid-
ered for implementation on our processor. We remark that it can be shown [22] that
the space of algorithms that we consider are the only possible algorithms compatible

with our framework.

The dimensionless FFT computes any multidimensional DF'T of a fixed size using
the same dataflow. The only modifications when changing the dimension are the order
of the input data and the twiddle factors. Following Theorem 6, a dimensionless FFT
algorithm is specified by three sets of matrices: the internal permutations P;, 1 <
t < n, the initial permutation P, and the twiddle factors T;, 1 < ¢ < n. The internal
permutations are independent of the dimension while the initial permutation P, and
the twiddle factor T; depend on the dimension specification. Assume that the twiddle
factors are generated or pre-stored and that the initial permutation is performed when
the data is loaded. Then, the cost of an FF'T computation is essentially independent of
dimension. In particular, the dataflow is defined solely by the internal permutations,

which are independent of dimension. The internal permutations define what we call

63

an FFT dataflow, and the space of dimensionless FFT algorithms is classified by

determining the set of possible dataflows.

Definition 16 (FFT Dataflow). A dimensionless FFT has a fized set of internal
permutations, P;, i =1,...,n. A set of permutations is called an FFT dataflow [22]
if 1t is possible to find an initial permutation, Py, and a set of twiddle factor matrices,
T;, i =1,--- ,n, such that the resulting factorization in Equation 2-43 computes all

of the possible multidimensional DFTs for a given number of points.

Example: The set of internal permutations P, = L%, 1 < ¢ < 4 defines the
dataflow of the dimensionless Pease algorithms of size 16 points. This is because
following Theorem 8, we can configure the initial permutation P and the twiddle

factors T;, 1 < ¢ < 4, such that the factorization in Equation 2-43 is true for any

multidimensional DF'T of size 16 points. Table 2.1 gathers such configurations.

In general, the permutation P, = L2/, i = 1,--- ,n, defines the FFT dataflow of

the Pease algorithm for computing all multidimensional DFT of size 2" points. [

In this thesis, we consider a class of dimensionless FF'T" algorithms obtained from
the Pease dimensionless FFT by permuting the butterfly operations (the computation
boxes in a FFT dataflow) in the stages of the Pease factorization. The following

example illustrates the mathematical computations that carry out this process.

Example: Let us consider a dimensionless FFT algorithm derived from the

dimensionless Pease algorithm of size 16 points as following.

We permute the 8 copies of F5 in each stage of the Pease algorithm with the

8

stride permutation L, by conjugating the (Is ® F,) with a permutation of the form

(L3.;) ® L), 0 < s(i) < 3; that is the term L)}, (s ® F5)T,_;Ly$_,_, in each stage

64
becomes

L%?H (Is® FQ)T44L§§—¢—1
= Lyl (Lysmaiy ® 1) (Is @ Fy)(Lyay @ L) TyiLyfi-ios
= Lot (L35 @ I2)(Is @ F2) Ty ;(Lgay ® o) Lo

= Pi(Is ®)T Py

where T, is the twiddle factor of the dimensionless Pease algorithm of size 16 point
at stage 4 — 1,
P4—i = (Lgs(i) ® IQ)Lég—i—l, P411i - L%?H(ng_s(i) X IQ)

Ti-i(Lyy @ I2) = (Lyuy @)Ty = Ti_; = (Lyuiy ® L) Ty_i(Losoiy ® I2).
Replacing T),_; from Equation 2-49, we have

T, = (Lgs(n ® Ir)Lgn i1 (I ® T;::—_j—l ® 124—d(k))L;?+l(Lgs—s(i) ® I)

2nk 3

= P4_i(IQi &® Tgnk—j—l ® 124—d(k))P4__1i

Setting s(0) = s(1) = 2, s(2) = 0 and s(3) = 1, we obtains the dimensionless FF'T
2o [ob—F—ob——1—¢ o] 0] o
Ty (1] LT 1] 1L 1L 1] Tt
x - - - x
e TN - of
76 [o N @ |
T7 [7] XX N T 7] 7] 27
T3 [s] B ‘Q‘o’\‘i'y’o'o‘ B B 5| s
Z [o 5] Q’H\‘ B 5] o] Zo

10 10 10 10 10|
T m '\!" m m miltH
e N7 z E el
L1303 £ £ £ 13 213
e B 1 i 14 Z14
Ty sfts—— ——fis—— 1 E 5 Z15

Figure 2.10 Dataflow diagram of an alternative FFT algorithm described by in-
ternal permutations in Equation 2-51

65

Table 2.2 Initial permutation, Py, and twiddle factors for computing 1-D 16-point
DFT (Fig), 2-D (4x4)-point DFT (Fy,®F}) and 3-D (2x2x4)-point DFT (Fo@F2,@F)y)
using an alternative algorithm specified by permutations in Equation 2-51.

= Rys
1D T1 =diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Fig Ty, = diag(1,1,1,1,1,1,1,1, 1, wy, 1, wy, 1, wy, 1, wy)
T53 = diag(1,1,1,ws, 1,1, l,wg,l,ws, 1,w8, 1,w8,1,w8)
T, = diag(1,1,1,ws, 1,wie, 1, wig, 1, wig, 1, wl, 1, wis, 1, wie)
Py=R4® Ry
2D T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Fy® Fy T, = diag(1,1,1,1,1,1,1,1, 1, wi,, 1, wi, 1, wig, 1, wis)
T = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
T, =diag(1,1,1,1,1,1,1,1, 1, wis, 1, wig, 1, wig, 1, wig)
Po=Ry® Ry ® Ry
3D T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
F,@F,®F, | Ty =diag(1,1,1,1,1,1,1,1, 1, wi4, 1,wis, 1, wig, 1, wig)
T = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
T, = diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

algorithm described by

Fie = Py Is® B)TIPP; (Is @ B) TP Py (Is @ Fy) TPy P (Is © Fy) T - Py

(2-51)

where

PlZ(L§®IQ) P2:L%6
Py= (L} ® L)L,* Py= (L§® L)L

Figure 2.10 shows the dataflow of the algorithm. Note that at stage 1, 2, 3, and 4
the algorithm permutes the computation boxes of the Pease algorithm by L3, Iy, L§
and L§ respectively. The initial permutations and the twiddle factors for computing
1-D Fig, 2-D F, ® F, and 3-D F, ® F, ® F, using dimensionless FF'T described by

Equation 2-51 are shown in Table 2.2. O

66

The following theorem presents a class of dimensionless FFT algorithms that are
derived from the Pease algorithm simply by relabeling the butterfly operations in

each stage.

Theorem 9 (Dimensionless Pease Based Algorithms). Let N = Ny x---x Ny =
2", where N, = 2", 0 < k <t, andn = > .= ,. Then, the following factorization

describes a dimensionless FFT algorithm.

.,FN - F2n1®...®F2nt

t
= {H Pl (L1 ® FQ)Tn_iPn_i} P, (2-52)
i=1
where the initial permutation Py is defined in Equation 2-47.

Poii = (Qu-i®L)L3 i, (2-53)

Pl = L134(Q,L ®), (2-54)
where Q,_; is an arbitrary permutation of size 2"t x 2771,

Ty = Poi(ly @ T2 © Lyuea) Py (2-55)

n—i’

The number k is an index counting from 1 to t, j is an index counting from 0 to
ng— 1, dk) =ny+---+ny and i = d(k) —ny + j.

Proof: Substitute (Q,',®15)(Ipn-1 @ F3)(Q,_i® 1) into the dimensionless Pease
factorization (8). Let T) _, denote the twiddle factor occuring in the Pease algorithm.
Then, since that (Qn_; @ I)T) . = T, i(Qn_; ® I3), the theorem is proved. O

We remark [22] that if we assume that the permutations in an FFT dataflow are
tensor permutations, then the only FFT dataflows are those in Theorem 9. In general
the number of FFT dataflows defined in Theorem 9 of size N = 2" is the number of

sequences of permutations Py, ..., P,. Since there are (N/2)! choices for @);, there are

67

(N/2)!™ possible dataflows corresponding to (N/2)!" dimensionless FFT algorithms.
For our design we only consider FF'T dataflows built using tensor permutations. Since
there are (n — 1)! of tensor permutation matrices of size 2"~! x 2"~! the number of
such dataflows is equal to [(n — 1)!]". For example, with the restriction that the
permutations are tensor permutation the number of dimensionless FF'T algorithms

for n = 4 is equal to (3!)* = 1296.

The goal of this thesis is to find the algorithm from this space of dimensionless
FFTs that has the optimal performance. In the following chapter we define the
architecture model we will consider and provide a mechanism to map any of the
dimensionless FF'T algorithms discussed in this chapter to the architecture. We then
provide a performance model for our architecture, and finally, using the mapping
procedure and performance model, we systematically search for the optimal design

by searching for the algorithm that has the best performance.

68

3.0 FFT PROCESSOR AND MAPPING
METHODOLOGY

In the previous chapter, we described the class of dimensionless FFT algorithms.
Each algorithm in this class has a fixed dataflow which is independent of the dimension
of the FF'T that is computed. However, each algorithm in the space of dimensionless
FFTs has a different dataflow and consequently may lead to different performance. In
addition we presented the mathematical tools needed to manipulate and implement

these algorithms.

In this chapter we present an architecture model and derive a mapping from the
space of algorithms in the previous chapter to this architecture. Using the map-
ping we can systematically explore design tradeoffs and can search for the optimal

implementation of the FF'T for the given architecture.

The main point of this thesis is to explore techniques for systematically imple-
menting and optimizing special-purpose hardware designed to accelerate a collection
of algorithms. The chosen architectural model is not so important. What is impor-
tant is that the model be flexible enough that different mathematical expressions for
the FFT can be utilized to explore performance tradeoffs. Details of the hardware
implementation should be delayed so that algorithmic information can be included
in the design process and so that information obtained from high-level performance

modeling can influence the final design.

For this study we have chosen a distributed memory processor. This choice high-
lights the importance of dataflow and benefits from the mathematical exploration of
the FF'T presented in the previous chapter. The process of mapping an FFT formula

to the architecture amounts to allocating a sequence of tasks (butterfly operations)

69

to the processing elements. The permutations in the formula control the flow of data
through the processor. Different sequences of permutations correspond to different
memory access patterns and consequently lead to different performance. Studying the
dataflow patterns is enough to assist in the choice of the optimal algorithm (see the
following chapter); however, a detailed implementation requires the development of
hardware to compute addresses needed to access data and to compute twiddle factors
needed for the butterfly operations. In this chapter we describe, in detail, how to
compute addresses and twiddle factors from a given formula. The derivation of the

actual hardware is presented in Chapter 5.

This chapter is organized as follows. The architecture model is introduced in
Section 3.1. The architecture consists of a collection of processors and memories
and an interconnection network. Section 3.2 describes the mapping from an FFT
formula onto the chosen architecture. The mapping process consists of loading the
data using the labeling corresponding to the initial permutation in the formula and
then mapping the sequence of butterfly operations contained in the remaining stages
of the formula Section 3.2.1 describes the loading process. Section 3.2.2 defines an
FFT task and explains how an FFT formula is translated into a sequence of tasks.
The FFT tasks are deterministically scheduled to processor elements. Section 3.2.3
describes the scheduling process. This schedule is incorporated into an address gen-
erating unit which is described in Section 3.2.4. Finally, Section 3.2.5 shows how
to obtain the sequence of twiddle factors needed to correctly compute the scheduled
butterfly operations. Twiddle factor computation is performed in a twiddle factor
unit which is incorporated into the computation unit where butterfly operations are
performed. The twiddle factor computation must take into account the dimension,

which is determined from runtime parameters.

70

3.1 Distributed Memory Architecture

Although there are many possible architectures, we will choose only one architec-
ture to demonstrate or design methodology. It is important to note that we do not
claim that the chosen architecture will produce the best FFT processor. We focus on

finding the design that will produce the best performance on the chosen architecture.

‘_'l Interconection Network

ntel CUAGL (CUAG . CUAG (CUAG
ace
M M M M

| | | I

Figure 3.1 The architecture

The proposed architecture shown in Figure 3.1 is a simple distributed-memory ar-
chitecture containing 3 main units: interface, interconnection network, and processor

elements (PEs.)

The interface unit is used as a means to transfer run-time parameters and data
to/from the system. The reconfigurable interconnection network provides the com-
munication between the PEs. Each PE contains three main units: memory (M), a
computation unit (CU), and an address generator (AG). They are deterministically
coupled; i.e. each PE has its own “schedule” that is deterministically mapped from

the algorithms.

At this level of the design process, we want an architecture framework on which
the algorithm can be executed and their performance evaluated, yet we want to

leave open the ability to investigate different designs. Moreover, we want to be able

71

to parameterize the designs by the choice of algorithm. The following subsections

describes each part of architecture.

3.1.1 Interconnection Network

Abstractly, the interconnection networks job is to transfer data between PEs.
Although there are many possible implementation of the interconnection network,
we do not need to specify it in this level of design. However, the interconnection
network must be able to (1) distribute the runtime parameters to PEs and input data

to memory module, and (2) transfer data between two PEs.

The parameters and the input data are sent to PEs from the interface unit. There-
fore, the interconnection network must be able to broadcast these data to the PEs.
At this point, the transferring of data between any PEs is assumed to be possible.
However, only necessary network configurations will be implemented. Later we will
show that the network configurations for the optimal algorithm are simple. The only
protocol at this point is that the sender is the one that requests for transferring the

data. This requires that the target of the data are specified.

3.1.2 Processor Element and Memory

Abstractly, a processor element’s job is to compute a sequence of pre-scheduled
tasks. This requires (1) a hardwired scheduler, (2) a computation unit that can
compute the necessary tasks and (3) a controller for handling data transfer. We
divide a processor element into two units called the address generator (AG) and the

computation unit (CU).

A computation unit computes an operation by assuming that its input data are

scheduled. For computing the FFT, we choose the two-point butterfly operation

72

and the twiddle factor computation as the primitive operation of the computation
unit. The inputs of the operation are two input data and a fraction for computing
the twiddle factor. The twiddle fractions depend on the FFT algorithm and the
dimension of the FF'T, and can be computed using hardwired control based on the

algorithm and runtime parameters specifying the dimension.

Although the input data change, their addresses are fixed given a dataflow. The
address generator job is to (1) generate the addresses, (2) get the input data, and
(3) store back the result. The generation of addresses are local and deterministically
coupled with other PEs; i.e. although the addresses generated in each PE follows the
same dataflow, they are generated independently. The retrieving and storing of data

involve either local or remote memory accesses.

Following the abstract, we propose a PE architecture shown in Figure 3.2. As
explained earlier, the CU contains a butterfly operation and the twiddle fraction gen-
erator which generate the sequence of twiddle fractions parameterized during runtime
by dimension and during compile time by the choice of FFT algorithm. The AG in-
cludes buffers, a data control unit, and the address generation unit. The address
generation unit generates a sequence of tasks described in term of local addresses,
memory identification number (MID), and processor identification number (PID).
The data control unit uses these parameters for scheduling the data to/from the

memory and to/from the CU.

In this architecture, schedules are viewed by two perspectives. From the perspec-
tive of a PE, its schedule is the sequence of data from any memory modules provided
in the input buffers. We assume that the data from memory module M; that are

scheduled to PE; are stored in the input buffers in the right order. Therefore, from

73

the perspective of a PE, the schedule is a sequence of “source” MID. The data control

unit use the source MID for sequencing the input data to the butterfly operations.

From the perspective of a memory module, a schedule is a sequence of data going
out (the input data denoted by ‘X’) and coming into (the result denoted by Y) the
memory. The sequence of data going out from the memory is specified by the sequence
of local addresses and “target” PID. The data control unit uses the addresses to read
the data from the memory and uses the target PID to send the data to the PE that
will operate on the data. If the data is local, it is stored in the “local X” FIFO;
otherwise, it is sent to its target PE via the interconnection network. The same
sequence of local addresses and target PID is used again for writing back the result

to the memory.

Since both schedules for PE and for memory follows the same dataflow, we im-
plicitly synchronize the two schedules. The advantage is that we do not have to send

the addresses when accessing remote memory.

74

Fermote
Registers [
X
Butterly
Cheration ‘ |4
Permote T
Registers —
¥ Local X Diata From Remote
FIFD
sonzee 10
> | —» | >
Data To
‘ Remiote
Local 7 e e —
Twiddle fraction FIFD \; i
3 | | Destination
I}
WD Drata o | L
p| Control
Liilress FID
Tuaddle Cererator ———™
Fraction Lddress
Generator —
Il address e
[Chrnension Size] Diata I} Ivl Dlata ot
Famameter Parameter ‘
Ietnory

Figure 3.2 Processor element architecture

75

3.2 Mapping FFT Formulas to the FFT Processor

In the previous chapter, FF'T algorithms were described by mathematical formu-
las. Specifically, an FFT algorithm is specified by three sets of matrices: the initial
permutation Fy, the internal permutations P;, 1 < i < n and the twiddle factor ma-
trices, T;, 1 < i < n. In this section, we explain how an FFT formula is mapped to

the proposed architecture.

The initial permutation is performed during the loading of the input data and con-
sequently is mapped to the I/O interface unit. Since the architecture has distributed
memory components, the interface unit must distribute the data to the appropriate
memory unit. The initial permutation is incorporated into this distribution phase.
After the data has been distributed, the remaining stages in the formula are converted
to a sequence of butterfly tasks that are scheduled to the PEs. Since the schedule
is known at design time, the generation of tasks can be hardwired. Moreover, the
memory units can be configured to forward the data elements needed for the tasks to
the appropriate PEs without having to explicitly receive address tags from the PEs.
The data needed for a particular task may be stored locally or may reside in a remote
memory. If the data is remote, it must be forwarded by the appropriate memory unit

over the interconnection network.

In the following sections we discuss how data is allocated to memories and how
to interpret addresses in terms of a memory identifier and a local offset. Once the
addressing convention is fixed, different permutations can be interpreted as address
sequences with different memory access patterns. We then discuss how the initial
permutation is performed and how the sequence of task addresses are determined by
the internal permutations. In addition to address information a butterfly task must

contain the twiddle factor needed to actually perform the butterfly operation. These

76

twiddle factors are determined from the twiddle factor matrices contained in the FFT
formula. The initial distribution of data and the determination of the addresses and
twiddle factors for the tasks specified in an FFT formula constitutes the mapping

from the formula to the processor.

3.2.1 Input Loading

In the proposed architecture, the data is distributed equally amongst the processor
memories, and the initial permutation P, will be performed during the loading of
input data to memory. Let M = 2" be number of processor elements and N = 2"

N

be number of points. Then, each memory module stores y; = 2"~™ data points.

Let data points be addressed from 0 to N — 1 represented by the binary number
(bn—1bn—2 -+ bo)a-

Let o¢ be a permutation of degree n specifying Fy. Then, the sequence of input
data permuted by Py can be generated by permuting (b,,_1b,—2 - - - by)2 with oy while

counting (bn_lbn_g T bo)g.
(bn—1bn—2 -+ bo)2 - (boo_l(n—l)bao_l(n—Q) T bo—o—l(o))2

The most significant bits of the permuted address bits, (byon—1) - * - bog(n—m))2, specifies
the memory identification number (MID) to which the data are loaded. The remaining
n-m bits, (boo(n—m—1) - - * boy(0))2, specifies the off-set or local address of the data. The
initial permutation Py depends on the dimension and the number of points, n;, 1 <
1 < t, in each dimension. For the class of algorithms under consideration, the initial

permutation is Roni & -+ ® Ron,.

Example: To illustrate the loading process, let us consider 1-D 16-point, and
2-D (4 x 4)-point DFT and assume that there are 4 processor elements. For a 1-D

16-point DFT, Py = Ry which can be specified by the permutation oy = (3,2,1,0).

7

Permuting (b3babybg)2 with the og = (3,2,1,0) results in (bob1babs)2. For a 4-processor
system, the 2-most significant bits of the permuted bits, (byb;)2, identify the target
memory ID and the remaining bits, (bqbs), specify the local offset. The permuted

addresses are equal (bob1bobs)s while counting (b3babibg)s.

(b3bab1bg)2 012 3 4 5 6 7 89 10 11 12 13 14 15
(bob1babs)o 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
target MID (boby)2 : 0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
local offset (b2bs)2 oooo0 2 2 2 2111 1 3 3 3 3

For a 2-D (4 x 4)-point DFT, P, = R4y ® R4, which can be specified by the
permutation oy = (2,3, 1,0). Then, permuting (b3bab1bg)2 with o9 = (2,3, 1,0) results
in (babsbgby). For a 4-processor system, the target memory ID is specified by (babs)-

and the local offset is specified by (byb,)s.

(b3babib)2 012345 6 7 89 10 11 12 13 14 15
(bobsboby)2 0 213 8 10 9 11 4 6 5 7 12 14 13 15
target MID (bob3)s : 0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
local offset (boby)2 02130 21 3 021 3 0 2 1 3

O

Once the input data are loaded, the computation starts following a schedule spec-
ified by the internal permutations P; and twiddle factor matrices 7;. The twiddle
factors T; which are needed for the butterfly computations are mapped to the com-
putation units (CU) while the internal permutations P; are mapped to the address

generators (AU).

3.2.2 FFT Tasks

An N-point FFT, where N = 2", contains n stages of g butterfly operations. Let

t;; be the j butterfly operation in the i stage, where 1 <i <nand 0 < j < Z.

R B I AT I 1><1 9)(x2j> 3-1
Y3 <y2j+1> W lwr)x; (1 -1 0 wy Loj+1 (3-1)

Then,

78

where xy; and 7911 are input data, yo; and y»;41 are output data, and w% is the
twiddle factor of the butterfly operation. Since wy = 62”%, it can be represented by

the fraction TNJ When the operations are done in-place, the addresses of both input
and output data are the same. Therefore, a butterfly task is defined by a pair of

addresses and a twiddle factor.

Definition 17 (FFT Task). A taskt;; is the j butterfly operation of stage i defined
in Equation 3-1. We denote t;; by the following tuple.

i

i,j = (A2j7A2j—|—1;N)a

where
Ayj is the address of o5 and ysj,
Agjy1 1s the address of xoj41 and yajiq

% represents the twiddle factor, wy.

Although the address part and the twiddle part of the task are related, we gen-
erate them independently. A task is divided into two parts: the butterfly addresses

(Agj, Agji1) and the twiddle fraction TNJ

Different FF'T algorithms generate different sequence of tasks. Describing an FF'T
algorithm by a matrix formula allows us to parameterize a sequence of FFT tasks by
a set of permutations P; and a set of twiddle factors T;, 1 < 7 < n. Let g; be the
permutation defining P;. Then the internal permutations can be generated by o;.
Similarly the twiddle factors can be generated by o;; however, in addition to o; the
dimension parameters ny,...,n; are required. The following examples illustrate how

the sequence of FFT tasks is generated.

79

Example: The dimensionless Pease algorithm of size 16 points is described by

the following formula.

Fis = LP(Ig® Fy)TyLg® - L) (Is ® Fy)T3L,° -

LY (Is ® F)TLLYS - (Is ® Fy)Ty - P

As explained above, the initial permutation P, is performed during the loading pro-
cess. The task t;; = (Agj, Agji1, %), where 1 <i <4 and 0 < j < 8 is parameterized

by the permutation P; and twiddle matrix 7;.

Let j = (b3baby)2. Then, 25 = (b3bab10)s, 25 + 1 = (b3babi1)2 and (b3babiby)s =
27 + by. Let o0; is the permutation of degree 4 specifying F;. Then, the address pair
(Agj, Agjy1) is computed by permuting (b3babibg)s with o; while counting (bsbabyby)o.
Table 3.1 shows the permuted bits at each stage of the Pease algorithm, and Table 3.2

shows the sequence of butterfly addresses. Note that the butterfly addresses are

Table 3.1 Permuted bits for generating butterfly addresses following the Pease
algorithm of size 16 points

Stage | P, o, Permuted Bits (Agj, Agjy1)
1 Lis | (0,1,2,3) (b3babyiby) ((b3bab10)2, (b3babi1)2)
2 L% 1(1,2,3,0) (bab1bobs) ((bab10b3)2, (bab11b3)2)
4 [LIS[(3,0,1,2) | (bobsbaby) | ((Obsbsby)a, (1bsbaby)s)

Table 3.2 Sequence of butterfly addresses following the Pease algorithm of size 16
points

Stage (Agj, Aoji1)
1 j=0 =1 j=2 j=3 =4 j=5 j=6 =7
1 0,1) | (2,3) (4,5) (6,7) (8,9) | (10,11) | (12,13) | (14,15)
2 (0,2) | (4,6) | (8,10) | (12,14) | (1,3) (5,7) (9,11) | (13,15)
3 (0,4) | (8,12) | (1,5) (9,13) (2,6) | (10,14) (3,7) (11,15)
4 (0,8) | (1,9) | (2,10) | (3,11) | (4,12) | (5,13) (6,14) (7,15)

80

independent of the dimension.

The twiddle factor 7; depends on two parameters: the algorithm specified by
permutation ¢; and the dimension specification specified by ¢ and nq,...n;. For
the Pease algorithm of size 16 points, the twiddle factors follow Equation 2-49. Let
us consider the case of 1-D 16-point and 2-D (4 x 4)-point DFTs using the Pease
algorithm. As shown in Section 2.4, the twiddle factors for the Pease algorithm are

described by the following equation.

p—1 ¢—1 r—1 1

Thi = @ @ @ @ wyh p=2m""1 g = on=dk) and r = 2°

a=0 b=0 ¢=0 d=0
where £ is an index counting from 1 to t, [is an index counting from 0 to n; — 1,

d(k) = Zle n;, and i = d(k) — ny + (. Note that the index d counts from 0 to 1. The

twiddle factor for the task ¢; ; is equal to wj, and is represented by ;—p.

The index j can be written in terms of the indices a, b, ¢. In particular, j =
qgra +rb+ ¢ = (a,b,c), where (a,b,c) is the mixed-radix representation of number
system specified by the factorization p x ¢ x r. Since p, ¢ and r are powers of two,
we can represent (a,b,c) with a binary number. Let (a,b,c¢) = (b3bsby)s, in which
case b3 = a, by = b, and b; = c¢. Table 3.3 shows the sequence of twiddle fractions,
% = 12’—;, generated in each stage for 1-D 16-point DFT using the Pease algorithm.
The twiddle fractions for the 2-D (4 x 4)-point DFT are shown in Table 3.4. O

Table 3.3 Sequence of twiddle factors of a 1-D 16-point DFT using the Pease
algorithm

T3

Stage x
1] J J J

I
(an)
—

I
[\

Il
w

[

1
o

I
Ut

I
D

Il

\]

J J J

[SAESINE NS
=N I
[nsfool ISl
| oot I ol
[sfooingi ol S
IS SISINEE NS
| el l—pol S
|~oleqel—polc

=W N

—
I
=
o
=
o
=
o
=
o
=
o
=
o
=
o

81

Table 3.4 Sequence of twiddle factors of a 2-D (4 x 4)-point DFT using the Pease
algorithm

Stage %

i j=0 | j=1|j=2|j=3 |j=4|]j=5|j=6 | j=T7

1 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2

2 0 0 4 0 I 1 1 I
1 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2

4 0 0 4 4 1 1 1 1
1 1 1 4 1 1 1 1

Different FF'T algorithms produces different sequence of tasks ¢; ;. The following

example presents a different algorithm.

Example: Let us consider an alternative FFT algorithm specified by the follow-

ing set of internal permutations P;:

b= (L ® IQ)L%t;J o1 = (07 2,3, 1)7 0-1_1 = (07 3,1, 2)
P, = L8, oy =(2,1,0,3), oy =(3,0,1,2)
Py = (L8® L)L, o03=(2,1,3,0), o3'=(3,1,0,2)
Py=(Ly® L)L, 04=(3,2,0,1), o' =(2,3,1,0)

Table 3.5 shows the permuted bits at each stage using the alternate algorithm. The

Table 3.5 Permuted bits for generating butterfly addresses of the alternative algo-
rithm

Stage O o; ! Permuted Bits (Azj, Agjt1)
T 100,230 [0,3,5,2) | (babibsbo)a | ((habrb30)s, (babrbsl)s)
5 1(2,1,0,3) | (3,0,1,2) | (babibobs)s | ((bs01003)s, (bsbi1bs)s)
3 (0, 2, 3, 1) (3, 1, O, 2) (beOblbg)Q ((bQOblbg)Q, (6216163)2)
4 (O, 2,3, 1) (2, 3,1, O) (boblbgbg)g ((Oblbgbg)g, (1b1b3b2)2)

sequence of butterfly addresses (As;, A2j11) at each stage can be generated by counting
(b3bab1bg)2 while computing the permuted bits. The butterfly addresses As; and Agj 44
are equal to the pair of addresses when by = 0 and by = 1 respectively. Table 3.6
shows the sequence of butterfly addresses in each stage of the alternative algorithm.

Note that the sequence of addresses is different from those of the Pease algorithm

82

Table 3.6 Addresses sequence for the alternative algorithm

Stage (AQj, A2j+1)
i =0 | j=1 j=2 j=3 j=4 j=b j=6 j=7
1 0,1) | (4,5) | (8,9) | (12,13) | (2,3) | (6,7) | (10,11) | (14,15)
2 (0,2) | (4,6) | (8,10) | (12,14) | (1,3) | (5,7) | (9,11) | (13,15)
3 (0,4) | (2,6) | (8,12) | (10,14) | (1,5) | (3,7) | (9,13) | (11,15)
4 (0,8) | (4,12) | (1,9) | (5,13) | (2,10) | (6,14) | (3,11) | (7,15)

shown in Table 3.2.

The twiddle factors for the alternative algorithms are obtained from Equation 2-

99.

Th_i = Pn_i(IQi X T;:fc__ll_l ® IQn—d(k))Pn__li

k

k

where £ is an index counting from 1 to ¢, [is an index counting 0 to n, d(k) = >_._, ni,

and i = d(k) —ng + L.
Let consider a 1-D 16-point DFT (t = 1 and ny = 4) and a 2-D (4 x 4)-point DF'T

(t =2, ny =2, and ny = 2). Then,

2 2 2 2
T4_Z-(eb3 ® € ® €, ® ebo)

np—1

=P (I ® T;nk_z—1 & IQn—d(k))P4__1i(ezg & e,?? ® efl & eZO)

ng —1
= P4_i(12¢ (%9 T22n:—l—1 &® IQn—d(k))(eg . ® eg .9 eZ .. ® e% .)

74— (3 74— (2 o4 (D) 7430
This shows that the twiddle factors depend on oy, d(k), ng, and [. The permuta-
tion o; specifies the FFT dataflow. The other parameters depend on the dimension

specification.

1—D 16 — point DFT

Stage 4:0,' =(2,3,1,0), k=1, d(k) =4,l=4, i =0
Ti(e}, ®e;, @ € Rep)

_ 16\ [.2 2 2 2\ __, (bibgba)2-bo/ 2 2 2 2
- P4 (TS)(ebo ® eb1 ® eb3 ® ebz) - w16 (eb3 ® ebg ® eb1 ® ebo)

Stage 3: 03" =(3,1,0,2), k=1, d(k) =4,l=1, i=1
Ti(e;, @ e}, ® €, @e;)
= P(L@T})(e}, e} @ el @e}) =w(""™ (e} ®e}, @e} ®e})
Stage 2: 0, =(3,0,1,2), k=1, d(k) =4,l=2, i =2
Ty(ej, ®e;, ®€; Qej)

=PI, ®Ty)(e;, @ e; ®ep @ep,) =wi™(e}, ®e;, @ep, e)

Stage 1: 0,1 =(0,3,1,2), k=1, d(k) =4,0=3, i=3
Ti(ep, @ €, ® €, ® e)

=PI @ T7)(e;, @ &, @ &, ® €;)) = wy(ey, D ey, D ey, Dey)

2—-D (4 x 4) — point DFT

Stage 4: 0, =(2,3,1,0), k=1, d(k) =2,1l=0, i =0
Ti(ej, ®e€;, ®€; Qej)

= P(T} © L) (e}, © €}, @ e, @ €},) = wy'™ (e}, @ €}, ® €] @ ej)

Stage 3: 051 =(3,1,0,2), k=1, d(k) =2,l=1, i=1
Ts(ej, ®e;, @ € @e})

=P(LeTI®L)(e, ®e;, ®e; Qe) =uwe;, ®e;, ®e; Qej)

Stage 2: 0, = (3,0,1,2), k=2, d(k) =4,1=0, i =2
Tr(e;, ®e;, ®e€; Qe;)

=P(LeT))(e] ®e; @e ®e)=wi™(e) ®ep, @e; Rej)

83

84

Stage 1: 0, =(0,3,1,2), k=2, d(k) =4,l=1,i=3
Ti(e;, @ e}, ®€; @e;)
=P(loT})(e;,®e;, Qe;, ®e;) =wiey, e, ®e; Qep;)
Table 3.7 and 3.8 show the twiddle fractions for computing 1-D 16-point and 2-D

Table 3.7 Sequence of twiddle fractions for a 1-D 16-point using the alternative
algorithm

7
Stage %
i =0 1j=11j=21j=3|j=4|j=5|]j=6|j=T7
1 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2
2 0 0 0 0 1 1 1 1
4 4 4 4 4 4 4 4
3 0 2 0 2 1 1 3 3
8 8 8 8 8 8 8 8
4 0 4 1 5 2 6 5 i
16 16 16 16 16 16 16 16

Table 3.8 Sequence of twiddle fractions for a 2-D (4 x 4)-point using the alternative
algorithm

Stage 2

i [3=0[j=1];=21j=3]j=41j=5 =6 | =7

1 0 0 0 0 0 0 0 0
2 2 p p 2 2 2 2

9 0 4 0 0 1 1 1 1
1 1 1 1 1 1 1 1

3 00 [0 0 [0 [0 [0 [0
2 2 2 2 2 2 2 2

1 0T [0 [T [0 [f [0 [I
1 1 1 1 1 1 1 1

(4 x 4)-point DFTs using the alternative algorithm respectively. O

3.2.3 Round-robin Scheduling

In the previous section we showed how to determine the sequence of tasks corre-
sponding to an FFT formula. In this section we map the tasks to PEs. The particular
mapping that is used is not important, since any mapping of a given formula is equiv-
alent to some other formula using any other mapping simply by using appropriate

permutations. Thus we choose to use a simple round-robin schedule.

85

Let 2™ and 2™ be the number of points and number of processor elements re-
spectively. Let j = (b,_1-+-b1)2 be the task number in each stage. Then, with the
round-robin scheduling, the task ¢; ; is mapped to processor PE, where r = j mod 2™.
Since j mod 2™ is equal to (by, - - - by)2, all the tasks ¢; j, that have the same (by, - - - by)2
are mapped to the same processor elements. The following example demonstrates

round-robin scheduling.

Example: We map the sequence of tasks corresponding to the Pease and alter-
native algorithms presented in the previous section to a processor with four processing
elements. Since m = 2 and n = 4, all tasks that have the same (byb;), are mapped to
the same processor elements. Specifically, all tasks t; ; where j = (b300),, j = (b301),,
J = (b310)s, and j = (b311), are mapped to PEy, PE;, PE,, and PE3 respectively.
Tables 3.9 and Table 3.10 show the round-robin schedules for the Pease and alterna-

tive algorithms respectively. O

Table 3.9 Address schedule corresponding to the Pease algorithm of size 16 points

Stage | PEg, j = (b300)2 | PEy, j = (b301)2 | PEy, j = (b310)2 | PE;3, j = (b311)-
i [5=0 | j=4 =1 | =5 1 =2 | ;=6 = | =7
T 0D &9 | (23 | A0,1D) | 45) | A2,14) | (6,7 | (14,15)
2 (02 | @13 || @6 | 67 || 8100] 910 | (12,14) | (13,15)
3 1(04)] (260 | (812) | (10,14) || (1,5) | B || 9.13) | (1L,15)
108 | (412) | (Lo | (5,13) || (2,10) | (6,14) || (3,11) | (7.15)

Table 3.10 Address schedule corresponding to the alternative algorithm of size 16

points
Stage | PEg, j = (b300)2 | PEy, j = (b301)2 | PEy, j = (b310)2 | PEg, j = (b311)y
i [5=0 | =4 =1 | =5 || =2 | j=6 =3 | j=7
1 (0,1) (2,3) (4,5) (6,7) (8,9) (10,11) (12,13) | (14,15)
2 (0,2) (1,3) (4,6) (5,7) (8,10) (9,11) (12,14) | (13,15)
3 (0,4) (1,5) (2,6) (3,7) (8,12) (9,13) (10,14) | (11,15)
4 (0,8) (2,10) (4,12) (6,14) (1,9) (3,11) (5,13) (7,15)

86

It is important to note that since this mapping will be done during the design
process (compile-time), each PE can generate its own schedule independently. This

allows us to have a scalable design in terms of the number of processor elements.

3.2.4 Address Generation

Corresponding to an FFT dataflow are a sequence of tasks. This section describes
how to generate the addresses for the tasks given an FF'T dataflow. The sequence of
addresses can be generated independently for each PE. An address mapped to PE,
may belong to any memory module. If an address does not belong to local memory,

the data must be accessed remotely via the interconnection network.

It is advantageous to generate addresses from both the perspective of the PE and
the memory (the two perspectives are inverses of each other). In our processor design
(see Figure 3.2) the address generator generates a sequence of addresses; however,
rather than generating the addresses needed by the corresponding PE it generates the
sequence of addresses of the elements of its local memory that are used. In addition to
these local addresses, the address generator generates the PID of the processor where
the element will be used. If this PID is remote, then the local memory element is sent
to the interconnection network. If it is local then the memory element is placed in a
FIFO. Finally, the MID of the addresses of the data elements that are used by the PE
are also generated. There is no need to know the local offset of the data elements used
locally as these will be computed by the memory where they come from. However,
the MID must be known so that the PE knows where to expect the data to come

from.

The local addresses, the target PID and the source MID are generated based on

the same FFT dataflow specified by the internal permutations. Regardless of the

87

implementation techniques described later in Chapter 5, these three values can be
generated by permutation of the bits that defines the tensor permutations in the
FFT dataflow. The following procedure describes a method for generating the local
address, the target PID, and the source MID, from a permutation o of the address

bits.

Mapping Procedure

(1) Permute the global counter bits denoted by (b,_1---bg)2 by 0;. Then, the m-

most significant bits are set to the MID denoted by (pp—1---po)2;

bn—l T bO g ba—l(n—l) Tt ba—l(O)

— Pm-1" pOba—l(n—m—l) T ba—l(O)

In other words, we relabel (by—1(n—1) - * - bo—1(n—m)) With (pp—1---po). For exam-

ple, if P, = L% and m = 2,

o, = (3,0,1,2), o;'=(1,2,3,0)

)

bgbgblbo $ bai—l(3)6071(2)b071(1)b071(1) — b0b3b2b1 — P1Po b2b1

i [k3

(2) Then permute the new label back to the original order with the inverse per-
mutation o; *. However, now there are m bits that are fixed to the MID. The
remaining (n-m) bits become the output bits of the local counter. We relabel
these bits as a,_m_1,-..,a0. Since (by, - -by)o specifies the PID to which the
address are mapped, the bits that replaces them specifies the “target PID”. For

example, if P, = L% and m = 2.

(o2
pipobabi = pobabipr = poaiagp:

target PID = ajq9

88

(3) Permute the new label (local counter bits combined with the MID) by o; to

get the permuted bit pattern for generating the local addresses. For the above

example,

p1aiappo % P1Poa1Go

Local Address = ajaq

(4) The permuted bit pattern for generating the source MID can be found by (1)
replacing the original counter bits (b, - - - b1) with (p,—1 - - po) (2) relabeling the
remaining (n-m) bits, (b,_1 - - - bp—_mbo), with the local counter bits a,_,—1 - - ag
(3) permuting the new bits with o; and (4) taking the m most significant bits

after the permutation as the source MID. For the above example, we have

a1P1PoGo 7 Qpa1P1Po

source MID = aqayaq

Example: Table 3.11 shows the local addresses, target PID and source MID

Table 3.11 Source MID, target PID and local addresses in a 4-processor system at
stage i when P, = L% or 0, = (3,0,1,2)

Local | Source | Target | Local
Counter MID PID Address
ai1ag apga a1ag ai1agp
00 00 00 00
01 10 01 01
10 01 10 10
11 11 11 11

generated in each PE at stage i when P; = L% and there are 4 processors (m = 2).

From the perspective of the memory module, all memory modules send their

first data (local address = 00) to PEg. Therefore, PE, will receive data addressing

89

(0000)3, (0100)5, (1000)s and (1100), from My, My, My and M3 respectively. These
data are stored in the corresponding FIFO. The data control unit, then, uses the
“source MID” to sequence the data from the FIFOs to the computation unit. Note
that L% is the permutation at stage 4 of the Pease algorithm of size 16 points. Since
the source MID is equal to 0, 2, 1, 3 respectively, the sequence of butterfly addresses
mapped to PEy is (0,8) and (4, 12) respectively. This is the same as the sequence of

butterfly addresses shown Table 3.9 of Section 3.2.3.

Similarly, the second data of each memory module are sent to PE;. Therefore,
PE, will receive data with addresses (0001)y, (0101)s, (1001)y and (1101), from My,
M, M, and Mj respectively. According to the source MID, the data are sequenced to

the computation in order of (1,9) and (5, 13) which is the same as those in Table 3.9.

Similarly, we can see that the address sequence mapped to PE, is (2, 10), (6, 14),

and addresses sequence mapped to PE; is (3,11), (7,15). O

We apply the mapping process to the Pease algorithm of size 2" points and number

of processors equal to 2™.

Example: For the Pease algorithm, the permutation P;, 1 < P; < n, is equal to

L27, which can be defined by a permutation function o; as follows.

For: =1,

For ¢+ > 2,

o = (i—1,4,...,n—1,0,...,i—3,i—2)

o, = (n—i4,....,.n—=1,0,....n—i—2n—i—1)

90

Step 1: Permute (b,_1---by)2 with o;. Then, set the m most significant bits to

Pm—1"""Po-
bn-ibp—z--bo = bu—ibp_io---bibobp—1 - bp_is2bp_is1
Fori =1,
bp—1bp—2---b1bo — Pm—1---Po bp—1---bibo
For 2 <i<n—m,
bn—ibn—i—2 - b1bobn—1 -+ bp—itobp—it1 — Pm-1-""Po bp—m—i - bobp—1-+-bp_it1

For : =n —m,

b »+ - 01boby—1+* ~ bim2bmir = Pm—1-Po bobn—1 " biny2bmia
Forn—m<i<n,i=n—m+jand 1 <j7<m

bi—j = b1bobp—1 -+ bpm_jy1 = Pm_1" Do bpj - bm_js1

Step 2: Permute the result from the first step with o; ' and relabel the remaining bits

to ap_m_1," -+ ,a9. The bits that replace b, - - - by becomes the “target PID”.
Step 3: Permute the new label with o;. The (n — m) least significant bits specifies
the “local address”.

Fori =1,

Pm-1 " Do bp—m—1---bibo
— Pm-1"" 'pObn—m—l e blafO
— Pm—1"""Polp—m—1""" Am4+1Gm * * - Q1G9

.
— Pm—1"""D0 Gp—m—1"""G10g

target PID = (ay---a;1)2

local address = (Gp_m—1-"00)2
For 2 <i¢<n—2m,
Pm—1 =+ Po bp—m—i-bobp—1- - by_it1
= bp—1 bu—it1 Pm—1" D0 bn—m—i - bibg

Qp—m—1"""O0p—m—i+1 Pm—1"""P0 Qn—m—i """ Am+10m " - - Q109

o
— Pm—1-"""DP0 Qn—m—i """ AApn—m—1" " Qn—m—i+1

target PID = (ay---a1)2
local address = (Gp_m—i" " QUn_m—1" " Qn_m—ii1)2

For i« =n — 2m,

Pm-1 =+ Do bnom—i-bobp—1--bn_it1

= bp—1 bu—iv1 Pm—1"" D0 bp—m—i - b1bo

— Op—m—1"""Ap—m—i+1 Pm—1"""DPo Qm " - Q10
o
— Pm—1"""DPo Opn—m—i "' A0Apn—m—1" """ Qn—m—it+1
target PID = (ay,---a1)2
local address = (Gp_m—i" " Q00n—m—1" " Qn_m—ii1)2

Forn—-2m<i<n-m,t=n—-2m+j,and 1 <j<m
Pm—1 - Do bn—m—i te 'bObn—l o 'ban—l
— bn—l ot 'bn—i+1 Pm—1-""Do bn—m—i t 'blbO

Up—m—1"""Apn—m—i+1 Pm—1"""PjPj-1"""DPo Qm—j - A10g

Pm—1"""DPo Opn—m—i "' A0Apn—m—1 """ " Qn—m—it+1

target PID = (pj_1- Dolm—j - G1)2
local address = (Gp—m—i- " Qan—m—1" " Qpn_m—i+1)2

For : =n —m,

DPm—1 - Do bobn—1 - byabmyir
= bp—1 - by2bmit Pm—1- - Dobo
— Ap—m—1 """ Q201 Pm—1 " " Polo

..
= Dm—1-""D0 GoGp—m—1 " Q201

target PID = (pm_1-- Po)2

local address = (oGn_m-_1-""01)2
Forio=n—-—m+1,

D1 " Do ba_1bm

— bn—l o bm Pm—1"""DPo
— Qp—m—1"""01G0Pm—1 """ P1Po

”.
— Pm—1"""D0 Op—m—1""" 0o

target PID = (aopm-1-""P1)2
local address = (ap_m_1---0a100)2
Forn—-m+1<i<n,i=n—-m+jand 2 <j<m,
Pm—1 " Do bpjr b
crz-_1
= Pj—27 D0 bn—j bm—ji1 D1 D1

— Pj—2DPo Qp—m—1"""QjAj_1" " AQoPm—1 """ PjPj-1

o
— Pm—1"""DPo Qpn—m—1"""0Qg

93

target PID = (aj_1 - QoPm—1-""Dj)2
local address = (ap_m_1--0a100)2
For i = n,
D1 "+ Do baem b1

= DPm—2"""D0 bp—m b1 Pm—1
— DPm—2"""DP0 Op—m—1"""AmQp—1 """ QPm—1

o
— Pm—1"""DPo Qpn—m—1"""0Qg

target PID = (a,,_1---aop)2

local address = (ap_m_1---a100)2

Step 4: Find permuted bits for the “source MID”. First, (b, ---b;) is replaced by
(Pm—1 - - - po) and the remaining n—m bits are relabeled to (@, _p,—1 - - - ag). Then,

permute the new bits with o;. The m most significant bits of the permuted bits

specifies the sequence of “source MID”.

For1 <1 <n—2m,

ap—m—-1 **° @1Pm—1" " Polo

a.
= Ay *Op—2m—it+1 " A1Pm—1 " " PoA0An—m—1 " " * Gp—m—i+1

source MID = (@p_m—i- " Un_2m—it1)2-

Forn—-2m<i<n—-m,t=n—-2m+jand 1 <j<m,

Qp—m—-1 ' G1Pm—1" " Polo

o
— Qm—j**A1Pm—1 " "Pj Pj—1" " PoAodn—m—1 """ " Am—j—1

source MID = (am_j ©rA1Pm—1 " 'pj)2

94
For : =n —m,

o
Qp—m—-1 " GA1Pm-1"""Polo — Pm—1-""DPo QoGp—m—1 """ 041

source MID = (Pm_1--Po)2
Fori=n—m+1,

Ap—m—-1 *** @1Pm—1""**Polo

e

Pm—2"°"Podo Op—m—1"" " A1Pm—1

source MID (Pm—2 "+ - Doao)2

For stage i, n—m<i<n—1,i=n—m+j,and 2<j57<m

Qp—m—-1 " G1Pm—1"""Polo

o
— Pm—j—1-"""Po0Apn—m—-1 """ Apn—m—j+1 On—m—j "~ A1Pm—1 """ Pm—j

source MID = (Pm—j—1 " P0C00n—m—1""* Op—m—j+1)2
For : = n,

Qp—m—-1 ' Q1Pm—1"* " Polo

o
— aoQp—m—1"""*Apn—2m+1An—2m * ' * A1Pm—1 """ Po

source MID = (@oGp_m-1- " Apn_2m+1)2

Table 3.12, 3.13 and 3.14 summarize the permuted bits pattern for generating
the “local address”, “target PID’, and “source MID” for the Pease algorithm of size
A O

Concrete examples of the mapping procedure are provided in the appendix for the

Pease algorithm and an algorithm determined to be optimal on our architecture both

of size 64.

95

Table 3.12 Bit patterns for generating local addresses in PE number (p,,—1 - - po)
using the Pease algorithm

Stage P; Local Address
i (n-m bits)
1 Ion (@n—m—1---aiag)2
2<i1<n—m Lg?—l (@n—m—i* " G0Gn—m—1"" " Gpn—m—it1)2
n—-m<i<n| L%, (@n—m—1--"aiag)2

Table 3.13 Bit patterns for generating “target PID” in PE number (p,,_1---po)2
using the Pease algorithm

Stage P; Target ID
i (m bits)
1 Ion (am '-'01)2
2<i<2n—m L%ZL_I (@ -+ a1)2
n-2m+1 L2 o (PoGm—1---ai)2
n=2m+1<i<n—m| L}, sns; | (pj—1* P0Gm—j—1---a1)2
j=1—n+2m
n-m Lo (Pm—1""-P0)2
n-m+1 L2 . (@opm—1---Po)2
n—2m+1<i<n—m| Ly i1 | (aj—1- aGoPm—1---Pj)2
j=1—n+2m
n-1 Ls, . (am—1 - ag)2

3.2.5 Twiddle Factor Generation

In addition to the two input/output addresses an FFT task includes the twiddle
factor needed for the corresponding butterfly operation. Recall that we represent
the twiddle factor by a fraction called the twiddle fraction. The task of the twiddle
factor generator is to generate the sequence of twiddle fractions for all of the tasks
scheduled to a PE. It is important to stress that the twiddle fractions can be generated

independently for each PE.

The twiddle fractions are determined from the twiddle matrices occurring in the

96

Table 3.14 Bit patterns for generating “source MID” in PE number (p,,—1 - - po)2
using the Pease algorithm

Stage P Source ID
i (m bits)
1<i<2n—-m L%:—l (anfmfi T aanm—i+1)2
n—32m<i<n-—m L%Z_Qmﬂ (@m—j - @1Pm—1""Dj)2
j=t1—n+2m
n-m Loy s (Pm—1-""Po)2
n-m+1 Lau_m (Pm—1""-Poao)2
n—m+l<i<n-—m L%Z—mﬂ'—l (pm—j—l"'pjaoan—m—l "'an—m—j—}-l)Q
j=t—n+m
n-1 La,_, (@0@n—m—1""Gn_2my1)2

FFT formula, and the twiddle matrices are completely determined by the internal
permutations in the corresponding FFT dataflow and the number of points in each
dimension of the desired FF'T. We will show that the twiddle fractions can be deter-
mined in a two step process. The first step is independent of dimension. It computes
the twiddle fraction for the one-dimensional FFT of the given size. The second step
uses the dimension specifications to compute the desired twiddle fraction from the
corresponding one-dimensional twiddle fraction. This step simply masks out some of
the bits in the one-dimensional twiddle fraction. A consequence of this two step pro-
cedure is that the major part of twiddle computation depends solely on the dataflow,
i.e. the sequence of internal permutations. In fact, the first part of the computation
of the twiddle fraction is obtained using the same bit permutation that is used for

address calculation.

For the class of algorithms under consideration, Equation 2-55 describes the twid-

dle factors in term of the conjugating permutations and the dimensions. For conve-

nience they are reproduced here.

E%izzza%u%®7§ﬁil®gwmoagi
E o= 1,2,---,t
j = 0,1,...,n1—1,0,1,...,no—1,...,0,1,...,n,— 1

dik) = > m

i = dk)—np+J
Converting the indices so that the index n — ¢ counts from 1 to n, we have
T; = Bl ® T221?+1 ® IQ"_dk)‘Pi_l

ko= t,t—1,.--,1

jg = 0,...,m—1,...,0,...,mo—1,...,0,...,n; — 1

k) = Y n

i = n—dk)+j+1

The following procedure computes 7; provided the dimension specification nq, - - -

and the internal permutations P;.

T + Twiddle(n,ny,...,ny, Py, ..., Py)

dk:n
fork=tt—1,...,1 loop
q=n—dg
for j=0,...,n, —1 loop
1=q+7+1
Ty = Pi(Ipni @ T2 @ La) P!
end loop

dy = d — ny,
end loop

97

Applying the twiddle properties (Section 2.1.5), we have

Tie?' = Pi(lyp—i ® T} ® Lyu-a,)P (€}, ®---®)
= Pi(I2"*i ® TvQZJ'H_1 ® I2n_dk)(e72"n—1 Q- ® ezo)
= Pi[e?"n—l ® ...®ezi ®
T22]‘,j+1(®e’rz2®...®e$q)®ezq_l®.--®ezo]
= wyn TR, @ @)
_ wé;:_—12...rq)2~m_1(ezn_l Q- ® ego)
where
e?n_l R ® e%o — ‘Pi_l(ezn_l R---® ego)
(bner -+ bo)2 =% (e 10)2 = (D=1 (mp) *~ Bym1)2
ri-1 = bai_l(i—l)
(T'i_g"'Tq)Q = (bai_l(i—Q)'“bai_l(q))% q:n—d(k) :Z—]— 1
Since Pt = L2, .., (Q; ' ® I5), we have
Plep ,® - ®e) =L (Q7 @ DL)(e;, , ® - ®ef)
= Lg" i+1 Q’L(: ® 6131) ® ego
— L2n 1+1(217.—2 ®'®ezo)®ezo
= ezn—i—l ®'”®e ®eb0®ecn 2®...®ezn—i—2
f— 2) 2 . e 2
L o7 (n-1) ® ® eba-i_l(i—l) ® ® ebai—l(o)
where
Q;l(egn_l R - ® e?,l) = ezn_z Q- ® ego, and
Qi(egn_g ®®ego) = egn_l ®®e§1

98

99

Therefore, b,-1(;_1) = by and

b1y 1)2 o
L = @ W2J+1 o , q=i—j3—1
bn 1y 70
on—lq
- @ GDMS?I{, - bgi—l(i—Q)"'bai—l(i—j—l))% L= (bn1---b1)2 (3-2)
I=0 bp=0

The two consecutive twiddle factors that are mapped to the same processor are those
with by = 0 and by = 1 respectively. The first twiddle factor (by = 0) is always equal
to one. Hence, we can represent the twiddle factor of the {** butterfly operation by
the twiddle fraction 57, where 1y = (by-1(_9) - = bo-1(—j—1))2, and [= (bp—1 -+~ b1)2.

The fraction g4r can be exactly represented by a binary number of j + 1 bits or

less. Let us assume that 2"7e* is the maximum number of points that the universal
FFT will compute. Then, we will need a binary number of (7., — 1) bits or less to

represent a twiddle fraction.

Definition 18 (Fraction Representation). Let a twiddle fraction be represented

bY Nmag-bit binary number denoted by (0.0ry,,..—1-+-70)2. Then,

Nmaz—1
_ T _ ,rnma:c rnmaz_l To
(O'OTnmag;—l Ce. 7”'0)2 = ; 2nmax—’i+1 == 4 + 3 + -+ W (3-3)

Let TF;(I) = 57 be the twiddle fraction of the I butterfly operation at stage i.

Then,

TFi(l) = 5o = (0.0, 1_g) -+

S 0---0), (3-4)

o7 M (i—j—1)

Note that for different dimension specification, the index j counts differently.
However, since t = n —d + j + 1, and n > dj, j is always less than ¢. This leads to

the following property.

100

Property 15 (Twiddle Fraction).

TF;(l) = % = TF1,(/) and mask(j), (3-5)
. 2 —1
TFL;(1) = (0.00,-1; 5 by1(g)0 -+ 0)2 (3-7)

where and is the bit-wise-and operation, TF1;(l) is the twiddle fraction for the one-
dimensional DFT in which case i = j + 1, and mask(j) is the mask depending on the

dimension specification (t, ny,...,ng).

Proof: This follows the fact that mask(j) contains j bits of 1. Therefore,

TF1;(]) and mask(j) = (O-Oba,—l(i_g) b

o, (i—j—1)

0---0)q
which s the same as Equation 3-4. U

This property allows us to separate the generation of twiddle fractions into two
parts. The first part, TF1, is the twiddle fraction of the one-dimensional DFT which
depends only on the FIF'T dataflow specified by o, ! The second part, TF1, depends

only on the dimension specification (¢, ni,...,n;).

The following procedure generates all twiddle fractions parameterized by n, t,

101

Nni,...,ny, and o;, 1 =1,--- ,n.

TF < TwiddleFraction(n,t,ny,...,ny,01,...,0y)
dk =n
fork=tt—1,...,1 loop
for j=0,...,n, —1 loop
1=n— dk —|—j +1
mask(j) = (0.01---10---0) = 2+
forle,l,...,%—l loop
[= (bp_1--b1)2
TF1;(1) = (O.Obai—l(i_Q) - -bafl(O)O -+ 0)q
TF;(l) = TF1,(/) and mask(j)
end loop
end loop
dk = dk — N
end loop

With round-robin mapping, the twiddle fraction TF;(l), [= (bp—1---b1)2 are

mapped to PE number (b, ---b1)s. The following procedure generates all twiddle

fractions mapped to PEp, where P = (b, - - - by)s.

TF « PETwiddleFraction(n,m,ny,...,n;,o0;",...,0,",P)
M =2™m
dk:n
fork=t,t—1,...,1 loop
for =0,...,n, —1 loop
i:n—dk+j+1
mask(j) = (0.01---10---0)y = 271

2 = ST
forle,l,...,%—l loop
[= (bn—l"'bn—m)Q
P:(bm...b1)2

t=1-2""4P=(by_1--b1)s
TF1i(t) = (by-1(j_a) - bo1(0))2
TF;(l) = TF1,(¢) and mask(j)
end loop
end loop
d, = d — ny,
end loop

102

Example: Let us consider the Pease algorithm of size 2", where P, ' = L2, .,

and

o, = (n—i+1,---n—-10,--- ,;n—i—1).

Note that o;*(0) =n —i+1 and o; ' (i — 2) = n — 1. Then,

TFLi(1) = (0.0b,-1G_9)"*by11g)0 -+~ 0)2

1

= (0.0by_1 - -bp_i410---0)s

For two-dimensional (2" x 2"2)-point DFT, the twiddle fractions are

TF (1) { (0.0b 1 -+ -bni10--- 0)y, for 1 <i <y

(0.0by_1-+bp_j0--0)y, formp+1<i<mn, j=i—ny—1
= TF1,(/) and mask(j),

. 21
where mask(j) = (0.01---10---0)y = YESE
. 1—1 for 1 <1< nse
T T Vi-ne—1 form+1<i<n

Notice that for the Pease algorithm, the twiddle fractions of the one-dimensional

DFT are almost the same for all stages. In fact,

27t 1
TFli(l) = (OObn_l s b10 s 0)2 and (21) = (OObn_l s bn—i+1 s 0)2
Since 21_21[1 is equal to the mask for the one-dimensional DFT, we can generate all

twiddle fractions of the Pease algorithm using the following Equation.
TF;(l) = (0.0b,_1---0,0---0)2 and mask(j) (3-8)
where mask(j) is defined in Equation 3-6 and [= (b,_1 - - - by1)s.

Let P = (pm_1---po)2 be the processor number to which TF;(() is assigned. There-
fore, (b ---b1)2 = (Pm—-1---Do)2- Relabeling (by,—1 -+ bp—1) With (ap—pm—1---b1), we

obtain the following Equation for generating all twiddle fractions assigned to PEp.

TF:(l) = (0.0ap_m_1"* a1Pm_1---po0---0) and mask(j), (3-9)

103

where mask(j) is defined in Equation 3-6 and | = (ap_pm—1 - - a1)s- O

In the appendix, concrete examples of twiddle fraction generation are provided

for the Pease algorithm and the optimal algorithm of size 64.

104

4.0 PERFORMANCE MODEL AND OPTIMIZATION

In the previous two chapters, we show that the design choices of distributed-
memory FFT processors can be parameterized by FFT algorithms described by ma-
trix factorizations. In this chapter, we present a systematic search for the optimal

algorithm.

This process is similar to the search process used in several recent software pack-
ages, FF'TW [3], SPIRAL project [15] and ATLAS [21], which adapt to the underlying
hardware on which they are executing. These systems use empirically measured exe-
cution times to search for a configuration or algorithm with smallest runtime. In this
thesis, we apply the same technique to find the best hardware implementation of a
distributed memory FFT. Since the search is performed at design time, it can not use
execution time as a cost function, but instead must use a performance model. Rather
than using an analytic model of performance we created a model using ADEPT that
simulates the dataflow of the algorithm in the proposed architecture. This approach
provides an easier mechanism for capturing the complexity of a real system and is
amenable to experimenting with a variety of hardware parameters. Furthermore, by
using a high-level model rather than a detailed simulation, we were able to search over
a much larger space of design choices. While a high-level performance model does
not accurately predict absolute runtimes it can effectively choose between alternative

designs (see [17-19] for a similar use of a performance model).

It has been shown that high-level performance models are an important tool in
hardware design [20, 34, 35], since they allow various design choices to be evaluated
early in the design process. Moreover, design tools such as ADEPT (Advanced De-

sign Environment Prototyping Tool) [19], which is implemented in VHDL, allow a

105

smooth transition from the performance model to a functional model due to the uni-
fied environment. Although the application of performance models are typically used
to help designers choose appropriate design partitions and components [17,18], they
can be applied to other design considerations. We present an application where a
performance model is used to adapt the underlying algorithm in order to maximize
performance. A large collection of algorithmic choices are systematically generated
and the performance model is used to select the algorithm that is predicted to lead
to the design of an application specific processor with the best performance. In par-
ticular, a distributed memory fast Fourier transform (FFT) processor is optimized
by searching in the space of FF'T algorithms for the algorithm that best utilizes the

underlying memory architecture.

4.1 Search Problem Statement

The systematic mapping of an FFT algorithm described in mathematical formula
to the architecture described in Chapter 3 provides us a well-defined optimization

problem.

The FFT processor we designed is built using the distributed-memory architecture
shown in Figure 3.1. An dimensionless FFT algorithm of size 2" points described by
Equation 2-52 is mapped to 2™ processors using the method shown in Chapter 3.
Since the mapping procedure is fixed, different FFT algorithms result in different
schedules. In return, different FFT algorithms lead to implementations with different

performance. This leads to an optimization problem which is the focus of this chapter.

When mapped to the proposed architecture, an dimensionless FFT algorithm
of size 2" points comprises 2"~ ! tasks, where a task is 2-point butterfly operation

with twiddle factor described by Equation 3-1. Each task consists of three variables

106

namely two addresses and a twiddle factor. However, the twiddle factors are generated
inside each processor. Therefore, they have no effect over the performance. In other
words, only a sequence of addresses effects the performance. Since the FFT dataflow
described by P;, 1 < ¢ < n, determines the sequence of addresses, the optimization

problem becomes “which FFT dataflow yields the best performance”.

With the restriction that only tensor permutations are allowed, the space of possi-
ble FFT dataflows are those with P; = (Q; ® I,) L _,, where Q; is an arbitrary tensor
permutation of size N/2. Since there are n stages and each stage has (n—1)! possible
permutations, the size of the space of FFT algorithm is equal to (n — 1)!". Then, the
search problem is to find an FFT dataflow specified by a set of P, = (Q; ® I,)LL_,,
1 < ¢ < n, that produces the best performance. In the next section, we describe
how performance model is used to estimate the performance cost corresponding to

an FFT dataflow.

4.2 Performance Model

Performance of an algorithm from Equation 2-52 is determined by its memory
access pattern. Different access patterns can lead to differing amounts locality and
contention of the interconnection network. A performance model was constructed to
simulate the flow of data through the architecture and to capture the memory access

delays due to non-local access and contention.

4.2.1 Token Protocol

In the performance model, data are represented by tokens, and the flow of the to-

kens emulates the dataflow. The model was implemented using the Advanced Design

107

Environment Prototype Tool’s (ADEPT) developed by University of Virginia [19].
ADEPT is based on Petri-Nets [36] and is implemented in VHDL.

Tokens in ADEPT have two fields; a status field and a color field. Status provides
a protocol for passing tokens through the system and color provides additional infor-
mation for the particular model. The values of status are “removed”, “presented”,
“acked” and “released”. A token is passed between 2 models by changing the status
field of a signal connecting two models. A new token is allowed to be sent only if the
previous token has been removed. A sender sends a token by setting the status field
to “presented”. When the receiver is ready to receive the token, it sets the status
field to “acked”. Immediately, the sender releases the token by setting the status
field to “released”. Then, the receiver removes the token by setting the status field
to “removed” allowing the next token to be sent. In our model, the color field is used

to store information such as the pair of addresses required for a butterfly operation.

4.2.2 Performance Model for a Distributed-Memory FFT Processor

Interconection Network

PEHM| PHEM| PHEM| PHM

Scheduler

Figure 4.1 Top-level performance model

Figure 4.1 shows the top-level performance model of our architecture with 4 pro-
cessors. The scheduler creates a sequence of tasks and distributes them in a round-

robin fashion to the different processing elements. Each task consists of a pair of

108

addresses needed for a two-point butterfly operation. In order to compute the correct
result a task would have to include twiddle factor information; however, this is not
needed for simulating performance. The sequence of tasks for a specific FFT are
determined by the permutations in Equation 2-52. For an N = 2" point FF'T the
tasks are generated using an n-bit counter. For the i-th stage of the FF'T, the per-
mutation P; is determined by a permutation, o;, of the n bits b,_; - - - by, generated
by the counter. The counter generates all possible bit sequences which are permuted
by o to obtain the addresses. Each task contains the two addresses by(,—1) - - - bo(0)

with by equal to 0 and 1.

For example, tasks in the 5-th stage of the 64-point Pease algorithm are determined
by o5 = (0 = 1,1 — 0,2 — 5,3 — 4,4 — 3,5 — 2). The sequence of addresses
corresponding to o5 is 0, 16, 32, 48, 1, 17, 33, 49, ..., 15, 31, 47, and 63, and the
corresponding tasks are (0,16), (32,48), (1,17), (33,49), ..., (15,31) and (47,63). These
tokens are distributed to the PEs in round-robin. For our example, PEO will get 8
tokens with (0,16), (2,18), (4,20), (6,22), (8,24), (10,26), (12,28), (14, 30) while PE1
gets tokens with (32,48), (34,50), (36,52), (38,54), (40,56), (42,58), (44,60), (46,62).
At the same time, PE2 gets (1,17), (3,19), (5,21), (7,23), (9,25), (11,27), (13,29), (15,
31) and PE3 gets (33,49), (35,51), (37,53), (39,55), (41,57), (43,59), (45,61), (47,63).

After a task is generated by the scheduler, the token containing the task is sent to
the PE model. The addresses stored in the task are used to generate additional tokens
that simulate memory reads and and writes and the computation of the butterfly
operation. Figure 4.2 shows the performance model of each PE connected to its local

memory and the interconnection network.

The input sequencer extracts the addresses of the task and forwards them to the

memory sequencer to initiate the corresponding memory reads. Additional memory

109

Doy TREIT]
imsk_in o vl_wei) Dol
p| IOPUE Sequeimet a -
= ar L
Lri Lo
naclhon
T WI_req
| ¥ REo LTI LET Y
Y
*1_FIFD { FIFQ
- i X1 Y
& i o i

Figure 4.2 PE performance model

requests are presented to the memory sequencer from the “Y FIFO” which contains
write requests generated by the computation unit. Memory addresses are distributed
to the separate PE memories in a block cyclic fashion. Assume the size of the input
vector is 2" and the number of processors is 2. Using this scheme the high-order m
bits of the n-bit address is the identifier of the memory (MID) containing the address
and the low order n — m bits is an offset into the processor memory. The memory
sequencer extracts the MID and offset and determines if the address is local or remote.
A local address request is sent directly to memory and a remote access is sent to the

corresponding memory unit via the interconnection network.

The interconnection network is modeled as a bus. Only one request can be pro-
cessed at a time. Access to the bus is granted by arrival order and if there are
simultaneous requests a round-robin priority scheme is used. If PE number i cur-
rently has the highest priority the priority is changed to PE number (i + 1) mod P

where P is the number of processors, after the next request from PE number i is

110

granted.

After a read request has completed the corresponding data is placed in a FIFO
(either X0 or X1 depending on whether it is the first or second address in the task).
When both elements arrive in the corresponding FIFOs the task is sent to the com-
putation unit. Computation is modeled by a delay and after the delay two write

requests are placed in the “Y FIFO” to be sent to the memory sequencer.

In order to measure performance we model memory access, bus access, and com-
putation by the delays D,,, Dy, and D, respectively. The performance cost is simu-
lation time which includes these delays plus any time spent waiting for a request to
be granted. The computation is organized into stages and the total simulation time

is the sum of the time spent on each stage.

To illustrate how the performance model distinguishes different FFT dataflows,
we compare two different dataflows for a 64-point FFT. The first is the Pease dataflow
shown in Chapter 2.1 and the second is the optimal dataflow discovered by the search
in the following section. Table 4.1 shows number of local and remote memory accesses
at each stage of both dataflows. Table 4.2 shows the performance cost from the sim-
ulation with 3 different delay parameters. Notice that at stage 5, both dataflow gives
the same number of local (64) and remote (64) memory accesses. However, the opti-
mal dataflow gives a better performance (384 v.s. 258). The improved performance
is due to less memory contention and is captured in the model by the reduction in

time spent waiting for memory requests to be granted.

111

Table 4.1 Local vs. remote memory accesses for Pease and optimal dataflow

Stage | Pease algorithm | Optimal algorithm
Local Remote Local Remote
1 32 96 128 0
2 32 96 128 0
3 64 64 128 0
4 128 0 128 0
5 64 64 64 64
6 32 96 64 64
| Total | 352 | 416 | 640 | 128 |

Table 4.2 Performance of 64-point Pease and optimal dataflow

Unit = clock cycle

Stage D, = 20 D. =1 D. =1
i Dy, = 2 Dy = 2 Dy =0
D, =2 D, =2 D, =2

Pease | Opt. | Pease | Opt. | Pease | Opt.
388 168 396 64 238 64
386 168 386 64 216 64
384 168 390 64 210 64
168 168 64 64 64 64
384 274 384 282 204 184

6 386 258 392 258 230 174

| Total | 2096 | 1204 | 2012 | 790 | 1154 | 610 |

G| W|IN| -

4.3 Search and Results Analysis

Using the performance model from the previous section we can systematically
search for the optimal FFT dataflow given by Equation 2-52. This section summarizes
the results from this search. We show that there is a wide range in performance and
that the optimal algorithm is considerably better than the Pease algorithm or the
expected performance from the search space. Since the size of the search space is

(n — 1)!™ an exhaustive search is out of the question for all be the smallest values

112

of n. However, since each stage is independent it is only necessary to search for the
optimal dataflow in each stage, which reduces the search space to n(n — 1)! = nl.
Using this reduced search space, we empirically found the optimal algorithm up to
size N = 2!%, These results led us to consider an algorithm that is conjectured to be

optimal in general.

Figure 4.3 shows the distribution of performance for all permutations occurring in
stage 5 of a 64-point FFT with 4, 8, and 16 processors. Using similar results from the
other stages we constructed an optimal algorithm. Similar constructions were carried

out for n = 7,8,9 and 10. Table 4.3 compares the performance of these optimal

Table 4.3 Performance of 64-point Pease algorithm and optimal dataflow with 4
processors and different delay parameters

m Pease/Optimal

n=6 ln=7|n=8|n=9|n-=10
211.74| 1.86 1.95 2.01 2.07
2.23 | 2.48 2.68 2.87 3.04
4 |2.14 | 2.50 2.80 3.10 3.37

w

120 O16 processars

100 WS processors
& a0 04

FOCESSOrS
§ & H
E- 40
20 1 ’.I
D =il T | | T T

¥ "-bdl? fa’i’?’% rb%\r} &gfj@ \Ké‘m

Performance

Figure 4.3 Performance histogram for all stage 5 permutations

algorithms to the Pease algorithm. Figure 4.4 shows the distribution of performance

113

1800
1600

1400
1200
1000
gaa
G000
400

Ao QD& 5P P

2
Optimal Feaze

Figure 4.4 Performance distribution 10,000 random dataflows

for 10,000 random algorithms of size 64 using 8 processors. The location of the
optimal and Pease algorithms are indicated. This shows that an optimal algorithm
is very rare. The resulting optimal algorithms and their generalization are described

in the next section.

4.4 The Optimal Algorithm

After exhaustively searching over all possible permutations in each stage for FF'T
of size 2% to 2! points, we use the pattern of the optimal permutation to conjecture
the optimal algorithm of size 2" on 2™ processors. Table 4.4 shows the conjectured
optimal algorithm described by permutations of degree n. Table 4.5 shows the per-
muted bits for generating source local addresses, target PID and source MID for

optimal algorithm obtained by using the mapping method describe in Chapter 3.

Following the twiddle factor mapping explained in Chapter 3, the bit patterns for

generating twiddle fractions for one-dimensional DFT using the optimal is shown in

114

Table 4.4 Permutations o; and o; !

points on 2™ processors

specifying the optimal algorithm of size 2"

T

Stage o; and o,
i
1 o1 =0n-m-1,---,n—1,1,--- ,n—m—2)
o =0,m+1,---,n—1,1,---,m)
2 P =(l,n—m, - ,n—10,2,--- ;n—m—1)
oy " =(m+1,0m+2,---.n—1,1,---,m)
i op =@—-1,n—-—m,---,n—10,---,i—2,4,--- ,n—m—1)
a‘i_l =(m+1,---,m+i—1,0,m+i,---,n—1,1,--- ,m)
n-m Op-m =Mm-m—-1,---,n—-10,---,n—m—2)
U;im =(m+1,---,n—1,0,1,--- ,m)
n-m+l | op_ppy1 =(n—-—m—-1,n—-—m-2n—m,--- ,n—10,--- ,n—m—23)
U;imﬂ =m+1,---,n—1,1,0,2,--- ,m)
n-mt+j | opmy; =@ —Ln—m—1,---,i—=2n—m—2,4,---,n—10---,n—m—3)
O-'gim-ky' :(m+17 7n_laja17"' 7]_1a0a.7+17 7m)
n On_1 =n—-Ln-m-1,---,n—2n—m-—2,0,--- ,n—m—3)
ol =m+1,-,n—1Lm1,--- ,m—10)

Table 4.6. Note that the twiddle fractions for ¢-dimensional DFT is generated by

masking off the twiddle fractions for the one-dimensional case (Section 3.2.5.)

Note that the target PID and the source MID is equal to the PE number during
stage 1 to stage n — m. This mean that all memory accesses are local. However, for
stage i, n — m < ¢ < n, there is only one bit difference between the target PID or
the source MID and the processor number. This means that half of data assigned
to a processor comes from itself and the other half comes from another processor

throughout the whole stage.

115

Table 4.5 Permutation bits the optimal algorithm of size 2" points on 2™-processor

system

Stage i | Source MID = Target PID Local Address
1 Pm—1"""Po Up—m—1""" G100
2 Pm—1"""P0 Ap—m—1""" 020001
i Pm—1"""Po Up—m—1"" " QiA00;—1 """ A1
n—m Pm—1-""Po apln—m—1 " a201
n—m+1 Pm—1"""0aQ a00n—m—1 " G201
n—m+j| DPm—1-"Pj+100Pj—1"""Po agQp—m—1 - G201
n agPm—2" " Po agUp—m—1" " 0201

In addition to good memory access pattern, the optimal algorithm has other in-

teresting properties that simplify its implementation. In the next chapter, we will

explain how the optimal algorithm simplifies the implementation.

Table 4.7 shows the permutation o;, the bit patterns for generating local addresses,

target PID, source MID, and twiddle fractions using the optimal algorithms of size

26 points on 23 processors.

116

Table 4.6 Twiddle fractions for one-dimensional DFT of size 2" using the optimal
algorithm

Stage | One-dimensional Twiddle Fraction

1 [0.00---0
2 | 0.0bys10---0

i | 0.0bysitbppi0---0

n-m O.ObTL;l s bm+10 -0

n-m+1 | 0.0b1bp_1 - bymi10- -0
n-m-t O-Obt—l T blbtbn—l T bm+10 -0

n O-Obm—l s blbmbn—l T bm+10 -0

Table 4.7 Bit patterns for generating local addresses, target PID, source MID, and
twiddle fractions using the optimal algorithms of size 2% points on 23 processors

Stage o; and ai_l Source MID | Local Address | Twiddle fractions

i = Target PID (TF1,)

1 01 = (07 27 3747 57 1) (P?PIPO)Z (GQGlaO)Q 0.0---0
ot =1(0,4,5,1,2,3)

2 oy =(1,3,4,5,0,2) (p2p1P0)2 (a2aqa1)2 0.0a:0---0
oy =(4,0,5,1,2,3)

3 03 = (27 3, 47 9,0, 1) (p2P1P0)2 (a0a2a1)2 0.0a2a10---0
o3 =(4,5,0,1,2,3)

4 g4 = (3, 2, 4, 5, 0, 1) (p2p1a0)2 (a()aQal)Q 0.0p0a2a10 -0
o, =(4,5,1,0,2,3)

5 o5 =(4,3,2,5,0,1) (p2a0po)2 (apazay)2 0.0poprazai0---0
o' =(4,5,2,1,0,3)

6 o =1(5,3,4,2,0,1) (aop1po)2 (apazar)2 0.0pop1p2a2a10-- -0
o5 =(4,5,3,1,2,0)

117

5.0 IMPLEMENTATION OF THE FFT PROCESSOR

As shown in Chapter 3, an FFT algorithm can be systematically mapped to the
architecture shown in Figure 5.1. Based on the mapping, each algorithm produces a
corresponding hardware. In Chapter 4, we search for the algorithm that will give the
best performance. In this chapter, we describe the implementation of the universal

FFT provided a choice of algorithm.

‘_" Interconection Network

nten CUAG CTAG . [CUAG [CUAG
ace
M M M M

| | | I

Figure 5.1 The FFT Engine architecture

Based on the architecture and mapping methodology in Chapter 3, all 3 parts of
the architecture (the I/O interface, the interconnection network and the processor
elements) are parameterized by 3 sets of matrices describing an FFT algorithm. In
particular, the I/O interface unit who is responsible for loading the input data and
uploading the result is parameterized by the initial permutation Fy; the interconnec-
tion network depends on the internal permutations P;, 1 < i < n, and the processor
elements are parameterized by both the internal permutations and the twiddle factor

matrices T;, 1 <1 < n. We will discuss how these units are implemented.

All units that are parameterized by the matrices depends on the generation of
numbers permuted by a tensor permutation, we introduce two implementation tech-
niques of such generator in Section 5.1. In Section 5.2, we describe the universal

FFT engine specification. The implementation of the I/O interface is described in

118

Section 5.3. We discuss the implementation of the interconnection network in Sec-
tion 5.4. Section 5.5.1 and 5.5.2 describes the implementation the computation unit
(CU) and the address generator (AG) of the processor elements respectively. We con-
clude the chapter by discussing the implementation of design in Wildforce™™ FPGA

board [23] for proof of concept.

5.1 Implementation of Tensor Permutations

As shown in Section 2.1, a sequence of numbers permuted by a tensor permutation
matrix of size 2" x 2™ can be generated using n-bit counter whose output bits are
permuted by a permutation of degree n. In essence, we can specify how the permuted
numbers are generated by a permuted bit pattern. For instance, (bg - - - b,_1)2 specifies
the generation of bit-reversal permutation matrix of size 2" x 2". In Chapter 3, we
show that the relabeling of input during the loading, the address generation, and the
twiddle fraction generation are derived from a tensor permutation matrix and can
be specified by a permuted bits pattern. We propose two implementation techniques
for generating the permuted numbers. The first technique uses an array of MUXs to
permute the counter’s output bits. The second method uses an adder (accumulator)
with adaptable increment numbers. The following subsections describes these two

techniques.

5.1.1 Implementation using MUXs

Given a permuted bit, a straightforward implementation of the tensor permutation
matrix is by using multiplexers (MUXs) to realize the permutation of the counter’s

output bits. Figure 5.2 shows the diagram of the implementation.

119

(@1 - .- 2k
lo-hit e A1
coutter k
> > A
R B
Ay
S(k—]. ---Sj---SD
—— MUX Selects
size I_“'TF Generator
og

Figure 5.2 Implementation of tensor permutation using MUXs

Note that if the generator is built for only one permuted bit pattern of a fixed size,
we can hardwire the permuted bits. However, that is not the case of the generators in
the universal FFT processor. Firstly, there are multiple stages with different permuted
bit patterns. Secondly, a generator must be able to handle different sizes of FFT.
Since the permuted bit pattern for different stages depend on the set of permutations
specifying the algorithm, they are compile-time parameters. However, the size is a

run-time parameter.

Let 2™mez and 2™ be the maximum number of points and number of processors

respectively. Then, we need a (1,4, — m)-bit counter in each processor. The size of

120

the MUXSs can be varied depending on the algorithm.

Let Nypar —m =k and (ag_1 - - - ag)2 be the output bits of the counter. In general,
an array of k k-to-1 MUXSs can be used to implemented any possible permuted bit

pattern.

An k-to-1 MUX selects one of k inputs as its output. Let the input signal that
controls the MUX’s output be called MUX select. Let a;, 0 < j < ng,,, be the gt
input of a k-to-1 MUX. Let M; be the j% MUX of an array of & MUXs and let
5(j), 0 < s(j) < k, be the MUX's select of M;. Then, a,) is the output of M; and
(@s(k—1) - - - @s(0))2 is the output of the array of the MUXs. In other words, the MUXs
permute (ap_1...a0)2 t0 (Gsk—1)- - - As(0))2-

The MUXs selects are generated accordingly to a set of permuted bit patterns
which is derived from a set of permutations. For example, for n,,,, — m and m = 2,
there are n,,,. — m + 1 = 9 possible sizes. Since there are n set of MUX selects for
size n, 2 < n < 10, there are totally > "™ n sets of MUX selects. However, since
the MUX selects are based on the same set of permutations, they are related. Hence,
they can be generated based on the relationship. In Section 5.5.4 we show how MUX

selects of the Pease and the optimal algorithms can be generated.

5.1.2 Implementation using Adders

In many cases where the permuted bit pattern contains only a few portions of
consecutive bits, using adders to generate the permuted numbers has some advantages
over using MUXs. The most important advantage is when n is large. This is because

with a large n, using MUXs can take a lot of space and long delay compared to adders.

Figure 5.3 shows a basic form of an adder for generating permuted numbers.

The base address (INIT), and increment (INC) depends on the permuted bit pattern.

121

INC

(1]
20-bit ADDER)

[]

|ACC!

Figure 5.3 Adder used for generating sequence of permuted numbers

Specifically, they depends on the number of portions of consecutive bits. For example,
the permuted bit pattern (azasajagasas)s contains two portions of consecutive bits:

(azasaiag)e and (asaq)s. Therefore, two increment numbers are needed.

There are two properties when incrementing a binary number (a1 ---ag)2 by 1.
Firstly, the value of ay is flip-flopped between 0 and 1. Secondly, the remaining of
the bits changes accordingly to the carry propagation. When the bits are permuted,
we need to keep these two properties intact by providing the right increment number

instead of 1.

We can keep the flip-flop property of ay by aligning '1’ with ag. For example, let
the permuted bit pattern be (azasaiapasay)s, then aligning 1 with ag results in the
increment number equal to (000100),. Adding (000100), to the current value changes
the value of ag between 0 and 1. The carry propagation, however, are more difficult

to maintain. The following illustrates the technique.

Example: Let n,,,, be the maximum size of the generator using adder. This
means the size of the adder is n,,., bits. Let us consider the permuted bit pattern
(azasajapagasay)e. Notice that there are 2 portions of consecutive bits. The first
portion is (as---ap) containing 4 bits. The second portion is (agasas) containing 3
bits. The flip-flop property dictates that ‘1’ should be aligned with ag. Therefore,

the nyeq-bit (0---01000)s is the increment number when the carry propagation is

122

not broken. This is true whenever there is no carry from as to a4. The only time
that this carry occurs is when the current value of the portion (a3 ---ag) is equal to
(1111). Since we start from address (0- - - 0)s, this will occur in every 2* addresses. In
other words, it happens in stride 2%, where 4 is the number of bits in the first portion

of consecutive bits. We will refer to this number as a “stride number”.

The stride number signifies that the increment number must be changed in order
to keep the integrity of the carry propagation from as to a4. Since it occurs only
when (as---ag) = (1111)y, the current addresses are equal to (0---0111lagasays)s.
The next address obtained by adding ’1’ to (0---0agasasasasaiag) is equal to
(0---00000agasas)2 + 1. Then, the different between the next value and the cur-

rent value is the increment number; i.e.

INC = ((0 s 00000a6a5a4)2 + (0 s 01)2 — (0 s 01111a6a5a4)2
= ((0 s 00000a6a5a4)2 — (O e 01111a6a5a4)2) + (O e 01)2
= (0---01)y — (0---01111000),

= (1---10001001) = =27 +2* +1

In conclusion, to generate the permuted numbers parameterized by the permuted
bit pattern (aszasaiapagasay)s, we need 2 increment numbers: (0---01000), = 2*
and (1---10001001)y = —27 + 23 + 1. If (azasa;) = (1111),, the increment is

(1---10001001)s; otherwise the increment is (0---01000)s. O

Based on this implementation, changing increment numbers is done in stride 2°.
The adder shown in Figure 5.3 can also be used as the stride 2° counter, where there
is the carry out in every 2° numbers. Let n,,,, be number of bits of the adder, then
setting the increment number to 2"me=~¢ generates the carry out in every 2° numbers

(or in stride 2°.)

123

Example: Let n,,,, = 10 and s = 3. Then, setting the increment number to

21973 = (0010000000), generates a carry out in every 8 numbers. O

Note that the base address (INIT) is usually equal to 0.

5.2 Universal FFT Engine

In order to understand the implementation of each unit, let us first look at the
big picture of the FFT engine. Let us assume that there exists a protocol of 1/O
interface between a user denoted as “Host” in Figure 5.1 and the FFT engine. Such
protocol provides a way to transfer data between the user and the FFT engine. One
example of such protocol is the PCI bus by which a FPGA board communicates with
a PC acting as a host. Then, the host starts using the FFT engine by sending run-
time parameters followed by the sequence of input data. Once the host finishes the
loading, it waits for a “done” signal from the FFT engine. Once it receives the signal,
it uploads the result from the FF'T engine. The run-time parameters include number

of points (2"), n, number of dimensions (t), and size of each dimension (ny,--- ,ny).

The FFT engine is either in ready or computing states. If it is in ready state,
the first data sent to it by the host is considered the first run-time parameter. Then,
it will start retrieving the next parameters and distributes them to all PEs. Once
the run-time parameters are set, it starts loading the input data and computing the
FFT. Once it is done, it sends the “done” signal to host and goes into the ready state

waiting for the next parameters.

The I/O interface unit is responsible for this interaction between the user and the

FFT engine. The following section describes the I/O interface unit.

124

5.3 1I/0O Interface Unit

The I/O interface unit functions are (1) receive parameters, (2) convert the pa-
rameters to the values used by each unit, (3) retrieving and distributing the input
data to memory modules, (4) wait for all PEs to finish their jobs and (5) send the
“done” signal to host when all computations are done. Figure 5.4 shows the diagram
of the I/O interface unit. The parameters and input data are put do the input FIFO

| Host |
Parameters/Data

\ 4 i

A J

Parameter
converter

v

Parameter Target MID
) .
Registers (Generator

\ 4 A 4
v v

Parameter/Data Tareet MID Control

Interconnection Metwiork

Figure 5.4 1/O interface Unit

by the host. If the input is a parameter, it is converted by the “parameter converter”
unit and kept in a register. If it is the input data, it is sent directly to the inter-

connection network. The MUX is used to select either the parameters or input data.

125

The unit called “Target MID Generator” generates the MID to which the data are

sent. All these jobs are controlled by the main controller.

The only unit that is parameterized by P, is “Target MID Generator.” For the
class of algorithm under consideration, Py depend only on the dimension specification;
i.e. it depends on the number of dimensions (¢) and ny,---,n; In Section 3.2.1 we
shown that the target PID is the m most significant bits of the permuted bits per-
muted by oy. This is equal to (b%—l(n_l) e boo—l(n_m))Q, where o' is the permutation
of degree n specifying Roni @ «+ - ® Raoni. Since Ron; is a bit reversal permutation of

size n; bits,

—1
Oy :(nt_]-:"'707nt_nt—1_17"'antv"'7n_]—7"'n_nl)

Example: To illustrate oy ', consider the case where n = 10, t = 3, n; = 4,
ny = 3 and n3 = 3. Then, ;' = (2,1,0,5,4,3,9,8,7,6). Therefore, for 4-processor
system (m = 2), the target MID is (bgbr)s. O

We can implement the “Target MID Generator” using adders as shown in Sec-

tion 5.1.2. The following example illustrates the “Target MID Generator”.

Example: Assume that the FFT engine can computed up to 22° points and
maximum number of dimension is 3. Then, we can generate the target MID for
distributing input data using 3 accumulators (adders) as shown in Figure 5.5. The
“adder1” has 3 possible increment numbers: INC1 = 2™ +72 INC2 = 2"1+72 4 2™ and

INC3 = 2" 4 1.

Since the permutation Roni ® Rony ® Rons contains 3 sections of bit-reversal per-
mutations. The first section permutes (b,,—1---0)2 to (bo---bys—1)2. The second

section permutes (bp,ins—1 - bng)2 10 (byg * -+ bnyins—1)2 and the last section permute

126

ni+nz 1+n2 1
5 + 2n +TI 2|'| 2|'|1

+ Qoo1...0
= p0d
it ‘# +
) 4 ;
adder 1 adder< adder3
acc stnde N3 stride N3N2
i L
bit-reversal
J(m
target MID

Figure 5.5 Target MID Generator for FF'T Engine capable of computing 1-D, 2-D
or 3-D DFT

(b—1**bpyin3)2 t0 (bpysny -+ - by—1)2. Combining the three sections, we have the per-

muted bits equal to

(bn2+n3 o 'bn—l)(bns te 'bn2+n3—1)(bﬂ o 'bns—l)

The m-most significant bits of the above permuted bits are the target MID. Notice

that the above permuted bits is equal to reversing the following bit orders.

(bne,—l te 'bO)(bn2+n3—1 e bn3)<bn—1 e bn2+3)-

A number corresponding to the above permuted bit pattern can be generated by
adding either INC1, INC2 or INC3 to the previous value starting from 0. This follows

the technique described in Section 5.1.2.

127

The selection of the increment number works as following. The INC3 has the
highest priority. It is selected in stride 2"2%"s. The “adder3” produces the stride
signal for selecting INC3. The INC2 has second priority. It is selected in stride 2"
except when INC3 is selected. The “adder2” generates the stride signal for selecting

INC2. If both strides are not active, the INC1 is selected.

Using the technique describes in Section 5.1.2, we find that

INCI = (0---010---0)y = 2™ 172,
INC2 = (0---010---010---0)y = 2™F"2 4 2"

INC3 = (0---010---01)y = 2™ + 1.

5.4 Interconnection Network

Regardless of the choice of algorithm, the interconnection network must be able to
broadcast the parameters or input data to all PEs. Therefore, the first configuration
of the network is that the I/O interface unit is the sender and all PEs are the receivers.
All PEs take parameters, but receive only the data that are belong them. A data

belong to PE, if the target MID sent along with it is equal to r.

The other network configurations depend on the choice of algorithm. This is where

the optimal algorithm shows an advantage in addition to giving the best performance.

Let 2™ be number of processors. Then, for computing FFT of size 2" using the
optimal algorithm, in addition to broadcast by the I/O interface unit, it requires only
m network configurations, where each configuration has two PEs communicate in
pair. Moreover, a network configuration stays the same through out the stage; hence,

there are only m change of configurations.

128

Note that for other choice of algorithm, the communication pattern is also deter-

ministic but not necessary as simple.

5.5 Processor Element

There are two parts of a processor element, the computation unit (CU) and the

address generator (AG). Figure 5.6 shows the interface between the two units. The

*‘ ¥ control control ot
Computation >
Tt bd P Address Generator
(CU) FEoREE (AG) Din
" control_in
TF contral .
Y
req
Iv[Data T ack

MMemory

Figure 5.6 Processor Element

computation unit is responsible for generating twiddle factors and computing butterfly
operation. The address generator is responsible for scheduling the input data and
twiddle fractions to the computation unit and storing the result. Let us first consider

the computation unit.

129
5.5.1 Computation Unit (CU)

As described in previous chapters, we base our design on radix-2 dimensionless
FFT algorithms. A primitive computation in such algorithm is a 2-point butterfly

operation described by Equation 3-1.

Although the FFT algorithm is defined over various fields that contain a N root
of unit, we consider only FFT algorithm of vector space of the complex field. In
this case, we need at least a complex adder and a complex multiplier. There are
also choices of representing complex data, floating point or fixed point. In fixed-point
system, implementation of arithmetic units (adder and multiplier) are usually simpler,
smaller and faster. However, it works within a smaller range of data. Contrarily,
in floating-point representation, the implementation of arithmetic units are more

complicated, bigger and slower, but it covers a much larger data range.

To cover the larger data range, we choose to implement the floating point system.
An floating point adder and floating point multiplier are designed following the IEEE
standard (IEEE Std. 754-1985) for single-precision floating point number [37, 38].
Pipeline technique is employed in both floating point adder and floating multiplier.
Specifically, the floating point adder contains 4 pipeline stages and the floating point
multiplier contains 5 pipeline stages. Both designs are completely tested by test

vectors following the IEEE standard.

The pipeline adder and multiplier allows us to design a pipeline butterfly operation
and twiddle factor generator. The unit contains 24 pipeline stages with % output rate.
In other words, the output data of 2-point butterfly operations are available in every 4
clock cycles provided that the input data are fed continuously. The optimal algorithm

takes full advantage of the pipeline.

130

Provided a twiddle fraction %, the twiddle factor can be generated in different
ways ranging from using the complete table lookup to generating the next value from
the previous values. The trade-off is the propagation errors. In the complete table
lookup, there is no propagation errors while the generation from the previous value
accumulates the errors. We reduce the errors by pre-storing some twiddle factors.
Doing so, we can reset the error when it hits those pre-stored twiddle factor. The

details of the implementation of the twiddle factor and the butterfly operation can

be found in [39].

5.5.2 Address Generator (AG)

The address generator contains 3 parts: the data control unit (DCU), the address
generation unit (AGU) and the twiddle fraction generation unit (TFG). Figure 5.7

shows the interface of the 3 units. The following subsections describe the 3 units.

ST TEGG

addr control par control par

] 11T T 11t

ot
el
3 cordinl control ot
hid » Tata Control TTrat
comtrol (Dch
i
- T F
TF cortml cordral in

L T

Figure 5.7 Address generator

5.5.3 Data Control Unit (DCU)

131

The data control unit provides the transfer of data to/from the computation unit,

the memory and the interconnection network. Figure 5.8 shows the datapath and the

controller inside the DCU.

Data Fromm Ferote

aomrce_ 100

Ferote 20
Begisters
X —
Ll | Ferote ¥
Registers
' Local X
FIFO
| —{ |
= e
Thwiddle faction FIFC
¥ —{ | >
contral
v Cantroller E:I:,—b
AGEU -
FID
Trwiddle L
Fraction Lddress
Generator
& T F 3 tf_control T
vl address B
Dhirmension Sime I Drata Im] Ivl Data_ out
Pamrmeter Pararmeter v
Llermnory

Figure 5.8 Data Control Unit (DCU)

Data To
Rernote

Destination

The controller uses the information (address, target PID and source MID) from

the AGU to control the transfer of data. The data to/from the CU, the memory and

the interconnection network are buffered in their corresponding FIFOs.

Note that functionally the DCU does not depend on the algorithm. However, the

optimal algorithm can simplify the controller and reduce the size of buffers.

132
5.5.4 Address Generation Unit (AGU)

Figure 5.9 shows the interface entity of an address generation unit. An address
generator is parameterized during the runtime by the “size_parameter” and during

the compile-time by the FF'T dataflow and the maximum size denoted by 7,,4s-

slze_parametsy > Parameters: .lu:-:al address
ap_addx g FFT Dataflow o taret PID
Specified by
1k P14
i _""> PR e MID
|
resat

Figure 5.9 Interface entity of an address generation unit

As shown in Chapter 3, the AGU in each PE generates the sequence of local
addresses, their target PIDs, and the source MIDs derived from the permutations
specifying the FF'T dataflow. Specifically, at stage 7, all three parts are derived from
the permutation function o; specifying the internal permutation P;. In addition to
the local address, the target ID and the source ID, an AGU also produces flags for

the controller.

As shown in Chapter 3, the local addresses can be represented by permuted bit
pattern. The permuted bits are derived from permutation function ¢;. Similarly, the
target PIDs and source MIDs can be represented by permuted bit patterns. However,
the target ID may includes the bits of the PID. Let the (p,,_1 ---po)2 is binary rep-
resentation of the PID. Then, permuted bits representing target ID or source ID are
derived from permuting the combination of the counter bits and the PID bits. For

example, Table 3.12-3.14 shows the bit patterns for generating local addresses and

133

target ID, and source ID using the Pease algorithm of size 2" points FFT and 2™

processors respectively.

Based on tensor permutation, an address generator can be implemented using
MUXs or adders as described in Section 5.1. We will use the Pease algorithm and
the optimal algorithm of size 2™ points on 2™ processor elements as the examples
for illustrating the implementation. We also assume that the maximum size is 2"ma®

points.

5.5.4.1 Implementation using MUXSs. Figure 5.10 shows the block diagram of

address generator using an counter and MUXs.

L Arayaf

addr k-bit
e . n-m local address
Counter . [xrm)-to-1
clk —FEI MU k
— 1
I
ag F Y F Y
reset hp stage P S‘
v Fl-m-l) .. 4000
St g(ﬂ?
Conmiter MU Xz selact
i
P aameteriz ed
by dataflow
) P
cime parameter
(3,4 40) l
k-1 . tID
L Doy of m farge
ti-to- 1 K s A
; L
: p
Pt P
i sanrce [D

Array of m
n-to-1 MITE

Figure 5.10 Address generator for FFT of size 2"-points on 2™-processor system
using MUXs

134

Let k = npey —m and a;, 0 < 7 < k, be the 3% input of a k-to-1 MUX. Let M; be
the j" MUX of an array of k MUXs. Let s(j), 0 < s(j) < k, be the MUX’s select of
M;. Then, ayg) is the output of M; and (ayx—1) - .- as))2 is the output of the array

of the MUXs. In other words, the MUXs permute (ag_1 ...a0)2 t0 (Gsr—1) - - - Gs(0))2-

Similarly, target ID and source ID can be generated using array of m MUXs.
However, in addition to the counter output, a,_,,_1,...,a, the target PID and the
source MID may include the PID bits labeled as p,,_1,...,po. Therefore, m n-to-1
MUXs are required for generation of the target ID. Let a;j, 0 < j < n—m, be the j*
input of an n-to-1 MUX and py, 0 < k < m, be the (n — m + k)™ input of the same
n-to-1 MUX. Then, an array of m n-to-1 MUXs can be used to generate the target
ID by setting the MUX’s selects so that the target ID is realized. we also needs m

n-to-1 MUXs for the generation of the source 1D,

Table 5.1 MUXs selects for the generation of local address following the Pease
algorithm

Stage Local Address
s(n—m—1),...,s(0)
1 n—m-—1,...,0
n—m-—2,...,00n—m—1
i n—-m-—2t...00n—m-—1,....n—m—1+1
n—m O on—m-—1,...,1
n—m+1 n—m-—1,...,0
n n—-—m-—1,...,0

Example: The Pease algorithm

Tables 5.1-5.3 show the MUXs selects for the Pease algorithm of size 2" and 2™

processors. These MUXs selects follow the permuted bits shown in Table3.12-3.14

135

Table 5.2 MUXs selects for the generation of target ID following the Pease algo-

rithm

Stage Target 1D
stim —1),...,st(0)
1 m,..., 1
m,...,1
n—2m+1 n—m,m—1,...,1

n—2m+j3|n—-—m+7—-1,....n—mm—j5—1,...,1

Table 5.3 MUXs selects for the generation of source ID following the Pease algo-

rithm
Stage Source 1D
ss(m—1),...,ss(0)
1 n—m-—1,...,n—2m
n—m-—2,...,n—2m—1
i n—m-—i,...00n—2m—1—1
n—2m+1 n—-—m-—2,....n—2m—1,n—m
n—2m+j|n—-m-j—1,...n—2m—-1,n—m+j—1,...,n—m
n—m n—1,....,n—m
n—m-+j n—j—1,....n—m,00n—m-—1,....n—m+7—1
n Oon—m-—1,....n—2m —1

136

which are systematically derived from the permutation functions o;, 1 < 7 < n,
specifying the Pease algorithm. In the table, st; and ss;, 0 < j < m, denote the
MUXs selects for the j bit of the target ID and the source ID respectively. The

concrete example of the MUXs selects are shown in the appendix.

MUX Selects

We needs n sets of n +m MUX’s selects for one size. If the system is to handle
a fixed-size FF'T, then the size parameter becomes a compile-time parameter. Once

the size, n, is specified, the MUXs selects for the size are fixed for the particular size.

However, our goal is to implement universal FF'T processors whose schedules are
hardwired during the compile-time. In other words, we want the size to be varied
during the run-time. Let the size of FFT varies from n,,;, t0 N4 Then, we need
Nmaz — M (Nmaz — m)-to-1 MUXs and 2m ny,e,-to-1 MUXs for address generator. If
n is a size in the range (N < 1 < Nypas, we needs n sets of the MUXs selects for
the n stages. Since there are 1,4, — Nmin + 1 possible sizes in the range, there are

possible """ p gets of the MUXs selects.

N=Nmin

1. Pre-stored MUX Selects

All possible MUXs selects can be pre-stored in a read-only memory (ROM).
Each MUXs select is a [10g Ny,q |-bit binary number. Therefore, the ROM size

is ﬂog nma:r—l X (nmaz + m) X anax n Y bits.

N=Tmi
The other option of run-time size parameter is to use random-access memory
(RAM) as the storage of MUX selects. The MUX selects for size n are loaded
to the RAM as part of parameters. It increases the size of run-time parameters
but reduces the memory size for storing MUX’s selects to [10g Nmaz | X (Mmaz +

m) X Nmag-

137

2. Generated MUX Selects

While pre-stored MUX’s selects works for any FFT dataflow, it does not take
advantage of nice properties provided by some algorithm. Since MUX'’s selects
depends on permutation functions o at each stage. If there exists a relationship
between o; and o;_1, it can be used to generate the MUX’s selects of stage i

from MUX selects of previous stages.

For Pease algorithm, the relationship of o; and o;_; is shifting. For the Pease
algorithm, the initial value of the MUX select for local address denoted s,
0 < j <n—misequal to j. Then, when changing stage and the current
stage is less than n —m, s;_1, 0 < j < n — m is shifted to become s;. The
MUX select sy depends on the size n which is the run-time parameter and m
which is a compile-time parameter. It is initialized to 0. The next value of s
isn —m —1, where ¢ = 1,...,n —m. This can be generated by a decrement or
a countdown counter initialized to n —m — 1. If the current stage is greater or
equal to n — m, the MUXs selects is reset to the initial values. Similarly, the
MUX selects for target ID denoted st;, 0 < j < m, can be generated using m
registers and a mod-m counter initialized to n — m, and the MUX selects for
the source ID denoted ss;, 0 < j < m, can be generated using m registers and
a countdown counter. Figure 5.11 shows a circuit used for generating MUX’s

selects of address generator of Pease algorithm of size 5 to 10 and 4 processors.

O

Not only does the optimal dataflow produce the best performance, it tremen-
dously simplify the implementation of the address generator when using MUXs. The

following example illustrate the implementation of the optimal algorithm.

138

57) 53 2] 52 5 1]

dec J
) f] 4 3 2 1 1] k
S5 1=}] 51

tod-10 special
incy — decr Pl

Figure 5.11 Generation of MUX’s selects for address generator of Pease algorithm
of size 2™ to 210

Example: The Optimal Algorithm

Table 4.5 in Chapter 4 shows the permuted bits for generating local address fol-
lowing the optimal algorithm. Notice that throughout all stages there are at most 3
bits that are permuted to an output bit. Specifically, let (¢,_p,—1 -+ ¢o) be the local
address generated by an address generator. Then, ¢;, 0 < j < n — m, is equal to

either ag, a;, or a;;;. This allows us to use 3-to-1 MUXs instead of (n-m)-to-1 MUXs.

Let s; be the MUX select for selecting ¢;. Then,

ao if 5; =0
¢ = a; ifs;j=1, 0<j)<nand ay—m = Gp—m-1
Qj41 if S; = 2

Figure 5.12 shows the implementation of address generator for optimal algorithm
using MUXs provided that the n,,.; is equal to 10. As shown in Figure 5.12, the
MUX selects s; can be generated using the shifting function. At the first stage, we

initialize s;, 1 < j <n—m, to 1 and sy to 0. Then, when changing the stage and the

139

(3
(3
v

5

by
Ay

‘e
3

‘e
D

55

a —™
R

Iy
E

v
a

Sc

as —W
ar —fm

et
2
3
v

57

- =

5
F 3

R IR

Figure 5.12 Address generator for optimal FFT algorithm of size 32 to 1024 points
using 3-to-1 MUXs

.—~|_

current stage is less than n —m, s, is loaded with 2 and the current s;_; is shifted to
become the next s;, 1 < j < n — m. For stage greater or equal to n — m, the MUXs

selects are that s,,_p,,—1 =0 and 5; =2,0<j7<n—m—1.

Moreover, the target PID and the source MID have at most 1 bit different from
the PE number. The communication between processors is simplified and there is
no need to generate the whole target and source MID. Instead, we need to generate
only a flag specifying whether the target PID and the source MID are local or remote.
During stage 1 to n—m, both the source MID and the target PID are equal to the PE

number, (p,_1---po). Therefore, during these stages the flag is set to local. During

140

stage n —m+1 to n, both the target PID and the source MID has only 1 bit different
from the PE number. That bit is replaced by ag. Therefore, during these last m

stages, the flag is equal to a,. O

5.5.4.2 Implementation using Adders. In case such as the Pease algorithm, the

generation of addresses using adders as described in Section 5.1.2 has advantages over

the MUXs.
Example: The Pease algorithm

For the Pease algorithm of size 2" points, the permuted bit pattern at stage ¢ is

described in Table3.12 which is shown again as follows.

(an—m—l e GO)Q, =1
local address = ¢ (@n—m—i* " QUn_m-1"" " Un-m—it1)2, 2<i<n—m
(an—m—l"'aﬂ)% n_m_i‘ngSn

This means that we needs only 2 increment numbers for generating using the
adders. The first increment number (INC1) is equal to 2 = (0---010---0)3. Notice
that at stage 1 and stage 7, n — m + 1 < ¢ < n, the increment is always equal to 1.
During stage 2 to n — m, the second increment number (INC2) is selected in stride

2n=m=t1 or whenever (ay_m_; -+ ag) = (1---1)q; that is

INC2 = (0 e Oan—m—l e a'n—m—i+1)2 +1-— (0 <01 1an—m—1 e an—m—i+1)2
= 1—(0---01---10---0)5
— 1 - (2n—m—i+1 o 1)2i—1 — 1 4 2i—1 - 2n—m
= (1---10---010---01),
Notice that only 2/~ changes according to the changing of stage. Therefore, the INC2

can be generated by a shift register and or gates. The number 1 — 2"~ is initialized

as a “size_parameter”. The number 2°7! is initialized to (0---1), at stage 1. Then,

141

it is shifted to the left by 1 bit when changing the stage. The INC2 is bit-wise or of

the two numbers. O

Since the implementation of the optimal algorithm’s AGU using MUXs is simple,
there is no clear advantage using adders. However, we show the implementation of

its address generation unit as following.
Example: The Optimal algorithm

For the Optimal algorithm of size 2" points, the permuted bit pattern at stage ¢

is described in Table4.5 which is shown again as follows.

(a'n—m—l T a0)27 1=1
local address = (@p—m—1-""Qi—1G00i—2---a1)2, 2<i<n—m—1
(@0n—m—1" "+ a1)s, n—m<i<n

There are 3 portions of consecutive bits; hence we needs 3 increment numbers. The
first increment number (INC1) is equal to 271, It can be generated using a shift-left
shift register initialized to (0---01), at stage 1. The second increment number (INC2)

is for keeping the carry propagation from ag to ay; i.e.

INC2 = (an—m-1-"@i—10a;—9---a1)s +1 — (ap_m-1---ai—1la,_2---a1)s
= 1—(0---010---0)y =1 — 2

= (1...10...01)2

The third increment number (INC3) is for keeping the carry propagation from a;_ 5 to

a;_1; i.e.
INC3 = (ap—m-1--"ai—10---0)o+1 — (ap_m_1---ai—11---1)s

= 1—-(0---01+--1)y=1—-2"—1= -2

= (1---10---0),

142

The INC3 can be generated by using the a shift-left shift register. Since INC2 is equal
to the previous value of INC3 plus 1, we can generate INC2 by setting bit 0 to 1 and
loading the remaining bits from the previous INC3. From stage n —m to stage n, the

increment numbers are the same as of stage n —m — 1.

The INC3 has the highest priority. It is selected in stride 2°='. Then if INC3 is
not selected and ag = 1, the INC2 is selected; otherwise, INC1 is selected. Since aq is
flip-flopped between 0 and 1, we can generated it using a toggle flip-flop. Therefore,

only one stride counter which counts in stride 2:~! is required. O

5.5.5 Twiddle Fraction Generation (TFG)

Figure 5.13 shows interface entity of the twiddle fraction generator. Like the
address generation unit, the compile-time parameter of twiddle fraction generator
is the FF'T dataflow. However, in addition to the size parameter, the dimension

specification is also run-time parameter for the TFG.

glze_pararneter
_ —™ Parameters:
Dimension par -_—
—» Twiddle fractio
— FFT Dataflow N
_— Specified by
F.l=Zi<n
]_'k =
[*
]
reset

Figure 5.13 Twiddle fraction generators for FFT of size 5 to 10 using MUXs

As shown in Chapter 3, the twiddle fractions for any dimensions can be generated
from twiddle fractions for one-dimensional FFT. Figure 5.14 shows the two steps

used for implement twiddle fractions. First, the twiddle fractions of one-dimensional

143

Dirnersion_per

N

slze_yparatneter —— P : Taaddle fraction
L . .
p| FFTdatflow | Mask Twaddle fmm.n
up briddle Specified by
Pil=itn
clk I
Fy Fy

resct

Figure 5.14 Two steps for generating twiddle fractions

FFT are generated. Let (r,,..—1---70)2 be the np,.-bit binary representing one-
dimensional 2" twiddle fraction generated at stage i. Then, for general case of t-
dimensional (2™ x ... X 2')-points FFT, where there are 2" points, 1 < k < t, in the
k' dimension, its twiddle fractions can be computed by masking off unwanted bits
of (7y,.0n—1"-T0)2. For example, Table 5.4 shows the masks for generation of twiddle

fractions of algorithms for computing DF'T up to 3 dimensions.

Figure 5.15 shows the implementation of mask for the Pease and the optimal
algorithms. The key component of the mask generation is the n,,,,-bit shift right
register whose MSB is loaded with ‘1’. The shifting occurs when changing stage and
is reset when changing the stage and changing the dimension. The [log 7,4, |-bit
counter is used to count the number of stage in each dimension labeled as j. Its
output is compared with n;, which is the number of stage in the k" dimension, where
k =3, 2, and 1. Whenever the j = ny, k is reduced by 1 and j is reset to 0. The 2-bit
counter is used to count down k and k is used to select n,. The counter is initialized

to the number of dimensions labeled as “dim_no” and is counted down when j = ny.

144

mask
3 ‘ M rhax
m _—. bit
mas
17— . . .] ——
Shift Fight Fegister o1 e _stage
F resct
]‘BSET,‘ j=hl<
.) —JP conparanTr
Ccounder i
F
puh
| | 3
change_stage oo uobe
T T T 2 T
T T s dirm_no

Figure 5.15 Generation of mask for computing twiddle fractions

The dimension parameters labeled as “Dimension_par” in Figure 5.13 and 5.14 are

specified by ny, ny, n3 and “dim_no.”

5.5.5.1 Implementation using MUXs.

Similar to the generation of addresses, the one-dimensional twiddle fraction can
be generated using MUXs as shown in Figure 5.16. In this figure, n,,,. is equal to 9.
As shown in Chapter 3, the twiddle fractions for FFT of size 2™ can be represented by
(n — 1)-bit number. Therefore, if we represent the twiddle fractions by 9-bit binary

number, the system can compute up to 2'° points.

The MUX selects sg,...,so depend on the bit patterns of twiddle fractions de-
rived from the one-dimensional twiddle factor matrices T;, 1 < i < n. For example,
Table 5.5 shows the one-dimensional bit patterns of the one-dimensional Pease algo-
rithm of size 2", where m < n < 10, 2™ is number of processors. The binary number

(@10—m—1 - - - ag)2 is the output of 10-bit counter and (p,,_1 -+ po)2 is the PID.

145

Table 5.4 Mask for generating twiddle fractions of the Pease and optimal algo-
rithms

k j 2"maz_hit Mask Stage
3 0 (0---0)2=0 1
j (1...10...0)2 — (2] — 1)2nma$_] j
ns — 1 (1 --10--- 0)2 = (2”371 — 1)2”"’“’3_“3_] ns
2 0 (0--:0)=0 n3+1
] (1--+10---0) = (27 — 1)2"me=—J ns+j+1
ny — 1 (1 -+-10--- 0)2 = (2”271 — 1)2”"““”7”271 ng + No
1 0 (00)2:0 n3+n2+1
j (1---10--:0)2 = (gj — 1)2nmax_j ng + no+j+1
ng—1[(1---10---0)p = (27271 — 1)2"mas=m1=L Ty 4y + 1y =

The MUX’s selects sg, s7, ..., 59 are either stored in memory or generated. Since
[log9] is equal to 4, each MUX select is a 4 bit number. Hence, we will need a
4 x 9 bits of ROM for one set of the MUX selects. In general, the total number of bits
needed for storing all possible sizes is Z:LOZQ 4 x x9xn bits because there are 9 possible
sizes and each size has n stages. However, for Pease algorithm the MUX selects of
the last stage can be used as of all stages when used with the mask. Therefore, we
need only 4 x x9 x 9 bits. Table 5.6 shows the MUX’s selects for Pease algorithms

of size 2", 2 <n <9.

5.5.5.2 Implementation using Adders. The adder shown in Figure 5.3 can be

used for generating the one-dimensional twiddle fractions. The increment (INC) de-

pends on the bit patterns of twiddle fractions derived from the one-dimensional twid-

146

a7 s — rg
8hi) -
Clounier ax As7] r7
az Q-1
- A ™, Ts
- A5 ™, rs
PID o L —
Asq ™y Tq
I Y
e
B Fasbdal
RO mask

Figure 5.16 Twiddle fraction generators for FET of size 2™ to 2'0 using MUXs

dle factor matrices T;, 1 < i < n. As described in Section 5.5.25.5.4.2 of this chapter,
number of increment numbers in each stage depends on the number of portions with

consecutive bits.
Example: Pease Algorithm

At the last stage of the Pease algorithm, the whole pattern is a portion with
consecutive bits, which is (a,_m—1 - @1Pm_1---po0---0)y. This pattern contains two
parts: the counter bits (a,_m_1---a;1)2 and the PID’s bits (p,_1---po)2. Since the
PID portion is a constant, only the portion (a,_,_1---a;) is incrementing. This can
be accomplished by setting the increment number to (0---010---0) = 2%mez—n+m+l
which can be implemented by shifting 1 to the left by n,,,. —n+m+1 bits. The PID
portion can be included in the initial value (INIT). Specifically, the initial value can
be set to (0 - 0p1pe0 - -+ 0)2 = (p1po)22™me=~"*! which can be implemented by shifting

(p1po)2 to the left by n,..; —n + 1 bits. For example, if 1,0, =9, m =2 and n = 5,

147

Table 5.5 Twiddle fractions for Pease algorithms of size 2" where m < n < 10

Stage 9-bit twiddle fractiomns
0 (0. . .())2
1 (an—m—lo e 0)2
i (an—m—l e an—m—io U 0)2
n-m-1 (an_m% T a10 ce 0)2
n-m (an—m—l o alpm—lo e 0)2
n-m+j (an—m—l T 1Pm—1 " 'pm—j—lo e 0)2
n-1 (an—m—l o A1Pm—1 " 'pOO e 0)2

the increment number is (010000000); = 27 and the initial value is (00p;po00000)y =
(p1p0)22°~°*L. If n = 8, the increment number becomes (000010000), = 2° and the

initial value becomes (00000p;po00)s = (p1po)22°~ 51,

The same INC and INIT numbers can be used for all the stages because the
unwanted bits are masked off by the mask shown previously. Therefore, both INC

and INIT numbers are changed only when the size (n) is changed. U
Example: The Optimal Algorithm

For the optimal algorithm, the bit patterns for generating twiddle fractions of the
1-D 2™-point FFT following the optimal algorithm is shown in Table 4.6. This can be
generated using a adder with increment number equal to 2"mes =+ However, during
stage n —m + 1 to stage n the initial value (INIT) is set to (pj_1 - - pop;)2"me=—7,

where j =17 —n+m. O

148

Table 5.6 MUXSs’ selects for generating twiddle fractions of Pease algorithm for
FFT of size 2", 2 < n <10

Size ROM MUXs'selects
Address || ss | S7 || S6 | S5 || S4 | S3 | S2 | S1 | So
2 0 8100000]0]0]|O0
3 0 918101000]0]0]|0
4 0 1194810000]0]O0
) 0 21119180100]0]O0
6 1 31211198 (0]0]0/|0
7 2 41311211119 (8]0]0/|0
8 3 o432 11918]01]0
9 4 6 (5114132]1[9|8]0
10) 71651413 12|1]9]8
N + 10+ 1 (0. 1k
n * ¢ {0...010...0) N
sh

Tl +1

Slhaft left ﬁtr;

ld-twiddle fraction

Figure 5.17 Generation of one-dimensional twiddle fractions of the Pease algorithm

using adders

149

5.6 Implementation of the Optimal Algorithm on the
Wildforce”™ Board

In this section, we describe the implementation of the optimal algorithm on the
Wildforce’™ FPGA board shown in Figure 5.18. The board consists of 5 Xilinx
FPGA chips [40] (XC4085XLA) connected via a configurable crossbar interconnect.
Each processor has its own memory. The board communicates with a host computer
using a PCI bus. The host can read/write data from/to either the FIFOs connected

to CPEO, PE1 and PE4 respectively or from/to the memories directly.

36

|FIFO’4‘I

36

36

4
i CROSSBAR

| |
CPEO %36 %36 %36 %36 I

P
C
1 | Logic 3¢| Logic 3¢| Logic 3¢| Logic
B Card Core Core Core Core
u DPMC PE1 Al PE2 Al PE3 Al PE4 A
s T [Memory][. |[Memory]| .|[Memory]| .|[Memory]| .
h Mezz. 2] Mezz. |10 Mezz. |1(] Mezz. gv
Card . Card . Card . Card .
switch : : : :
. DPMC | _DPMC LDPMC LDPMC .
2% ____f‘f.._l___r‘_‘___Z___ii“____i____I:“_‘___.'
B0 436 Memory Bu

<
¥
Ext. I/0| SIMD
— card Connector]

Figure 5.18 Wildforce™ Architecture

The architecture in Section 3, is mapped to the board as follows. The processor
CPEQ, along with the FIFO 0’ is used as interface unit. The remaining 4 PEs
are used to implement the 4 processors , each with a computation unit and address
generator. The crossbar provided by the board is used as the interconnection network.
Figure 5.19 shows the datapath of a PE. Notice that we need only 2 FIFOs for
receiving data from the interconnection network and 2 FIFOs for sending. This is

because the network configurations is fixed throughout a stage; therefore there is no

150

Memory Memory Memory

Addriss Dati OutData In

A A A A A
]
ﬂ ||— Xbar
L [Data In
= L E

CU —

Xbar
—E j_DEFa Out

TFG AG

A A

Y

Figure 5.19 Processor Element’s datapath

need to specify the target PID or source MID. Only a flag identifying whether a data

is local or remote is enough.

The design of all units are done in synthesizable VHDL. We use a commercial
synthesis tool to synthesize the net list. Then, the place and route is done using the

tool provided by Xilinx.

Since the design of a PE is barely fit in one chip, we can only run up to 10
MHz. In the next chapter, we discuss the verification and the performance of the

implementation.

151

6.0 VERIFICATION AND PERFORMANCE

In this chapter, we discuss the testing and the benchmarking we performed to
verify the correctness and to analyze the potential performance of our design and
implementation. Section 6.1 presents the techniques we used to verify the design and
prototype implementation. These techniques rely on the fact that the FFT is a linear
computation and hence can be completely tested by using a set of inputs equal to a

basis. Section 6.2 reports on the performance of our prototype implementation.

6.1 Verification

Since the DFT is linear we can completely test correctness by verifying linearity
and testing on a basis. Let A be a matrix with NV columns and let x be a vector of

size N. Then, since

N-1
X = inezN
i=0
N-1 N-1
Ax) = AQ me) =) wiA(e))
i=0 i=0

we can test any program or hardware designed to compute the linear computation
y = Ax by testing A on the standard basis. Assuming that the computation is indeed
linear (this can be verified for random inputs), this provides an exhaustive test. Since
Ael is equal to the i column of A, we compare the output of calling A with input

e to the i column of A.

Since the correctness of our FFT engine depends on the correctness of the floating

point units (we need to assume that arithmetic is correct) these were tested using a

152

standard test suite. Then, we applied the above basis test and compared the result

with the i column of the DFT matrix which can be computed easily by definition.

This testing technique is quite different from what is usually done where typically
a test is performed on an incomplete set of inputs such as a sinusoidal function.
An additional benefit of our test, is that it allows us to easily trace through the

computation stages (we know the output for each stage) to help track down errors.

6.2 Performance

The performance of the universal FFT Engine implemented on Wildforce™ FPGA
board is measured by counting the number of clocks. This allows us to easily scale
performance data with a more realistic clock rate and it allows us to compare the

actual performance to the ideal performance bounded by memory requirements.

When running an FFT algorithm of size 2" on the proposed architecture, there
are 4 - 2" memory accesses in each stage (2 - 2" for reading and 2 - 2" writing). If
we can feed all input data to the computation unit continuously, we can accomplish
the best case performance in which one data point, which is equal to 4 floating point

numbers, is ready every 8 clock cycles.

Assume that we use one PE to compute a 2™-point FFT. For each butterfly opera-
tion, we need 4 clock cycles for reading 2 points of data; i.e. for each point, we need 1
clock cycle for real part and 1 clock cycle for imaginary part. Writing back the result
will need another 4 clock cycles for each butterfly operation. Assume that we can not
read and write at the same time. We will need at least 8 clock cycles for computing
each butterfly operation, in which case a result from each butterfly operation is ready

gn

in every 8 clock cycles. There are <- butterfly operations in each stage. Therefore,

153

we need 8(%) = 4(2") clock cycles to compute butterfly operations in each stage.
Since there are n stages, the best case performance for the single processor system is
equal to 4n2" clock cycles. When the computations are distributed to 4 processors,

the best case performance is equal to %. Table 6.1 shows number of clock cycles

Table 6.1 Performance measured in number of clock cycles

Size Performance measured in number of clocks
Total FFT Engine | Best Case

(Il) (: 47”1,(2")) (4 PES) (: Tozal) F;‘eTstEncg:;e
5 640 445 160 2.78
6 1536 717 384 1.87
7 3584 1400 896 1.56
8 8192 2848 2048 1.39
9 18432 5960 4608 1.29
10 40960 12656 10240 1.24
11 90112 27032 22528 1.20
12 196608 57792 49152 1.18
13 425984 123368 106496 1.16
14 917504 262672 229376 1.15
15 1966080 557624 491520 1.13

needed by the universal FFT engine to perform an FFT of size 2%, where 5 < k < 15.

It also compares the result with the best case performance. Note that for an FFT of
size 2%, the performance time is 13 % more than the best case.

Because of limitations in space on the Xilinx chips we used, our implementation
could only achieve a clock rate of 10 MHz. However, because of the scalability of the
FFT engine, we can linearly project the performance at 100 MHz.

In addition to showing the scalability of our design (i.e. how close to the ideal
case we are when we increase the number of processors), we compare our performance
to running a highly tuned software implementation on a standard processor. We

compared our design with FFTW running on a Pentium II 450 MHz. Table 6.2

Table 6.2 Performance measured in micro seconds

Size FFT Engine FFTW
n 10 MHz | 100 MHz | 450 MHz
5 44.5 4.45 2.53
6 1.7 7.17 6.24
7 140.0 14.00 16.64
8 284.8 28.48 37.86
9 1843.2 | 184.32 86.26
10 1265.6 | 126.56 206.32
11 2703.2 | 270.32 513.44
12 5779.2 | 577.92 | 1220.72
13 | 12336.8 | 1233.68 | 2671.15
14 | 26267.2 | 2626.72 | 6044.92
15 | 55762.4 | 5576.24 | 15460.45

154

compares the real performance of FFT engine at 10 MHz and the scale performance
at 100 MHz with the performance of FFTW. Our data shows upto a factor of 3 in
performance gain.

Since most FFT processors report performance for size equal to 1024 points, we
compare our design with other FFT processors collected by Bevan M. Bass [41].
We found that our FFT processor running at 100 MHz (126.56 usec) is comparable
to commercial FFT processors such as DaSP/PaC/RaS (131 psec) by Array Mi-
crosystem [42] and synthesizable FFT processor core (90 usec) Inventa by Mentor
Graphic [43].

Note that our design is also scalable in term of number of processors. For ex-
ample, for the 8-processor system, the performance time is almost twice that of the
4-processor system.

We would like to remark that while these figures suggest that the performance we
obtained is good, it was not our purpose to obtain a high-performance implementa-

tion. We were mainly interested in demonstrating our methodology.

155

7.0 CONCLUSIONS

In this thesis we designed, optimized, and implemented a universal FF'T processor.
The universal FFT processor is based on a class of algorithms called dimensionless
FFTs developed by Auslander, Johnson, and Johnson [16]. The use of the dimen-
sionless FF'T allows our processor to use the same design for computing 1, 2, and 3
dimensional FFTs. This increases the flexibility of an FFT processor, while retain-
ing the hardwired control, that leads to improved performance over general-purpose

processors.

The main theme of this thesis is not the end product but the methodology we
used to optimize the design. Using mathematical properties of the FFT we were able
to perform a systematic search for the optimal design. There is a large family of FFT
algorithms which can be classified by their dataflow properties (i.e. memory access
patterns). Starting with an abstract architectural model for a distributed memory
processor and a mapping from the space of FF'T algorithms to the architecture we
were able to automatically optimize the processor design. We introduced a high-level
performance model that captures key properties of the memory system, and using
this model as a cost function we searched for the algorithm that led to a processor
with the best performance. The search automatically found an interesting algorithm
with good locality and communication patterns that dramatically reduces memory

contention as compared to standard algorithms.

An implementation of the processor which is parameterized, at compile time, by
the choice of algorithm was presented. The parameterization allows us to instantiate
many different designs. We ultimately chose a design based on the optimal algorithm

found by the search. Once this particular design was chosen, we were able to fur-

156

ther simplify the implementation by taking advantage of properties of the particular

algorithm that was chosen.

Using mathematical properties of the FF'T and the fact that the communication
of a given algorithm is known a priori, we designed a distributed memory processor
with completely local control. The use of a design with local control and simple com-
munication patterns leads to a scalable design. The resulting design was prototyped
using a board with 5 Xilinx FPGA processors. This implementation was system-
atically verified for correctness and a preliminary performance study was performed
to investigate scalability and its performance potential. The performance of the im-
plementation prototype is closed to the best performance of the architecture under
consideration. Because of the limitation of the space and the technology of the FPGA
chip (XC4085XLA), the actual implementation can run up to 10 MHz. However, the
prototype can be scaled up both in terms of clock speed and number of processors. At
100 MHz, the performance of the implementation prototype is comparable to avail-
able FFT processors and outperforms a general purpose processor running a highly

tuned FFT package (we compared using the FETW package).

Based on our preliminary results we would like to build a high-performance ver-
sion of our design using a large number of processors. Additional optimizations will
need to be incorporated, including the use of an hierarchical system where there is
a board containing many smaller FFT processors, each containing many processing
elements like the ones in this thesis, in order to fully utilize a large number of pro-
cessors. In addition to the extensions necessary to build a large scale FFT processor,
another possible direction for future work is the extension of our design to other sig-

nal processing computations, in particular other classes of fast transforms such as

157

fast trigonometric transforms and wavelets. More generally one could investigate the

applicability of our design methodology to other problem areas.

1]

158

BIBLIOGRAPHY

John G. Ackenhusen, Real-Time Signal Processing: Design and Implementation

of Signal Processing Systems, Prentice Hall, 1999.

J. Nurmi, J; Takala, “A new generation of parameterized and extensible DSP
cores,” in Signal Processing Systems 1997, SIPS 97-Design and Implementation,
1997 IEEE Workshop on, 1997.

M. Frigo and S.G. Johnson, “FFTW: An Adaptive Software Architecture for the
FFT,” in ICASSP Conference Proceedings, 1998, vol. 3, p. 1381.

Arun Chhabra and Ramesh Iyer, “A Block Floating Point Implementation on the
TMS300C54xDSP,” Tech. Rep. SPRA610, Texas Instruments, Inc., December
1999.

Mike Hannah and Aaron Kofi Aboagye, “Implementation of Double-Precision

Complex FFT for the TMS300C54xDSP,” Tech. Rep. SPRA554B, Texas Instru-

ment, Inc., August 1999.

Jeff Alexlrod, “TMS300C200 C-Callable FFT Package,” Tech. Rep. SPRA354,

Texas Instrument, Inc., May 1998.

Charles Wu, “Implementing the Radix-4 Decimation in Frequency (DIF) Fast
Fourier Transform (FFT) Algorithm Using a TMS320C80DSP,” Tech. Rep.
SPRA152, Texas Instrument, Inc., January 1998.

Rebert Matusiak, “Implementing Fast Fourier Transform Algorithms of Real-
Valued Sequence with the TMS320 DSP Family,” Tech. Rep. SPRA291, Texas

Instrument, Inc., December 1997.

159

[9] Rose Marie Piedra, “Parallel 2-D FFT Implementation with TMS320C4X DSP,”
Tech. Rep. SPRA027A, Texas Instrument, Inc., Febuary 1994.

[10] Rose Marie Piedra, “Parallel 1-D FFT Implementation with TMS320C4X DSP,”
Tech. Rep. SPRA108, Texas Instrument, Inc., Febuary 1994.

[11] “Parallel Processing with the TMS320C4x,” Tech. Rep. SPRA031, Texas Instru-

ment, Inc., Febuary 1994.

[12] J. Isoaho L. Jia, Y. Gao and H. Tenhunen, “A new vlsi-oriented FFT algorithm
and implementation,” in Proc. IEEE Int’l ASIC Conf., 1998, pp. 337-341.

[13] IComm. Technologies Inc., FFT-1024 Complex 1024-points FFT/iFFT Proces-

sor, November 1999, Product Design Specification.
[14] “1-K 32-bit floating point complex FFT,” http://www.annapmicro.com.

[15] J. M. F. Moura, J. Johnson, R. Johnson, D. Padua, V. Prasanna, and M. M.
Veloso, “SPIRAL: Portable Library of Optimized SP Algorithms,” 1998,

http://www.ece.cmu.edu/~spiral/.

[16] L. Auslander, J. R. Johnson and R. W. Johnson, “Dimensionless fast Fourier
transforms,” Tech. Rep. DU-MCS-97-01, Drexel University, 1997,

http://www.mcs.drexel.edu.

[17] C. Hein J. Ammon, “Vhdl-based performance modeling: An application of the
pmw tool suite to an image classification system,” in VIUF-VHDL International

Users Forum, October 1997.

[18] W. Schaming, “Hardware/software co-design in the rapid prototyping of application-
specific signal processors methodology,” in VIUF-VHDL International Users
Forum, October 1997.

[19]

[20]

[21]

22]

[24]
[25]

[26]

[27]

[28]

160

“Unified modeling (UM) reference manual (ADEPT Version A.1),” Tech. Rep.
960620.0, CSIS, University of Virginia, 1996.

“RASSP Application Notes,” http://www.atl.external.lmco.com.

Jack J. Dongarra R. Clint Whaley, Antoine Petitet, “Automated Empirical Opti-
mization of Software and the ATLAS Project,” 2000,

http://www.netlib.org/atlas/.

J. R. Johnson and R. W. Johnson, “Distributed memory FFT algorithms and
dataflow,” in Proc. of 1999 High Performance Embed Computing Conference
(HPEC99), MIT Lincoln Lab, Cambridge, MA, September 1999.

Annapolis Micro Systems, Inc., WILDFORCE Reference Manual Revision 3./,

1999, http://www.annapmicro.com.
“BOPS, Inc.,” http://www.bops.com/.
“DSP Arhitecture, Inc.,” http://www.dsparchitectures.com/.

C. Van Loan, Computational Framework for the Fast Fourier Transform, STAM,
Philadelphia, PA, 1992.

M. An R. Tolimieri and C. Lu., Algorithms for Discrete Fourier Transform and

Convolution, Springer-Verlag, New York, 1989.

J.R. Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology
for designing, modifying, and implementing fourier transform algorithms on var-

ious architecture,” Circuit, Systems, and Signal Processing, vol. 9, no. 4, pp.

249-500, 1990.

[29]

[30]

[31]

[36]

[37]

[38]

[39]

161

R. A. Horn and C. R. Johnson, Topics in Matriz Analysis, Cambridge University
Press, Cambridge, MA, 1991.

Thomas W. Hungerford, Algebra, Springer-Verlag, New York, 1989.

N. P. Pitsianis, The Kronecker Product in Optimization and Fast Transform

Generation, Ph.D. thesis, Cornell University, 1997.

James W. Cooley and J.W. Tukey, “An algorithm for the machine calculation

of complex series,” Math. Comput., 1965.

M. C. Pease, “An adaptation of the fast fourier transform for parallel processing,”

ACM, vol. 15, no. 2, pp. 252-264, April 1968.

R. J. Auletta, An Uninterpreted Model for Hardware Description Languages,
Ph.D. thesis, University of Virginia, 1987.

B.W. Johnson J.H. Aylor, R. Waxman and R.D. Williams, The Integration of
Performance and Functional Modeling in VHDL, chapter 2, pp. 22-145, Prentice
Hall, Englewood Cliffs, NJ, 1992.

K. Jensen, Coloured Petri Nets: A High Level Language for System Design
and Analysis, High-level Petri Nets: Theory and Applications. Springer-Verlag,

Berlin, Germany, 1991.

John L. Hennessy and David A. Patterson, Computer Architecture: A Quanti-

tative Approach, Morgan Kaufmann Publishers, Inc., 1990.
ANSI/IEEE Std. 754-1985, IEEE Standard for Binary Floating-point Arithmetic.

Ryan Buchert, “A design of twiddle factor generator for universal fft processor,”

M.S. thesis, Drexel University, 2001.

[40]
[41)
42)
43)

[44]

[45]

[46]

[47]

[48]

[49]

[50]

162

Xilinx, Inc., The Programmable Logic Data Book, http://www.xilinx.com.
Bevan M. Bass, “FFT Info. Page,” http://nova.standford.edu/~ bbass/.
“Array Microsystem, Inc.,” http://www.array.com/.

“Mentor Graphics, Inc.,” http://www.mentorg.com/inventra/.

J. R. Johnson, J. Dwyer and R. W. Johnson, “FFT machine description and

documentation,” preprint, October 1997.

J. R. Johnson and R. W. Johnson, “A universal FFT machine,” preprint,
October 1997.

P. Kumhom, J. R. Johnson and P. Nagvajara, “Design, optimization, and im-
plementation of a universal FF'T engine,” Tech. Rep. DU-MCS-00-01, Drexel

University, 2000, http://www.mcs.drexel.edu.

L. Auslander, J. R. Johnson and R. W. Johnson, “Multidimensional cooley-tukey
algorithms revisited,” Adv. Appl. Math., vol. 19, no. 9, pp. 297-301, April 1996,

http://www.mcs.drexel.edu.
S.Y. Kun, VLSI Array Processor, Prentice Hall, Englewood Cliffs, NJ, 1987.

J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall,
Englewood Cliffs, NJ, 1981.

R.W. Hartenstein, A.G. Hirschbiel, and M. Weber, “Xputer-an open family of
non von neuman architecture,” Tech. Rep. 195/89, University of Kaiserslautern,

1989.

[51]

[52]

[55]

163

Michael Herz Reiner W. Hartenstein, Juergen Becker and Ulrich Nageldinger, “A
novel universal sequencer hardware,” in Proceeding of Fachtagung Architekturen

von Rechensystemen ARCS’97, Rostock, Germany, September 8-11 1997.

R.W. Hartenstein, A.G. Hirschbiel, and M. Weber, “A pseudo parallel architec-
ture for systolic algorithms,” in Proc. of the Int’l Conference on VLSI and CAD,

1989.

Texas Memory Systems, Inc., TM-66 swiF'F'T Chip User Guide.

M.A. Wendl Pan; Shams, A.; Bayoumi, “Neda: a new distributed arithmetic
architecture and its application to one dimensional discrete cosine transform,”
in Signal Processing Systems, 1999. SiPS 99. 1999 IEEE Workshop on, 1999,
pp. 159 -168.

Sandeep K.S. Gupta Zhiyong Li, John H. Reif, “Synthesizing efficient out-of-core
programs for block recursive algorithms using block-cyclic data distributions,”
IEEFE Transactions on Parallel and Distributed Systems, vol. 10, no. 3, pp. 297—
315, March 1999.

APPENDIX A

165

APPENDIX A EXAMPLES ON 64-POINT FFT

We use the 64-point DFT to illustrate every step of the methodology. The Pease
algorithm and the optimal algorithm are used to demonstrate the effects of different
algorithms. First, we step through all design steps (except the optimization step)
using the Pease algorithm of size 64 points and 4 processors as the example. Then, the
same approach is applied to the optimal algorithm of size 64 points and 4 processors.

For convenience, we summarize the design steps as follows.

Step 1: Mathematical formula describing an algorithm
Step 2: Mapping formula to FF'T processors
Step 3: Optimization

Step 4: Implementation of the chosen algorithm

A.1 Example 1: The Pease Algorithm

Even though the proposed design methodology is independent of the chosen algo-
rithm, the Pease algorithm is a good choice for demonstrating the methodology. This
is because (1) the FFT algorithms under consideration are based on it and (2) it a

well-known FF'T algorithm that can serves as a benchmark for other algorithms.

166
A.1.1 Formula Representing the Pease Algorithm

As shown in Section 2.4, FF'T algorithms under consideration are described by
Equation 2-52. For the 64-point FF'T, the formula becomes
Foo = Py'(I @ F)T5Ps - Py ' (I3 @ Fo)T5P; -
P (Isy @)Ty Py - Pyt (I3 @ Fy)T3Ps -

Pyt Iy @ Fy)ToPy - P (139 @ Fy) TPy - P (A-1)

Such FFT algorithm can be parameterized by 3 sets of matrices: the initial per-
mutation Py, the internal permutations P; and the twiddle fraction matrices 7;, where

1 <4 <nand 2" is the number of points.

To demonstrate that a new FF'T algorithm can be generated by manipulating a
known algorithm, we show how the conjugating Pease algorithm is derived from the

iterative Cooley-Tukey algorithm following Theorem 3.

The iterative Cooley-Tukey algorithm of size 2% = 64 points can be described by

the following formula.

Fo = {ﬁ(IQi—l ® Iy ® Iys-i) (I ® T;:__:—l)} Rayo
=1
Fou = (BeLy)Ty (Lo FRels)(lLeTy) -

(LORLL) (LTS (keFRe L) (T -

(Lis @ @ L) (Iis ®Ty) - (I ® Fy) - Rea
Applying the tensor product properities list in Property 1 to each stage of the formula,
we have

Foo = L§(I3 @ Fo) LT3y - L' (Ino ® Fy) LYG(1 © Ty) -
Lg' (I ® Fo) L (I @ T®) - Lis(Iso @ F) L' (Is © T5) -

L3 (I3 ® Fo) L3 (116 ® Ty) - (I32 ® F3) - Rey

167

Foo = L5 Iy ® Fy)TsLSy - LS (Isp ® Fy)T5LE% -
L$' (Isg ® Fy)T4LS* - LO(I3y @ Fy)T3LS" -

ng(lfi? ® F2)T2Lg4(132 ® F2)T1 : R64
where

TLY = LHTY > T— LYTHLY
T5Li = Lis(L®T) — Ts = Lig(l ® Tig) LY
T8 = LI, @ T — Ty = LI, @ TS5 LY
LY =L ®T;)) — Ty=L{"(Is@T})L%
TL8 = LS (I @ TY) — Tp = L8 (Iis ® T LS
Ty = Iy
This is the one-dimensional Pease algorithm of size 64 points. When written in term

of Equation A-1, the 3 parameters of the one-dimensional 64-point Pease algorithm

are

Py = Reas
Stage 1: P =1Ig, T =Igy
Stage 2 : Py =L5, T,=1L51s®T))LS
Stage 3: Py =LY, T3=L{"Is®T})L
Stage 4 : Py=Lg, Ty=L3I, @ T3°) LS
Stage 5 : Py =LY%, Ts= Ll ®T*)LS
Stage 6 : Ps = LS5, Ts=L3T5 LS

Following the dimensionless Pease algorithm (Theorem 8), only the twiddle factor

matrices 7;, 1 < ¢ < 6, are changed when the Pease algorithm is used to compute

168

different dimensions. To illustrate this point, we consider the two-dimensional (16 x4)-
point DFT using Pease algorithm. The two-dimensional (16 x 4)-point DFT can be
described by Fig ® Fy. The following steps show derivation of the Pease algorithm

from the Cooley-Tukey algorithm (Theorem 3).

Fis®Fy = FlgRis®FRy
= (Fis ® F})(Ris ® Ry)
= (Flg®14)(I16 ® F})(Ris ® Ry)

= LS(1i @ Flg) LS (116 ® F})(Ris ® Ra)

Fisg = (BORT(LOFROL) LT (L@ e L) (11 T,)(Is® F)

Fi = (BoL)T(LoR)
Replacing Fi; and F}, we have

Fe®F = LSG{Le(FRe L)L (Lo Rhel)(l,eT))

(LeFReb) (LeT,))(Ise)}
L{H I ® (F2 @ I,)Ty (I, ® Fy)}(Rig ® Ry)

= LLoRoL)(LT) LeLe e L) (li®LT;)
LOLRFROL)LOLTHIi® @ F)
LS (16 ® F, @ L) (Iis @ Ty) (116 @ I ® Fy)(Rys ® Ry)

= LIS 1, @ F) LN, @ T3%) - LS(I, @ Iy @ Fy) L (g @ T -
LSLeLy B)SNLRLRT)) (LoeF)-

LYLG (I, ® g @ Fo) LS (116 @ Ty) - (I2 @ Fy) - (Rig ® Ry)

Fie @ Fy =
L' (Iso ® Fo) L3 (116 ® Ty) L' - Lig(132 ® Fo)L§" -

L35(Is2 @ Fo)L§5(1i6 @ Ty) - (Is2 ® F3) - (Ris @ Ry)

Fig®@F, = L5(I3® Fy)TsLys - L5 (I3 @ Fy)T5 LS5 -
LIy @ Fo)T, L5 - LS (15, @ Fy)T5L5* -

L33 (I3o ® Fo)ToLS* - (I3 @ Fo)T' - (Rys ® Ry)

where

L3 (Iso @ Fo) L' (14 @ TS°) L' - L (132 ® Fo) L (Is @ T;) L -

ToLs, = L' (Is @ T°) Ly
TsLis = L' (Is ® T)) L§'
T,L3' = L3 (Iis ® Ty) LS

N

Ly = LY (L © T)

Ts = Lyp{Lig(Is ® Tg°) L'} L3
Ts = Lig{Lys(Is ® T/) Ly} LY
Ty = Ly'{Lig(he ® Ty) Ly} Ly
T3 = Ig4

Ty = L§' (16 ® Ty) LS

Ty = Ies

169

Written in term of Equation A-1, the 3 parameters of the two-dimensional (16 x 4)-

point Pease algorithm are

Py = Rig® Ry
Stage 1: P =1, T =Ig
Stage 2: P, =15, T,=LI,®T))L5
Stage 3 : Py =L% Ty=1I
Stage 4 : Py =LY, T, = LS{LS (1 ® Ty)L5*} LS
Stage 5: Ps = L%, Ty = Lig{Li(ls @ T{)L'} LY
Stage 6 : Ps = LSy, Te= LS{L8 (1, @ T3®) LS} LS

Notice that the parameters follow Theorem 8 in Section 2.4.

170

The load-stride permutation LS} can be described by a permutation function o.

Therefore, the internal permutation P;, 1 < i < 6, of the Pease algorithm can be

specified a permutation function o; as following.

Stage 1:

Stage 2:

Stage 3:

Stage 4 :

Stage 5:

Stage 6 :

a= (512340 020y
a;1:<8 } ; g i 2):(0,1,2,3,4,5)
= (00200) =t
051:<g (1) ? g ;l Z):(5,0,1,2,3,4)
w=(51 2280 —eaason
= (12) cus0n2y
a4z<g i g 3 ‘11 g>:(3,4,5,0,1,2)

. (01 2345\
04 _<3 4 5 0 1 2>_(37475707172)

0123435
05_<4 5 0 1 2 3>_(47570717273)
4 (01 2345\
05 _<2 34 5 0 1 _(27374757071)
0123435
06 = < 5 0 1 2 3 4 > - (57071727374)

4 {0123 45\
Og _<1 23 4 5 0 _(17273747570)

(A-2)

171

A.1.2 Mapping the Pease Algorithm

Using the mapping methodology in Chapter 3, the 64-point Pease algorithm is

mapped to 4 processors labeled as PEO, PE1, PE2 and PE3 as following.

A.1.2.1 Address Mapping.

The global addresses generated in stage i can be completely defined by the per-
mutation function o;. Let (bsbyb3babibg)s be binary number representing the order of
addresses. Then, the butterfly addresses in stage i can be generated by permuting

(b5b4bgbgb1b0)2 with g; defined in Equation A-2-A-8 while counting (b5b4b3b2b1b0)2.

Stage 1: b5b4b3b2b1b0 g b5b4b3b2b1b0

Stage 2 : bsbybsbobiby 33 babsbabybobs
Stage 3 : bsbybsbobiby 23 bsbabibobsby
Stage 4 : bsbybsbobiby 23 bybibobsbabs
Stage 5 : bsbybsbobiby 23 bybobibsbabs
Stage 6 : bsbybsbobiby 2% bobibybsbybs

Table A-21-A-24 shows the sequence of addresses generated in stage 1, 2, 3, 4, 5, and

6 following the Pease algorithm.

The addresses are mapped to PEO, PE1, PE2 and PE3 in round-robin fashion.
The result is that all addresses containing (byb;)2 = (00), are mapped to PEO, that all
addresses containing (byby)2 = (01)3 are mapped to PE1, that all addresses containing
(bab1)2 = (10), are mapped to PE2, and that all addresses containing (byb;)s = (10)5
are mapped to PE3. Table A-25 to A-28 in the appendix shows the sequence of
addresses that are generated in stage 1, 2, 3, 4, 5, and 6 following the Pease algorithm,
and mapped to PEO, PE1, PE2 and PE3.

172

The address generator in each processor generates local addresses, target PID,

and source MID. The local addresses are used for accessing all local memory. The

target PID specifies the PID that operates on the data. The source MID specifies the

MID from which the input data are coming and to which the results are sent. The

bit patterns of the local addresses, target PID, and source MID are derived from o;.

Following steps demonstrate the steps used for obtaining these bit patterns.

(1) Permute the global counter bits by o;

the MID (p1po).

Stage 1 : bsbybsbobyby
Stage 2 : bsbybsbobyby
Stage 3 : bsbsbsbobyby
Stage 4 : bsbsbsbobyby
Stage 5 : bsbybs3babyby

Stage 6 : b5b4b3b2b1b0

ERNNE R I

Ly

. Then, set the 2 most significant bits to

b5b4b3b2b1bo — p1Pob3babibo
b4b3bab1bobs — p1pobabibobs
b3bab1bobsby — p1pob1bobsbs
bab1bobsbabs — p1pobobsbabs
b1bobsbabzby — p1pob1bsbabs

bobsbsbsbaby — p1pobabsbabs

(2) Permute the permuted bits back to their original order by the inverse permuta-

tion o; '. However, now there are 2 bits that are fixed to the MID (p;po). The

remaining bits are the 4-bit counter that will count the local memory addresses.

To make it clear, we relabel these bits as a3, as, a1, ag while keeping the order

of the bits. This procedure maps one-to-one the label (bs, by, b3, bo, by, bg) to

the new label (as, as, ai, ag, p1,po). The order of the new label depends on the

permutation function ;. Since (bgby), in the old label specifies the target PID,

whatever replaces it becomes bit patterns of the target PID.

-1
a
Stage 1: P1Pob3babiby = p1pobsbabiby — p1poazaza;ag

target PID

= Qo

Stage 2:

Stage 3:

Stage 4 :

Stage 5 :

Stage 6 :

(3) Permute the new label by o; to get the bit patterns of the local addresses.

-1
P1Pob2b1bobs - bsp1pobabiby — azpipoasaiag

target PID := aqay

oot
P1Pob1bobsbs 2 bsbap1pob1by — asaspipoaiag

target PID = poa;

-1
P1Pobobsb4bs — bs5b4b3p1poby — asasa;pipoag

target PID = pipo

-1
P1Pob5b4b3by — b5b4b3baplpy — azasaiagpipo

target PID := aop:

0_—1
P1Pobab3baby o Pobabsbabipr — poasazaiagp

target PID = ajaq

Stage 1: P1Doasa2a1ay > Pipy A30201 a0
Stage 2: a3P1PoG21Gy —5 P1Po A2010003
Stage 3: a302P1 P01 Gy 5 P1Po 01 00A302
Stage 4: (30201 P1Polo 5 P1Py Qolaaaly
Stage 5: (30201 Q01 Py 3 P1Po Q30201 0g
Stage 6: po3asayoPr <3 P1Po U3l do

173

(4) The source data operated by PE number (p;pg)2 can be generated by relabeling

(bsbybzbibg)2 such that the (beby)s is replaced by (pipo)2. The remaining of the

174

bits are replaced by the local counter in the same order; i.e. bsbsb3by is relabeled
to agzasaiag. The 2 most significant bits after the permutation o; specify the bit

pattern of the source MID.

Stage 1: 309011 Doy — A3ds 11 Podo
source MID := asaq

Stage 2: 309011 Doy —> Aoy P1Poaoas
source MID := aqa;

Stage 3: 309011 Doy — a1P1 PoGoasdsy
source MID = a;p;

Stage 4: 30201 P1Podo % P1Py (oUsady

source MID := pipg

Stage 5: 309011 Doy —> Poly U302 Dy

source MID := pyay

Stage 6: 309011 Doy —% Qg3 a1 P1Po

source MID := qpas

Table A-1 concludes the bit patterns of local address, target PID and source MID fol-
lowing the optimal algorithm. Table A-29-A-34 in the appendix shows the generation

of these numbers in each PE and each stage.

175

Table A-1 Bit patterns for generating local address, target PID and source MID
using the Pease algorithm

Stage | source MID | target PID | Local Address
1 309 o1 a3oa1Ag
2 Aoa o1 120003
3 ap1 Poay a1 oa3as
4 P1Po P1Po pa3a207
5 Poao aopP1 320100
6 apas a1 a302010g

A.1.2.2 Twiddle Factor Mapping.

Similar to the address mapping, the twiddle factor matrices T;, 1 < i < 6, are
mapped to the 4 processors. We will show 2 sets of the twiddle factors for computing 2
different dimensional DF'T using the Pease algorithm. These twiddle factors matrices
are based on the twiddle factor matrix 77* defined in Section 2.1.5. Applying the def-
inition to the twiddle factors of one-dimensional 64-point DF'T and two-dimensional

(64 x 4)-point DFT, we have

One — dimensional 64 — point FFT
Stage 1:
Ty = Ies = Igs

T, = diag(l,...,1)

T, = L$'(Is®T))LS

L3 (I

Stage 3:

T3

T3) L (e;, @ €;, @ €y, ® ey, R e R ey)
LS @ Ty)(e;, @ e, @ ep, @ ey, @ ey ®ey.)
Ly (e}, ® e}, ® €5, ®@ ¢, ® Ty (e, @ €,))
WL (e, @ € © 6, ® €, @ 6, ®)

S 0 6 e 0 0 @)

@ wibo)r(%)z

bs,...,bo

L e T
L (Is @ T}) LS(ep, @ €, @ €5, ® €5, D€y, @€)
LI ®@T}) (e, Qep, @€ Qep @€, Qep,)

L (e;, ®ep, @e;, T} (e, ® €. Qep,))

wg ML e, © 6, ® €, @ 6, @ €, ¢}

(bo)2-(bsbsa)2 /1 2 2 2 2 2 2
Wg (ebs & b, ® €bs ® by ® b, ® ebo)

@ wéb0)2'(b5b4)2

bs,...,b0

L§ (1, @ T LY
LIAL @ T L (e, ®e;, ®e;, @e; Qep @ ep)
LA @ T% (e, @€ Qep Dep ®ep, ®eyp,)

L (e, ®@e;, @ T%(e}, ® €. @ e;, Rep))
wgg‘))z'(%b“b‘“’)ng‘*(eé Qe ®ep Ve ey, Qe

(bo)2-(bsbsabz)2 /1 2 2 2 2 2 2
Wig (e, ® €, @ ep, D ey, Dey, Ve)

@ wggo)z'(b5b4b3)2

bs,....bo

176

Stage 5:

15

L% (I, ® Tig) LY

LG(LoTR)L (e, ®e;, @ e, Qe;, @€y e€p)
LY(I: ® Tjg) (e}, ® €5, ® €3, ® €5, @ €3, D €y,

LY (ep, ® Tig (€3, @ €3, ® €5, ® €5, ® €3,))

i) (sbabsh22 18402 @ 2 @ el @ el © ek @ el))
w§g°)2'(b5b4”3”2)2(e§5 ®e, e, Ve, Ve Dep)

(bo)2-(bsbabsba)2
D ws
bs,...,bo

LT LY
LETH LS (e @ €p, @€y, ®ep, @y Qe)

L3TS (e, @€y, @ e, @€y, @ep D e€p)

PO LG, 0 6, 0 d o, 0., 0 d))

(bo)2+(bsbab3bsbr)2 /2 2 2 2 2 2
UJ64 (ebs (24 6b4 X 6b3 X 6b2 X ebl X ebo)

(bo)2-(bsbab3babi)2
We4
bs,...,b0

177

Stage 1:

Stage 2:

Stage 3:

Stage 4 :

T,

15

178

Two — dimensional (16 x 4) — point FFT
Tl - 164 - 164
= diag(1l,...,1)
T, = LY (s ® Ty) L%
Ly (Iis ® Ty) L3y (€5, © €5, ®@ €5, ® €5, D €, @ €
= L6 ®Ty)(e;, @€y, ®e;, ey, Rey Dep,)
= L e, @€, @6, @6, Ty (e @ep))
= Wyl L (e @} ® e, @ ¢} ® e}, ®ep,)
_ W£b0)2.(b5)2(

2 2 2 2 2 2
Chs © €4, @ €, ® €4, ® €, D €,)

_ @ w(bo 2+(b5)2

b57 abO

T3 - I64 = 164

diag(1,...,1)

Ty = Lg' Lig(1is ® T5) L' L'

L' Lig(Lis ® Ty) LY L' (e}, ® €5, ® €3, ® €5, ® €5, @ €5)
L' Lig(1is ® Ty) LY (5, ® €5, @ ¢, ® €, @ €5, @ e,
Lg' Lis(Ls ® Ty) (€5, ® €5, @ €5, @ €, @ €5 @ €5)

L' LY5(e5, ® €3, ® €5, @ €5, ® Ty (e}, @ €3,))

WP ERLUIN (2 @ e @l @6l @l @ el)

wi TR @ ¢} @ ep, @ €f B ef, @€},
wflb(’)”(b"’h(eg5 Qe ey, Ve, ey Ve)

@ wib0)2'(b5)2

bs,....bo

179

Stage 5 : Ts = LS LS (Is @ TY)LS'LS!

LIS (Is @ T LY LS (¢, ® €, ® €, ® €, @ ¢, @ €2
= LSS THIL (6} @6l © ek @6k, @6l @€l
= LY (s T))(e;, @ ¢, @ 6 @€, @ €p, @€}
= L8 @e2, @el @T)(e, @el @eb))

= U O (2 @l ©el @l @k @ e)

_ (bo)2-(bsba)2 1 2 2 2 2 2 2
= Wy (6b5 ® €, ® €by ® €, D €, Q ebo)

T, = @ w£b0)2~(bsb4)2
bs,...,bo
Stage 6: Ty = LOLY (I, @ TI%) L1

L L3s(Ia @ T®) LY LY (e}, @ ¢}, ® €, ® €}, @ €, © €
= LpLis(I @ T°) L (65, ® €, ® €, @ ¢, ® e, @ €3,
= LML o T%) (e, ® ¢, ® e @ ey @€, D ep,)
= Lg'(ej, ® e, ® Ty (eh, ® €5, @ e, @ €3,))
= bl 102 @2 @ e @ el @ el ®el)
= bl (2 @2 Qe @el @l @el)

_ (bo)2-(bsbabs)2
Ty = D wi
bs,...bo

Table A-2 summarizes the twiddle factors for one-dimensional 64-point DFT and

two-dimensional (16 x 4)-point DFT using the Pease algorithm.

Since all twiddle factors are written in term of w} = ¢**¥*, they can be represented
by the fraction L. A n,4.-bit binary number, 2"me= > N may be used to represent
a fraction . For the sake of illustration, let 1., be equal to 8. Then, the 8-binary

number (0.77---7q), represents a fraction gz, where r = (r7---7¢)2. Therefore, if we

180

Table A-2 Twiddle factors of the Pease algorithm for one-dimensional 64-point
DFT and two-dimensional (16 x 4)-point DFT

Stage T,
i 1-D 64—point 2-D (16 X 4)—point
b 50)

2 ®b5 0)2 (b5)2 ®b5 (0)2-(65)2

3 = ®b5,...,b0 wgbo)?(%mb T3 dlag(1)
B0)2-(b5b4b

4 T4 = @b5,...,bo W§60)2 (bababa)e @b5 4(1 2{bs)z
b0)2-(65b4b30: b5b

5 T5 — @b5,,,,,b0 <“():(320)2 (b5b4b3b2)2 @b5 é 2-(b5ba)2

O T Y kil E T W i

want to represent twiddle fractions £ with 8-bit binary number, all twiddle factors
should be converted to wis, where wys = > is the 256-th root of unity. For
example, since wg = wgg, the twiddle factor of one-dimensional 64-point FF'T at stage

3 becomes

o (bo)2-(bsba)2-25
Iy = P wis
b, b0

which can be represented by binary number (bsby)s - 2° = (0b5,000000)s.

Converting the twiddle factors in Table A-2 to wls result in the twiddle factors

in Table A-3. The value of by identifies whether the address is the first or second

Table A-3 Twiddle factors of the Pease algorithm written in term of wosg

Stage T;

i [1-D 64-point 9D (16 x 4)-point

1 T1 = diag(l, cey 1) T1 diag(l 1)
5o -(b=)5-20 bo)2-(bs)2-25

2 | T=@pmis =@, T

3 T3 = Dy,..00 wég%)r(bf)bmg T3 dlag(l ;1)
b0)2-(b5babs)2-27 B0)2-(03)3 20

T T i PP W il
D0)2-(b5bab3bs)2-2 b0)2-(b5b1)2-2

5| T = @y ST T =, T

1T = B T 1, = i

181

Table A-4 Twiddle fractions of Pease algorithm for one-dimensional 64-point DFT
and two-dimensional (16 x 4)-point DF'T

Stage Twiddle Fraction = (r7---rg)
i 1-D 64-point 2-D (16 x 4)-point
1 (00000000) (00000000)-
2 (0a3000000) (0a3000000)
3 (0a3a200000), (00000000)-
1| (Oazaza,0000); | (0a3000000),
5 (0&3&2&1}?1000)2 (0&3&200000)2
6 (Oaszaza;p1pp00)s | (0azasa;0000)y

address of the butterfly operation. When by = 0, it is the first address and the twiddle
factor for this datum is always equal to 1. When b; = 1 signifies that the address is
for the second datum which will be multiplied by twiddle factor wjsg. Therefore, the

twiddle factors in Table A-3 can be written as the twiddle fractions in Table A-4.

The twiddle factors are mapped to PEO, PE1, PE2 and PE3 in round-robin fash-
ion. Therefore, the (beby) is replaced by PID (p1pg) and (bsbsbsby) is replaced by the
output of the local counter (aszazajag). Table A-35-A-38 show the twiddle fractions
of the Pease algorithms generated in each stage. Table A-39-A-50 show the twiddle

fractions of the Pease algorithms generated in each stage inside each PE.

A.1.3 Implementation

The address and twiddle fraction generators can be implemented using MUXs or
adders. In both cases, we can systematically translate the bit patterns into parameters

needed for the implementation.

First, we need to specify the compile-time parameters. In addition to the algorithm
specified by P; and T; and the number of processors specified by m, where 2™ is the

number of processors, the other compile-time parameter is the maximum size specified

182

by Npaez- This means that the universal FFT engine can compute FFT of size 2™ to
2"mez points. Let n,q, be equal to 8. This means that the local addresses generated

inside each processor is represented by a 7,4, — m = 8 — 2 = 6 bit number.

A.1.3.1 Address Generation.

Implementation Using MUXs

The bit pattern for generating the local addresses is the permutation of the out-
put of 6-bit counter, (asasazasaiag)s. Let (cscacszcacicy)s be the local address at a
particular stage. Let ag,...as be the inputs of a 6-to-1 MUX whose MUX select is
s; and whose output is ¢;, where ¢; = as;, 0 < j <8, and s; can be derived directly

from the bit pattern of the local address shown in Table A-1.

Similarly, we can generate target PID and source MID using MUXs. However,
since the bit patterns for generating target PID or source MID includes the PID
((p1po)2), 10-to-1 MUXs are required. We would need 2 10-to-1 MUXs for generating
target PID and 2 10-to-1 MUXs for generating source MID. Let (d;dy)2 and (ejep)2
be the target PID and the source MID at a particular stage. Let st; and ss; be the

MUX selects for generating d; and e;, 0 < 7 < 2 respectively. Then,

((po if st; =0
pr if st; =1
Ao if Stj =2
a; if st; =3
as if Stj =4
as if Stj =5
a4 if Stj =6
as if st; =7

, 0<7 <2

Qo
Po
41
ay
5
as
Q4
as

if s5;, =0
if ss; =1
if ss5 =2
if ss; =3
if ss; = 4
if s5;, =95
if Stj =

if Stj =

?

0<j<2

183

Table A-5 MUX selects for generating local address, target PID and source MID

of the 64-point Pease algorithm

Stage Local Address ‘ target PID ‘ source MID

S5 | S4 | S3 | S92 | s1 | So | sty sty 551 EEN
1 51413121104 3 5t 4
2 5141211 101]3]| 4 3 4 3
3 o141 11013120 3 3 2
4 51410131211 0 2 1
5 5141312110 2 1 1 0
6 5141312110/ 3 2 0 5t

Table A-5 shows the MUXs selects for generating local address, target PID and

source MID of the Pease algorithm of size 64 points. These MUX selects may be

pre-stored in a ROM or generated. Figure A-1 shows the address generator for the

Pease algorithm of size 64 points using MUXSs.

The generation of the MUX selects depends on the runtime parameter which the

size of FFT specified by n, where 2" is the number of points. Therefore, for our

example, n = 6. The MUX select s;, 0 < j < n —m, can be generated using parallel

shifting. At the first stage, s; = j, 0 < j < n —m. Then, when changing the

stage and the current stage is less than or equal to n — m = 4, the s(is loaded with

output from a countdown counter whose output is initialize to n —m — 1 = 3 and

55, 1 <j <n—m—1is loaded with s;_; resulting in the MUXs selects of the next

184

an an an an
3 (R] I [-]
) g a3 a3
a3 5] 5] a5
o 8 = N
ol il rotk
2-hit comrter
(oot doa)
Po Fn Et]
2 2! Fo 2
ap d o di g1 &
al a1 a1 a1
ag a3 dg 43
a3 a3 a3 a3
gh aty a3 a5
3hit connter 3-hit connter
(oot doa)

Figure A-1 Address generator for Pease FFT algorithm of size 64 points using
MUXs

stage. For the remaining m stage (stage 5 and 6), the MUX selects are reset back to

their initial values.

The MUX select st; and ss;, 0 < j < 2, can also be generated using parallel
shifting. At the first stage, st; is initialized ton—m—j =6—-2+;j—1 = 3+ ;. Then,
when changing of stage and current stage is greater than or equal to n—2m = 6—4 = 2,
Stym—1 = 1 is loaded with output from the 3-bit counter whose output is initialized
to 0. At the same time, the counter counts up and st;, 0 < j < m — 1, is loaded with
Stjy1.

At the first stage, ss;, 0 < j < 2, is initialized to n — 1 4+ j = 5+ j. Then, when

changing stage, ssq is loaded with output from the 3-bit countdown counter whose

185

output is initialized to n —m —1 =6 —2 —1 = 3. At the same time, ss;, 0 < j < m,
is loaded with ss;_; and the counter counts down. If the current count value is 0, the

next count value is set to n — 1.
Implementation Using Adders

The address generator can also be generated using adder as shown in Figure 5.3.

We will first focus on how the local addresses are generated using adders.

Notice that the bit patterns for generating local addresses have at most 2 portions

of consecutive bits. Therefore, we need 2 increment numbers at each stage.

At the first stage, the pattern is (00asasa;ag), which can be generated by setting
the initial number (INIT) to (000000) and the increment number to (000001),. Since
we always start from address 0, the INIT value at the beginning of stage is always
equal to (000000),. For 2 < i < 4 the pattern becomes (00a;_s - --agas - --a;—1). The
portions of consecutive bits are (00a;—3---ap) and (00a3---a;—1), 1 < i < 4. For

stage b < i < 6, the bit pattern is reset back to (00azasaiag) which can be

Let INC;(7) be the increment number at stage i when there is no carry, INCy(7) be

the increment number at stage i when there is carry from a;_» to a;_;. To accommo-

Table A-6 Increment and initial numbers for generating address of Pease algorithm
using adders

Stage | INIT(i) Increment

i INC,(7) INCy (1) INCy(7) in
Stride

1 (000000)5 | (000001)y =1 n/c n/c

2 [(000000), | (000010); = 2 | (110011)s = —13 | 2 =2

3| (000000), | (000100); = 4 | (110101)y = —11| 22 =4

4| (000000), | (001000), =8 | (111001)s= —7 | 22 =8

5 | (000000); | (000001); = 1 n/c n/c

6 (000000)5 | (000001)y =1 n/c n/c

186

date the carry propagation, the increment INC; (i) is equal to (0---010---0)y = 2071
1 < i< 4, and the INCy(i) is equal to —27~™ +20=1 41 = —2% 4+ 271 + 1. Table A-6

shows the initial and increment numbers for generating address using adders.

Table A-7 Addresses generated following Pease algorithm of size 64 points during
stage 3 using adders

Count ACC INC Stride 22 | inc2_hit

1 Count

0| (000000), =0 | INC,(3) = (000100), =4 | (010000%; | 0
1| (000100), = 4 | INC,(3) = (000100), =4 | (100000); | 0
5| (001000), =8 | INC,(3) = (000100), = 4 (110000)5 | 0
3 | (001100); = 12 | INC,(3) = (110101), = (000000); | 1
1| (000001), = 1 | INC,(3) = (000100)s = 4 (010000); | 0
5 | (000101), =5 | INC,(3) = (000100), =4 | (100000)s | 0
6 | (001001), =9 | INC,(3) = (000100)s = 4 (110000)5 | O
7 [(001101), = 13 | INCy(3) = (110101); = (000000), | 1
8 | (000010), =2 | INC,(3) = (000100)y = 4 (010000)5 | 0
9 | (000110), = 6 | INC,(3) = (000100), =4 | (100000), | 0
10| (001010), = 10 | INC1(3) = (000100); = 4 (110000)5 | O
11 | (001110), = 14 | INCy(3) = (L10101), = (000000), | 1
12| (000011); =3 | INC,(3) = (000100); = 4 (010000); | 0
13 | (000111); =7 | INC,(3) = (000100); =4 | (100000); | O
14 | (001011); = 11 | INC,(3) = (000100); = 4 (110000), | O
15| (001111); = 15 | INC,(3) = (110101), = (000000), | 1

The carry from a; o to a;_1 occurs only when (a;_o---ag) = (1---1)3. In other
words, it occurs in stride 2°7'. Therefore, if (a;_5---ag) = (1---1),, INCo(7) is selected
as the increment number, else INCy(7) is selected. Another adder for which the initial
number (INIT) and increment number (INC) at stage i are 2671 can be used for
checking whether INCy(i) is selected. For example, at stage 3 the adder is initialized
to 267371 = (010000), and incremented by the same number. This produces the carry

out (called “inc2_hit” in Table A-7) in every 4 addresses (stride 4). Table A-7 shows

187

how the addresses are generated during stage 3, where INC;(3) = (000100), = 22 and

INCy(3) = (110101)y = =21 4+ 22 + 1 = —11.

Since INIT(i) are constant, we need to generate only INC;(7) and INCy(7). Since
INC(i+1) = 27! = 2-2' it can be generated by shifting its current value (INC,(z) =
2%) to the left by 1 bit.

The INCy(i) be generated as following. Since INCy(i) = (—2* + 1) + 2! | it can
be generated by adding INC;(z) with —2*+1 = (110001)5. Moreover, for 1 < i < 4, it
is guaranteed that the adding has no carry. Therefore, it can be accomplished using
OR gates; i.e. INCy(7) is equal to INC;(z) OR (110001),. For example, INCy(3) is
equal to (000100); OR (110001), = (110101)y = —11.

A.1.3.2 Twiddle Fraction Generator.

As shown in Chapter 5, we can generate the twiddle fractions of any dimension by
masking off unwanted bits of one-dimensional twiddle fraction. To illustrate this prop-
erty, let us consider the bit patterns for one-dimensional 64-point and two-dimensional

(16 x 4)-point twiddle fractions.

Table A-4 shows the bit patterns for generating twiddle fractions of one-dimensional
and two-dimensional FFT of size 64 points following the Pease algorithm. Both twid-
dle fractions can be generated by (1) generating a twiddle fraction denoted as TF1
and (2) masking off unwanted bits of TF1. Table A-8 shows the bit patterns of TF1
and the masks for both one-dimensional 64-point and two-dimensional (16 x 4)-point
FFT following the Pease algorithm. Following this implementation, we can parame-
terize the design such that the twiddle fraction TF1 depends solely on the algorithm
and the size and that the mask depends solely on the dimension specification. For

our example, the Pease algorithm of size 64 specifies that TF1 is (Oazaza;pipo00); for

188

Table A-8 Generation of twiddle fractions for Pease algorithm of different dimen-
sions using masks

Twiddle Fraction = TF1 AND M
Stage | Twiddle fraction Mask (M) = (27 —1) .28~

i before masking 1-D 64-point 2-D (16 x 4)-point

(TF1) (2™-point) (2™ x 2™-point)
1 (Oazaza;p1pp00)e | 1| 6 | 0 | (00000000), 2 | 0] (00000000)
2 (Oaszaza; p1pe00)s 1 | (01000000) 1 | (01000000),
3 (Oaszaza; p1pe00)s 2 | (01100000)4 4 10| (00000000)
4 (0&3&2@1])1])000)2 3 (01110000)2 1 (01000000)2
5 (0&3&2@1])1])000)2 4 (01111000)2 2 (01100000)2
6 (0&3&2(11]71]7000)2 5) (01111100)2 3 (01110000)2

every stage and the mask at stage 7, 1 <7 < 6, is equal to (29 — 1) - 227971 where

0<j<mng, k=D,---,1and D is number of dimensions. For instance, the two-

dimensional (16 x4)-point DFT is specified by D = 2, ny = 4 and ny = 2. This results

that 7 =0,1,0,1,2,3 and that the masks are (2° —1)-2871 =0, (2! — 1) - 2872 = 26,

(20—1)-28-1=0, (21 —1)-28-2=26 (22_1).283 =3.25 and (28 —1)- 284 =7.2¢

respectively. The implementation of the masks is explained in Chapter 5.

The TF1 can be generated using MUXs or adders. When using MUXs, we need 8

7-to-1 MUXs whose MUX selects are parameterized during the runtime by the size.

Let (r7---79) be the 8bit TF1 and r;, 0 < j < 8, be the output of a 8-to-1 MUX

whose MUX select is sf;. Then,

;

Do
y4I
ay
a2
as
Gy
as

if Sfj =0
if Sfj:

if Sfj:

if sfj=3,
if Sfj =

if Sfj =9
if Sfj:

0<j<8.

For the size 2° points, the MUX selects are following.

sfo
sfa

07 Sfl :07

27 8f5 = 37

Sf? = 07

Sfﬁ = 47

Sf3:1

sfr="5

189

When using adders, the initial number (INIT) and the increment number (INC)

are parameterized during the runtime by the size. For the size 2" points, the INIT

is equal to (pm_1---Po)2 - 2°7™ and the INC is equal to 28~(»—m™),

Note that the

increment is done in every 2 addresses. For 64-point and 4 processors (n = 6 and

m = 2), the INIT is equal to (pipg)2 - 2°7% = (0000p;pe00), and the INC is equal to

2862 = (00010000),. Table A-9 shows the generation of TF1 during any stages in

each PE.

Table A-9 Generation of twiddle fractions before masking (TF1) following Pease
algorithm of size 64 points using adders

INIT = (p1po) - 2575 = (0000p;p00) and INC = 28-5+2 = (00010000)
Twiddle Fraction (TF1)
30901 PEO PE1 PE2 PE3
p1po = 00 p1po = 01 p1po = 10 pipo = 11

0 (00000000) = 2 | (00000100) = & | (00001000) = Z | (00001100) = 2
1 (00010000) = = | (00010100) = £ | (00011000) = & | (00011100) = -
2 (00100000) = & | (00100100) = 2= | (00101000) = 3 | (00101100) =
3 (00110000) = 2 | (00110100) = £ | (00111000) = &7 | (00111100) = £
4 (01000000) = 2 | (01000100) = £ | (01001000) = £ | (01001100) = £
5 (01010000) = 22 | (01010100) = 2; | (01011000) = 2 | (01011100) = 22
6 (01100000) = 27 | (01100100) = 22 | (01101000) = 28 | (01101100) = =
7 (01110000) = 28 | (01110100) = 22 | (01111000) = 23 | (01111100) = 2}

A.2 Example 2: The Optimal Algorithm

190

In this section, we will walk through all steps in the design methodology when the

optimal algorithm is chosen.

A.2.1 Formula Representing the Optimal Algorithm

The optimal algorithm is obtained from the optimization step described in Chap-

ter 4. For FFT of size 64 points and 4 processors, the optimal algorithm is described

by following formula in Equation A-1, where the internal permutation P;, 1 <17 < 6,

can be specified a permutation function o; and its inverse o;

Stage 1:

Stage 2:

Stage 3:

Stage 4 :

Stage 5:

Stage 6 :

1

01 2 3435
01_(0 4 5 1 2 3>_(07475717273)

L (0 12345\

o) _<0 s 45 1o)=(034512)
012345

02_<1 L5 0o 3>_(1,4,5,o,2,3)

L (01 2345\

o, _<3 015 19)=304512)

012345
03_<2 R 3>_(2,4,5,0,1,3)

012 3 45

-1 _ _

03 _<3 4 0 5 1 2>_(37470757172)
012 3 45

-1 _ _

04 _<3 4 5 0 1 2>_(37475707172)
012 3 45

-1 _ _

04 _<3 45 0 1 2>_(37475707172)

>4 3 210

05_<4 35 0 1 2>_(47375707172)
012 3 45

-1 __ _

05 - < 3 4 5 1 O 2 > - (37475717072)
01 2 3 45

06_<5 4 3 0 1 2>_(57473707172)

012345
_]__ _
og _<3 L5 91 0>_(3,4,5,2,1,0)

as follows.

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

191

This set of permutation functions specifies the permutation P; shown as following.

Stage 1:
Stage 2:
Stage 3 :
Stage 4 :
Stage 5 :

Stage 6 :

P = (Lg®)

Py = (L ®)Ly
Py = (Ly ® I) Ly
P, =L

P; = (Lig ® I,)Lig

Ps = (L’ ® I)(L{; ® L)L,

The initial permutation, Fy, and the twiddle factors 7T;, 1 < ¢ < 6, depend on the

dimension specification. The

twiddle factors of the optimal

following table shows the initial permutation and the

algorithm for one-dimensional 64-point DFT and two-

dimensional (16 x 4)-point DFT respectively. The twiddle factors follow Theorem 9.

One — dimensional 64 — point DFT

Stage 1:
Stage 2:
Stage 3:
Stage 4 :
Stage 5:
Stage 6 :

Py = Rey

Ty = Pl Pyt = Iy
T2 — PQ(.[lﬁ ® T24)P2_1
T3 = P3(Is ® Tf)PS_l
Ty = Py(I; @ TS Pt
Ts = Ps(I, ® T2) Pyt
Ts = P6T3?24P6_1

Two — dimensional 16 x 4 — point DFT

Stage 1:
Stage 2:
Stage 3:
Stage 4 :
Stage 5:
Stage 6 :

Py = Ris ® Ry

Ty = Plgy Pt = Iy

Ty = Py(I16 @ T)) Py

Ty = Py LS I LS Pyt = Igu
Ty = P,LS} (e ® TS LS Pt
Ts = PsLS(Is @ TS LS Pt
T6 — P(;L?é([4 ® T816)L24P671

192

Following the definition of 77'® defined in Section 2.1.5, we compute twiddle factors

in each stage for both cases as follows.

One — dimensional 64 — point FFT
Stage 1:
T = PP =1
T, = diag(l,...,1)
Stage 2:
T, = P(lis@Ty)Py!
Py(Lis ® Tp)Py (e, @ ep, @ €, ® €, @ €, @ €y
= P(lLis®T;)(e;, ® €, @ ej, Dey, @ ey @ ep,)
= Pye;, ® ¢, @ej @€y, @ Ty (e, @epy))
= WP el @el el @k @el)
= W @6l @el @el, @€l D€}

T, = @ wib0)2~(b3)2
bs,...,b0

Stage 3:
T; = P(LRT))P;!
P(Is@ T})Py (e, ®e;, ® e, @ e Qep ep)
= P(oT)) (e, ®ep, @€ Qe Qe Qey,)
= Pie, @€, @6 @T) () ®ep, ®e;))
— w§b°)2'(b4b3)2P3(e§2 ®e;, ®e. Qe Ve, Qep)

_ (bo)2-(bsb3)2 /1 2 2 2 2 2 2
= Wy (6b5 ® €b, ® €bs ® €b, ® b, ® €b0)

T, = @ wébo)2~(b4b3)2

bs,....bo

Stage 4 :

1,

Ty

Py(Is® T3°) P!

Py(1y ® T°) P ' (e}, ® €5, ® ej, ® €5, ® €5, @ €
P @T%) (e;, @ e;, @€, ®e;. ey, Qep,)
Pi(e;, @ ¢y @Ty%(e;, @ ;. Qep, @ ¢;,))

wig " R Py (e}, @ €, © 6, ® €, @ 6, @)

Wi tsbibs) (2 @62 @ el @k @l ®el)

@ w(b0)2 (b5bab3)2

bs,..-,bo

Ps(I, ® Trg) P5!

Ps(I ® Tig) Py ' (eh, ® €5, ® €3, ® €5, ® €;, @ €}
Pi(L T (e, @e, @€, ®e;. Qe Qep,)
Pi(e;, @ Tig (e, @ €, Qep. @€, Dep,))

wyg NPy (e}, @ 6, @ €, @ €, ® ¢}, ® e},)

(bo)2-(b1b5bab3)2 /1 2 2 2 2 2 2
W3 (ebs Q €, D €py & €, ® €, & ebo)

(bo)2-(b1b5b4b3)2
D wis

bs,...,bo

193

194

Stage 6 :
Ts = PTyPy!
PTYP (€] © e @ el ®el @l ®el)
= Pily (e Qe ®e;, Qep @6, Qep)

_ (bo)2-(b1b2bsbabsz)2 2 2 2 2 2 2
= Wey Ps(ep, ® €, ® €, @ €, ® €, @ €y,)

(bo)2-(b1b2b5bab3)2 /2 2 2 2 2 2
= Wes (€b5 ® €b, ® €bs ® €by ® by ® ebo)

_ (bo)2-(b1b2bsbabs)2
Ty = €D wa
bs,...,bo

Two — dimensional (16 x 4) — point FFT
Stage 1: T, = P Iy Pt = Iy
T, = diag(l,...,1)
Stage 2 : Ty = Py(Lis @ TPy !
Py(Lis ® Ty) Py ' (e}, ® €3, @ €3, @ €3, @ €, @ €p))

= P ®T))(e), ®ep, ®ep. ®e;, Dep Qe

= Pe;, Qe Qep @ep, @ T (ef, ®ep))
= WPl p (el @l @k ek, @l ®el)
= W o od0d 0d 0d)

T, = @ wibo)z'(b3)2
bs,...,bo

Stage 3:
T3

Stage 4 :

Stage 5 :

T;

T3 = P:JMP;;1 = Ig4

diag(1,...,1)

Ty = PL3G (1 ® Ty) LS Py

PyLis(1e @ Ty) L' Py (ep, @ €3, @ €, @ ¢, @ ¢, ® €},
PyLis(1e © Ty) Ly (e}, ® €, ® €5, @ €, @ €, @ €3
PyLis(1is @ Ty)(ep, ® €4, @ €3, @ €, @ €5 @ ej)

Py LY (e;, @ ey, ® €, @ e, @ Ty (e, Rep,))
WP} @ ek @ e, @ e}, @ €}, @ €l

wibO)Q-(b5)2P4(egz ® egl ® ego X 625 X 624 X 623)

Wi e @ 6, ® €, @6, @ €, ©)

@ wibo)z'(b5)2

bs,....bo

Ts = Ps LS (Is @ TP LS Pt

PsLis(Is ® T/) LY Py (ep, ® €5, @ €5, @ €, @ ¢, ® €y
PyLis(Is @ Ty) Ly (e, ® €5, @ €, @ e, @ €, @ €5,)
PsLYs(Is @ T}) (¢}, ® €5, @ ¢, @ €} @ €, @ €f)
BLY(e;, ®@ ey, @ €5, @ Ty (e, @ €5, @ €3,))

(bo)2-(b1bs)2 64/ 2 2 2 2 2 2
UJS P5L16(eb4 ® ebg ® ebz ® ebO ® ebl ® ebS)

(bo)2-(b1bs5)2 2 2 2 2 2 2
Wy 5(6172 ® e, ® €, B €y, V€, ® ebs)

bo)ar(bibs)a(2 o 2 o 2 o 2 o 2 o 2
it 5)2(61;5 ® €}, ® €, ® €, ® €, D €y,)

@ wé(lbo)2~(b1b5)2

bs,....bo

wy

195

196

Stage 6 : Ts = Ps LS (1, ® T8 LS Pyt
PsLis(I ® T3°) L§' Py ' ef, ® €, ® €5, ® €}, ® €}, @ €j)
= BLYG (LT L (e}, ®e;, ®ep Qe Qep, @ ep)
= BL (1T (e, ®e;, @ep @€y, Rep D ep)
= PiLSi(e;, @€y, @ Ty (e, @ ep, ®e;, D¢)
= wi RIS (el @ el @l ® el @}, @)
— w%ZO)Q'(bIbe*S)QPg(egz ®e;, ey, Ve Qe Dep)

0)2'(b1b2b5)2(

_ (b 2 2 2 2 2 2
— Y €y Q €py B €}, Q €, B €} Q ebo)

_ (bo)2-(b1b2bs)2
Ty = D wis
bs,...,bo

Table A-10 summarizes the twiddle factors of optimal algorithm for one-dimensional

Table A-10 Twiddle factors of optimal algorithm for one-dimensional 64-point
DFT and two-dimensional (16 x 4)-point DFT

Stage T,

i 1-D 64-point 2-D (16 x 4)-point

1 T1 diag(1,...,1) T1 diag(1,...,1)

) @b 0)2 (b3)2 @b (bo (63)2
. (b0)2 (bab3)2 -

3 = ®b5,...,bo wg T1 dlag(l 1)

4 T4 =D, ngf)soh (babiba)z = D, .1 i 202

- T i e W R

6 Ty = @b B <‘u(0)2(b1b2b5b4b3):2 @b g 2-(b10205)2
5 geeny 5yeeesD

64-point DFT and two-dimensional (16 x 4)-point DFT.

197

A.2.2 Mapping the Optimal Algorithm

Following the mapping methodology in Chapter 3, the 64-point optimal algorithm

is mapped to 4 processors as follows.

A.2.2.1 Address Mapping.

The global addresses generated in stage i can be completely defined by the per-
mutation function o;. Let (bsbyb3babibg)2 be a binary number representing the output
of a counter. Then, the butterfly addresses in stage i can be generated by permuting

(b5b4b3b2b1b0)2 with g; defined in Equation A-9-A-14 while Counting (b5b4bgb2b1b0)2.

Stage 1: b5b4b3b2b1b0 g b2b1b5b4b3b0

18

Stage 2: b5b4b3b2b1b0 b2b1b4b3b0b5

12

Stage 3: b5b4b3b2b1b0 b2b1b3b0b5b4

2

Stage 4 b5b4b3b2b1b0 b2b1b0b5b4bg

I8

Stage 5: b5b4b3b2b1b0 b2b0b1b5b4bg

8

Stage 6 : b5b4b3b2b1b0 boblbzb5b4b3

Table A-51-A-54 in the appendix shows the sequence of addresses generated in stage

1, 2, 3, 4, 5, and 6 following the optimal algorithm.

The addresses are mapped to PEO, PE1, PE2 and PE3 in round-robin fashion.
The result is that all addresses containing (byb;)2 = (00), are mapped to PEO, that all
addresses containing (byby)2 = (01)3 are mapped to PE1, that all addresses containing
(bab1)2 = (10), are mapped to PE2, and that all addresses containing (byb;)s = (10)5
are mapped to PE3. Table A-55-A-58 in the appendix shows the sequence of addresses
that are generated in stage 1, 2, 3, 4, 5, and 6 following the optimal algorithm, and
mapped to PEO, PE1, PE2 and PE3.

198

The address generator in each processor generates local addresses, target PID,
and source MID. The bit patterns of generating the local addresses, the target PID,
and the source MID are derived from o;. The following steps demonstrate the steps

used for obtaining these bit patterns.

(1) Permute the global counter bits by o;. Then, set the 2 most significant bits to
the MID (p1po).

2

Stage 1: b5b4b3b2b1b0 bgblb5b4b3b0 — P1Po b5b4b3b0

38

Stage 2 b5b4b3b2b1b0 bgblb4b3b0b5 — P1Po b4b3b0b5

18

Stage 3: b5b4b3b2b1b0 b2b1b3b0b5b4 — P1Po bgbob5b4

J2

Stage 4 b5b4b3b2b1b0 bgblbob5b4bg — P1Po b0b5b4bg

8

Stage 5: b5b4b3b2b1b0 b2b0b1b5b4b3 — P1Po b1b5b4b3

Stage 6 : b5b4b3b2b1b0 g p1p0b5b4b3bg — DP1Po b5b4b3b2

(2) Permute the permuted bits back to their original order by the inverse permuta-
tion o; '. However, now there are 2 bits that are fixed to the MID (p;pg). The
remaining bits are the 4-bit counter that will count the local memory addresses.
To make it clear, we relabel these bits as a3, as, a1, ag while keeping the order
of the bits. This procedure maps one-to-one the label (b5, by, b3, bo,b1,bg) to

the new label (as, as, a1, ag, p1,po). The order of the new label depends on the

199

permutation function o;. Since (bgby)z in the old label specifies the target PID,

whatever replaces it becomes bit patterns of the target PID.

Stage 1:

Stage 2:

Stage 3:

Stage 4 :

Stage 5 :

Stage 6 :

(3) Permute the new label by o; to get the bit patterns of the local addresses.

P1Pobsbabsbg (i; b5b1b3p1poby — azazaipipoag
PID := pipo
P1Pob1b3bobs Ui_; b5b1b3p1poby — azazaipipoag
PID := pipo
P1Pob3bob5 b4 Ui_; b5b1b3p1poby — azazaipipoag
PID := pipo
P1Pobobsbabs ai_; bsbsbzp1pobo — a30201P1PoGo
PID := pipo
P1Pob1b5b4b3 Oi_; b5b4bsp1bipo — asazaipraopo
PID :=piap
P1Pobsbsb3by Oi_; bsbabzbapop1 — azasayagpop:

PID = aypo

Stage 1: (302011 Polo —> P1Po 03020100
Stage 2: (302011 Po0o 5 P1Po Q302000
Stage 3: (302011 Po0o 5 P1Po Q300020
Stage 4 : (302011 Po0o 5 P1Po Aoa3laa,
Stage 5: (302011 GoPo 5 P1Po Qoa3aaa,

g
Stage 6: a302a1G0PoP1 —> P1Po AoA3aA20

200

(4) The source data operated by PE number (p;pg)2 can be generated by relabeling
(bsbybsbibg)2 such that the (beby)s is replaced by (pipo)2. The remaining of the
bits are replaced by the local counter in the same order; i.e. bsbsb3by is relabeled
to agzasaiag. The 2 most significant bits after the permutation o; specify the bit

pattern of the source MID.

Stage 1: a3a9a1P1PoGo Y P1Po A3G2a100
MID := pipo

Stage 2: a3a9a1P1PoGo z P1Po A3G2a001
MID := pipo

Stage 3: a3a9a1P1PoGo z P1Po A3G0a201
MID := pipo

Stage 4 : a3a2a1P1PoGo X P1Po Goa302a1
MID := pipo

Stage 5: a3a2a1P1Poto z P1Go Poasazay
MID := piag

Stage 6 : 3901 P1PoGo z GoPo A3Q2a1P1
MID := agpg

Table A-11 concludes the bit patterns of local address, target PID and source MID
following the optimal algorithm. Table A-59-A-64 in the appendix list these numbers

in each PE and each stage.

A.2.2.2 Twiddle Factor Mapping.

Table A-10 shows the twiddle factors for one-dimensional 64-point DFT and two-

dimensional (16 x 4)-point DFT using the optimal algorithm. Since, we represent a

201

Table A-11 Bit patterns for generating local address, target PID and source MID
using the optimal algorithm

Stage | source MID | target PID | Local Address
1 P1Po P1Do 3020109
2 P1Po P1Do a3a20a0a;
3 P1Po P1Do azaoa20;
4 P1Po P1Do Apazaz2a;
5 Pp1ag Pp1ag 0030201
6 aoPo appy Q30201

fraction by 8-bit binary number, we convert the twiddle factors in Table A-10 to wis

resulting in the twiddle factors in Table A-12. The value of by identifies whether the

Table A-12 Twiddle factors of optimal algorithm for one-dimensional 64-point
DFT and two-dimensional (16 x 4)-point DFT

Stage T;

i 1-D 64-point

2-D (16 x 4)-point

T = diag(l, ey 1)

T, = diag(1,...,1)

bo)2-(b3)2-2°
Ty = Dy, 4, w§5%)2 ()2

.....

bo)2-(b3)2-2°
T, = By,...4, wg5%)2 o)z

.....

o (bo)2-(babs)2-2°
T3 = Dy, b, W6

.....

o (bo)2-(b5babs)2-2%
T4 - ®b5 bo <'d256

.....

bo)z2-(bs)2-2°
Ty = D, .1 w§5%)2 o)z

.....

_ (bo)2-(b1bsbabs)2-23
I5 = @bs bo V256

_ (bo)2-(b1bs)2-25
15 = @b5 by Y256

(b0)2-(b1b2b5babsz)2-22

(bo)2-(b1b2bs)2-2%

DO | W (N[

address is the first or second address of the butterfly operation. When by, = 0, it is
the first address and the twiddle factor for this datum is always equal to 1. When
by = 1 signifies that the address is for the second datum which will be multiplied by
twiddle factor wj,s. Therefore, the twiddle factors in Table A-12 can be written as the
twiddle fractions in Table A-13. Since the twiddle factors are mapped to PEO, PE1,
PE2 and PE3 in round-robin fashion, (byb;) is replaced by PID (pipg) and (bsbsbsbo)

is replaced by the output of the local counter (agasaiag). Table A-65 to A-68 show

202

Table A-13 Twiddle fractions of optimal algorithm for one-dimensional 64-point
DFT and two-dimensional (16 x 4)-point DFT

Stage Twiddle Fraction = (r7---rg)
i 1-D 64-point 2-D (16 x 4)-point
1 (000000)s (000000)-
2 (0a;000000) (0a;000000)
3 (0a2a2000000)2 | (00000000),
1| (0azaza,0000); | (0a3000000),
5 (0p0a3a2b1000)2 (0p0a3000000)2
6 (Opop1azasa;00)s | (0pop1az0000),

the twiddle fractions of 1-D 64-point DF'T using the optimal algorithm generated in
each stage. Table A-69 to A-72 show the twiddle fractions of 1-D 64-point DFT using
the optimal algorithms generated in each stage inside each PE. Table A-73 to A-76
show the twiddle fractions of 2-D (16 x 4)-point the optimal algorithms generated in

each stage and the round-robin mapping.

A.2.3 Implementation

The address and twiddle fraction generators can be implemented using MUXs or
adders. In both cases, we can systematically translate the bit patterns into parameters

needed for the corresponding implementation.

In addition to the algorithm specified by P; and T; and number of processors spec-
ified by m, where 2™ is the number of processors, the other compile-time parameter
is the maximum size specified by n,,.,. This number specifies that the universal FFT
engine can compute FFT of size ranging from 2™ to 2" points. For the purpose
of demonstration, we set n,,,, to 8. This implies that a local address is represented
by a 6-bit binary number while a twiddle fraction is represented by an 8-bit binary

number.

203

A.2.3.1 Address Generation Unit.

Implementation using MUXs

The bit patterns for generating local address, target PID, and source MID fol-
lowing the optimal algorithm of size 64 point shown in Table A-11 provides us the

following nice properties.

e Target PID and source MID are the same pattern. Moreover, they are equal
to the PID (p1po) during stage 1 to 4 and there is only 1 bit different between
them and (pypo) during stage 5 and 6. Therefore, we do not need to generate the
whole target PID and source MID. Only a flag identifying whether a particular
address is remote or local is needed. This can be done because at particular
stage, data involving a processor can either come or go to its memory or another
remote memory. In other words, only a pair wise interconnection is required at
each stage. Therefore, we can deterministically configure the interconnection
network in each stage to accommodate such communication. Moreover, there

are only 2 stages that need the interconnection.

For our example, all addresses are local during stage 1 to 4. During stage 5, the
pair wise connections are that PEO connects with PE1 and that PE2 connects
with PE3. During stage 6, PEO connects with PE2 while PE1 connects with
PE3.

e There are at most only 3 possible bits that are permuted to become an output
bit. In other words, instead of using 8-to-1 MUX, we need only 3-to-1 MUXs
regardless of the size. Specifically, either ag, a; or a;4, is permuted to become

the j bit of the output. Let (cscsczcacicy)2 be the local address. Let ag, a; or

204

a;+1 be the 3 possible choices of the 3-to-1 mux whose output is ¢; and s; is its
MUX select. Then,

agp iijZO
¢ = a; ifs;=1, 0<j<6and asg = as
Qj41 iij:2

Figure A-2 shows the address generator for optimal algorithm of size 64 using

ap ap an—J an a a
4 & Blay—gw — 0o oy @1 o cy
2 a as—p a a2 a
Se 54 53 87 il 2l
B o o | e —

Figure A-2 Address generator for optimal FF'T algorithm of size 64 points using
3-to-1 MUXs

Table A-14 MUX selects for generating local address of the optimal algorithm

Stage | s5 | S4 | S3 | S2 | S1 | So
1 1111|110
2 1111]|0]|2
3 11111022
4 11110222
5 11110222
6 11110222

3-to-1 MUXs. Table A-11 shows the MUX selects at each stage. Note that the
MUX selects can be generated easily using shift registers as shown Figure A-2.
The MUX select s; is the output of a 2-bit register. At the first stage, the
registers are initialized such that s = 0, s; = 1, 1 < j < 4. Then, when
changing the stage and the current stage is less than 4, the s¢ is loaded with 2

and s;, 1 < j < 4 is with s;_; resulting in the MUXs selects of the next stage.

205

For the remaining stages (stage 5 and 6), the MUX selects stay the same as in

stage 4.

Implementation Using Adders

The address generator can also be generated using an adder as shown in Figure 5.3.
As describing in above section, we do not need to generate the target PID and source

MID. We will focus on how the local addresses are generated using adders.

Since the bit patterns for generating an address have at most 3 portions of con-
secutive bits, we needs 3 increment numbers at each stage. At the first stage, the
pattern is (00azasaiag) which can be generated by setting the initial number (INIT)
o (000000)2 and the increment number to (000001),. Since we always start from
address 0, the INIT value at the beginning of stage is always equal to (000000),. For
2 < i < 4 the pattern becomes (00as - - - a;apa;—; - - -ay). The portions of consecutive
bits are (ag), (a;---a1) and (00as---a;), 1 < i < 4. This implies that we need 3
increment numbers. Let INC;(7) be the increment number at stage i when there is
no carry, INCy(i) be the increment number at stage i when there is carry from ag
to a; but no carry from a;_; to a;_1, and INCs() be the increment number at stage

i when there is carry from a;_; to a;. To accommodate the carry propagation, the

Table A-15 Increment and initial number for generating address using adders

Stage | INIT(i) Increment Number

i INC,(4) INCo(7) INC;(4)

1| (000000) | (000001); = 1 n/c (000001), = 1
2| (000000), | (000010), = 2 | (111111), = —1 | (000001), = 1
3| (000000)s | (000100); = 4 | (111101)s = —3 | (000001)s = 1
4| (000000) | (001000), = 8 | (111001), = 7 (000001), = 1
5 | (000000)s | (001000)5 = 8 | (111001), = (000001), = 1
6 | (000000), | (001000); = 8 | (111001), = (000001), = 1

206

increment INC; (i) is equal to (0---010---0)y = 2071 1 < ¢ < 4, the INCy(7) is equal
to (1++-10---01)y = 1 —2""! and the INC3(:) is always equal to (0---1),. Table A-15

shows the initial and increment numbers for generating the address using adders.

Table A-16 Addresses generated during stage 3 using adders

Addr. ACC INC Stride 2% | inc3_

Count Count hit
0 (0000)y = 0 INC;(3) = (000100), = (001000)5 0
1 (000100), =4 | INC9(3) = (111101)5 = —3 (010000)5 0
2 (000001), =1 | INC{(3) = (000100), =4 (011000)5 0
3 (000101) =5 | INCy(3) = (111101)y = —3 | (100000), 0
4 (000010); =2 | INCy(3) = (000100), =4 (101000), 0
5 (000110) =6 | INC9(3) = (111101) = —3 | (110000), 0
6 (000011), =3 | INC{(3) = (000100), =4 (111000), 0
7 (000111)y =7 | INC3(3) = (000001), =1 (000000)5 1
8 (001000), = 8 | INC{(3) = (000100), =4 (001000)5 0
9 (001100)y = 12 INCy(3) = (111101), = —3 | (010000)4 0
10 (001001)y = INC;(3) = (000100)y = 4 (011000), 0
11 (001101)y = 13 INCy(3) = (111101), = —3 | (100000)4 0
12 (001010)3 = 10 | INCy(3) = (000100), = 4 (101000), 0
13 (001110)3 = 14 | INCy(3) = (111101), = (110000)5 0
14 (001011)y = 11 | INC¢(3) = (000100), = (111000), 0
15 (001111)y = 15 | INC3(3) = (000001), = (000000)5 1

The carry from a; 1 to a; occurs only when (a;_1---ag) = (1---1)s. In other
words, it occurs in stride 2°. Another adder similar to Figure 5.3 may be used for
checking whether INCy(4) is selected. If we set both initial number (INIT) and incre-
ment number (INC) of the adder at stage i to 267%, the adder counts in stride 2. For
example, at stage 3, the INIT and INC is 2673 = (001000),. This produces a carry

out called “inc3_hit” in every 8 counts.

The carry from ay to a; occurs in every other count (stride 2). This simply is a
toggle flip-flop. Therefore, if “inc3_hit” is active, INC3(7) is selected as the increment

number, else if ag = ‘1’, INCy(i) is selected; otherwise, INC;(i) is selected. Table A-16

207

shows how the addresses are generated during stage 3, where INC;(3) = (000100), =
22, INCo(7) = (111101)9 = 1 — 2% = —3 and INC3(7) = (000001), = 1.

Since INCs(i) and INIT(i) are constant, we need to generate only INC;(i) and
INCy(4). Since INCy(i+ 1) = 2°*! =2.2" it can be generated by shifting its current
value (INC; (i) = 2°) to the left by 1 bit. Similarly, if we keep the LSB bit of INCo(i+1)
equal to ‘17, then its remaining value is —2/*! = —2. 2% which can also be generated

by shifting its current value (—2°) to the left by 1 bit.

A.2.3.2 Twiddle Fraction Generator.

As shown in Chapter 5, we can generate the twiddle fractions of any dimension

by masking off unwanted bits of one-dimensional twiddle fraction.

Table A-13 shows the bit patterns for generating twiddle fractions of one-dimensional

and two-dimensional FFT of size 64 points following the optimal algorithm. Both

Table A-17 Generation of twiddle fractions for the optimal algorithm of different
dimensions using masks

Twiddle Fraction = TF1 AND M
Stage | Twiddle fraction Mask (M) = (27 — 1) - 2877

i before masking 1-D 64-point 2-D (16 x 4)-point

(TF1) (2™ -point) (2™ x 2™ -point)

e |] M AERE M

1 (00000000); | 1| 6 | 0| (000000005 | 2 | 2 | 0 | (00000000)s
2 (02,000000), 1| (01000000), 1 [(01000000)
3 | (0apa,00000) 5 [(01100000), | 1| 4 | 0| (00000000),
1| (Oaza2a;0000) 3 | (01110000) 1 | (01000000),
5 | (0poazasa;000)s 4 [(01111000), 2 | (01100000)
6 | (Opopiazaza00)s 5 | (01111100), 3 | (01110000)

twiddle fractions can be generated by (1) generating a twiddle fraction denoted as

TF1 and (2) masking off unwanted bits of TF1. Table A-17 shows the bit patterns of

208

TF1 and the masks for both one-dimensional 64-point and two-dimensional (16 x 4)-
point FFT following the Pease algorithm. Following this implementation, we can
parameterize the design such that the twiddle fraction TF1 depends solely on the al-
gorithm and the size and that the mask depends solely on the dimension specification.

The implementation of the masks is explained in Chapter 5.

The TF1 can be generated using MUXs or adders. When using MUXs, we need 8
7-to-1 MUXs whose MUX selects are parameterized during the runtime by the size.
Let (r7---79) be the 8bit TF1 and r;, 0 < j < 8, be the output of a 8-to-1 MUX
whose MUX select is sf;. Then,

(p() if SijO
pr if sf; =
ay if Sfj:
rip = § Q2 ifoj: , 0< 7 <8
as if Sfj:
as if sf; =
L as if Sfj:

Table A-18 MUX selects for generating local address of the optimal algorithm

Stage | sfr | sfe | sfs | sfa | sfs|sfa|sfi]|sho
1 0 2 2 2 2 2 2 2

O T | W | D
jen) Ben) Neoll Ne) Han)
= O =W N
O = W N N
=W N NN
NN DN DN
DO DN N DN BN
DO DN N BN

DO DN N BN

When using adders, the initial number (INIT) and the increment number (INC)
are parameterized during the runtime by the size. For the size 2% points, the INIT

and INC are shown in Table A-19.

209

Table A-19 Increment and initial number for generating twiddle fractions of opti-
mal algorithm using adders

Stage INIT(i) INC(i)
1 (00000000); | (00000000); = =
2| (00000000), | (01000000), = i
3| (00000000); | (00100000), = &
4| (00000000); | (00010000), = A
5 | (0po000000), [(00001000); = 2
6 | (Opop:000000); | (00000100); =

Note that the increment is done in every 2 addresses. Table A-20 shows the

generation of TF1 during any stages in each PE.

Table A-20 Generation of twiddle fractions at stage 6 before masking (TF1) fol-
lowing optimal algorithm of size 64 points using adders

INIT = (0pop;000000) and INC = 285 = (00000100)
Twiddle Fraction (TF1)
43020, PE(PE1 PE2 PE3
p1po = 00 p1po = 01 p1po = 10 pipo = 11
0 (00000000) = 2 | (01000000) = ££ | (00100000) = 2 | (01100000) = 21
1 (00000100) = 2= | (01000100) = £ | (00100100) = 2 | (01100100) = 2
2 (00001000) = Z | (01001000) = 28 | (00101000) = 9 | (01101000) = 2°
3 (00001100) = 2 | (01001100) = £2 | (00101100) = # | (01101100) = =
4 (00010000) = = | (01010000) = 22 | (00110000) = # | (01110000) = ¢
5 (00010100) = 2 | (01010100) = 2; | (00110100) = #3 | (01110100) = 22
6 (00011000) = 2 | (01011000) = 22 | (00111000) = &; | (01111000) = 2
7 (00011100) = 7 | (01011100) = 22 | (00111100) = & | (01111100) = 2

210

A.3 Tables for 64-point Pease Algorithm

Table A-21

211

Addresses sequences for 64-bit Pease algorithm at stage 1, 2 and 3

Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
b504b3b201 b baby | bsbsbsbabyiby b4b3b2b1bobs b3b2b1 b5 b4
000000 0 000000 0 000000 0 000000 0
000001 0 000001 1 000010 2 000100 4
000010 1 000010 2 000100 4 001000 8
000011 1 000011 3 000110 6 001100 12
000100 2 000100 4 001000 8 010000 16
000101 2 000101 5 001010 10 010100 20
000110 3 000110 6 001100 12 011000 24
000111 3 000111 7 001110 14 011100 28
001000 0 001000 8 010000 16 100000 32
001001 0 001001 9 010010 18 100100 36
001010 1 001010 10 010100 20 101000 40
001011 1 001011 11 010110 22 101100 44
001100 2 001100 12 011000 24 110000 48
001101 2 001101 13 011010 26 110100 52
001110 3 001110 14 011100 28 111000 56
001111 3 001111 15 011110 30 111100 60
010000 0 010000 16 100000 32 000001 1
010001 0 010001 17 100010 34 000101 5
010010 1 010010 18 100100 36 001001 9
010011 1 010011 19 100110 38 001101 13
010100 2 010100 20 101000 40 010001 17
010101 2 010101 21 101010 42 010101 21
010110 3 010110 22 101100 44 011001 25
010111 3 010111 23 101110 46 011101 29
011000 0 011000 24 110000 48 100001 33
011001 0 011001 25 110010 50 100101 37
011010 1 011010 26 110100 52 101001 41
011011 1 011011 27 110110 54 101101 45
011100 2 011100 28 111000 56 110001 49
011101 2 011101 29 111010 58 110101 53
011110 3 011110 30 111100 60 111001 57
011111 3 011111 31 111110 62 111101 61

212

Table A-22 Addresses sequences for 64-bit Pease algorithm at stage 1, 2 and 3

(cont.)
Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
bsb4b3baby1 by baby | bsbybsbabyby bab3bobybobs b3bab1bobsby
100000 0 100000 32 000001 1 000010 2
100001 0 100001 33 000011 3 000110 6
100010 1 100010 34 000101 5 001010 10
100011 1 100011 35 000111 7 001110 14
100100 2 100100 36 001001 9 010010 18
100101 2 100101 37 001011 11 010110 22
100110 3 100110 38 001101 13 011010 26
100111 3 100111 39 001111 15 011110 30
101000 0 101000 40 010001 17 100010 34
101001 0 101001 41 010011 19 100110 38
101010 1 101010 42 010101 21 101010 42
101011 1 101011 43 010111 23 101110 46
101100 2 101100 44 011001 25 110010 50
101101 2 101101 45 011011 27 110110 54
101110 3 101110 46 011101 29 111010 58
101111 3 101111 47 011111 31 111110 62
110000 0 110000 48 100001 33 000011 3
110001 0 110001 49 100011 35 000111 7
110010 1 110010 50 100101 37 001011 11
110011 1 110011 51 100111 39 001111 15
110100 2 110100 52 101001 41 010011 19
110101 2 110101 53 101011 43 010111 23
110110 3 110110 54 101101 45 011011 27
110111 3 110111 55 101111 47 011111 31
111000 0 111000 56 110001 49 100011 35
111001 0 111001 57 110011 51 100111 39
111010 1 111010 58 110101 53 101011 43
111011 1 111011 59 110111 55 101111 47
111100 2 111100 60 111001 57 110011 51
111101 2 111101 61 111011 59 110111 55
111110 3 111110 62 111101 61 111011 59
111111 3 111111 63 111111 63 111111 63

213

Table A-23 Addresses sequences for 64-bit Pease algorithm at stage 4, 5 and 6

Counter (1) | Mapped Addresses (k)
to PE Stage 4 Stage 5 Stage 6
b504b3b201 b baby | babibobsbybs b1bob5b4b3bo bobsb4b3b2b1
000000 0 000000 0 000000 0 000000 0
000001 0 001000 8 010000 16 100000 32
000010 1 010000 16 100000 32 000001 1
000011 1 011000 24 110000 48 100001 33
000100 2 100000 32 000001 1 000010 2
000101 2 101000 40 010001 17 100010 34
000110 3 110000 48 100001 33 000011 3
000111 3 111000 56 110001 49 100011 35
001000 0 000001 1 000010 2 000100 4
001001 0 001001 9 010010 18 100100 36
001010 1 010001 17 100010 34 000101 5
001011 1 011001 25 110010 50 100101 37
001100 2 100001 33 000011 3 000110 6
001101 2 101001 41 010011 19 100110 38
001110 3 110001 49 100011 35 000111 7
001111 3 111001 57 110011 51 100111 39
010000 0 000010 2 000100 4 001000 8
010001 0 001010 10 010100 20 101000 40
010010 1 010010 18 100100 36 001001 9
010011 1 011010 26 110100 52 101001 41
010100 2 100010 34 000101 5 001010 10
010101 2 101010 42 010101 21 101010 42
010110 3 110010 50 100101 37 001011 11
010111 3 111010 58 110101 53 101011 43
011000 0 000011 3 000110 6 001100 12
011001 0 001011 11 010110 22 101100 44
011010 1 010011 19 100110 38 001101 13
011011 1 011011 27 110110 54 101101 45
011100 2 100011 35 000111 7 001110 14
011101 2 101011 43 010111 23 101110 46
011110 3 110011 51 100111 39 001111 15
011111 3 111011 59 110111 55 101111 47

214

Table A-24 Addresses sequences for 64-bit Pease algorithm at stage 4, 5 and 6

(cont.)
Counter (1) | Mapped Addresses (k)
to PE Stage 4 Stage 5 Stage 6
bsb4b3baby1 by baby | babibobsbybs b1bobsb4b30o bobsbbsbyby
100000 0 000100 4 001000 8 010000 16
100001 0 001100 12 011000 24 110000 48
100010 1 010100 20 101000 40 010001 17
100011 1 011100 28 111000 56 110001 49
100100 2 100100 36 001001 9 010010 18
100101 2 101100 44 011001 25 110010 50
100110 3 110100 52 101001 41 010011 19
100111 3 111100 60 111001 57 110011 51
101000 0 000101 5 001010 10 010100 20
101001 0 001101 13 011010 26 110100 52
101010 1 010101 21 101010 42 010101 21
101011 1 011101 29 111010 58 110101 53
101100 2 100101 37 001011 11 010110 22
101101 2 101101 45 011011 27 110110 54
101110 3 110101 53 101011 43 010111 23
101111 3 111101 61 111011 59 110111 55
110000 0 000110 6 001100 12 011000 24
110001 0 001110 14 011100 28 111000 56
110010 1 010110 22 101100 44 011001 25
110011 1 011110 30 111100 60 111001 57
110100 2 100110 38 001101 13 011010 26
110101 2 101110 46 011101 29 111010 58
110110 3 110110 54 101101 45 011011 27
110111 3 111110 62 111101 61 111011 59
111000 0 000111 7 001110 14 011100 28
111001 0 001111 15 011110 30 111100 60
111010 1 010111 23 101110 46 011101 29
111011 1 011111 31 111110 62 111101 61
111100 2 100111 39 001111 15 011110 30
111101 2 101111 47 011111 31 111110 62
111110 3 110111 55 101111 47 011111 31
111111 3 111111 63 111111 63 111111 63

215

Table A-25 Addresses mapped to PEO and PE1 for 64-bit Pease algorithm at stage

1,2 and 3
Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
504030201 b baby | b5bybsbabyby b4b3b201bobs b3b201bobsby
000000 0 000000 0 000000 0 000000 0
000001 0 000001 1 000010 2 000100 4
001000 0 001000 8 010000 16 100000 32
001001 0 001001 9 010010 18 100100 36
010000 0 010000 16 100000 32 000001 1
010001 0 010001 17 100010 34 000101 5
011000 0 011000 24 110000 48 100001 33
011001 0 011001 25 110010 50 100101 37
100000 0 100000 32 000001 1 000010 2
100001 0 100001 33 000011 3 000110 6
101000 0 101000 40 010001 17 100010 34
101001 0 101001 41 010011 19 100110 38
110000 0 110000 48 100001 33 000011 3
110001 0 110001 49 100011 35 000111 7
111000 0 111000 56 110001 49 100011 35
111001 0 111001 57 110011 51 100111 39
000010 1 000010 2 000100 4 001000 8
000011 1 000011 3 000110 6 001100 12
001010 1 001010 10 010100 20 101000 40
001011 1 001011 11 010110 22 101100 44
010010 1 010010 18 100100 36 001001 9
010011 1 010011 19 100110 38 001101 13
011010 1 011010 26 110100 52 101001 41
011011 1 011011 27 110110 54 101101 45
100010 1 100010 34 000101 5 001010 10
100011 1 100011 35 000111 7 001110 14
101010 1 101010 42 010101 21 101010 42
101011 1 101011 43 010111 23 101110 46
110010 1 110010 50 100101 37 001011 11
110011 1 110011 51 100111 39 001111 15
111010 1 111010 58 110101 53 101011 43
111011 1 111011 59 110111 55 101111 47

216

Table A-26 Addresses mapped to PEO and PE1 for 64-bit Pease algorithm at stage

4,5 and 6
Counter (1) | Mapped Addresses (k)
to PE Stage 4 Stage 5 Stage 6
504030201 b baby | bobibobsbybs b100b504b3b, bob504b3b2b,
000000 0 000000 0 000000 0 000000 0
000001 0 001000 8 010000 16 100000 32
001000 0 000001 1 000010 2 000100 4
001001 0 001001 9 010010 18 100100 36
010000 0 000010 2 000100 4 001000 8
010001 0 001010 10 010100 20 101000 40
011000 0 000011 3 000110 6 001100 12
011001 0 001011 11 010110 22 101100 44
100000 0 000100 4 001000 8 010000 16
100001 0 001100 12 011000 24 110000 48
101000 0 000101 5 001010 10 010100 20
101001 0 001101 13 011010 26 110100 52
110000 0 000110 6 001100 12 011000 24
110001 0 001110 14 011100 28 111000 56
111000 0 000111 7 001110 14 011100 28
111001 0 001111 15 011110 30 111100 60
000010 1 010000 16 100000 32 000001 1
000011 1 011000 24 110000 48 100001 33
001010 1 010001 17 100010 34 000101 5
001011 1 011001 25 110010 50 100101 37
010010 1 010010 18 100100 36 001001 9
010011 1 011010 26 110100 52 101001 41
011010 1 010011 19 100110 38 001101 13
011011 1 011011 27 110110 54 101101 45
100010 1 010100 20 101000 40 010001 17
100011 1 011100 28 111000 56 110001 49
101010 1 010101 21 101010 42 010101 21
101011 1 011101 29 111010 58 110101 53
110010 1 010110 22 101100 44 011001 25
110011 1 011110 30 111100 60 111001 57
111010 1 010111 23 101110 46 011101 29
111011 1 011111 31 111110 62 111101 61

217

Table A-27 Addresses mapped to PE2 and PE3 for 64-bit Pease algorithm at stage

1,2 and 3
Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
504030201 b baby | b5bybsbabyby b4b3b201bobs b3b201bobsby
000100 2 000100 4 001000 8 010000 16
000101 2 000101 5 001010 10 010100 20
001100 2 001100 12 011000 24 110000 48
001101 2 001101 13 011010 26 110100 52
010100 2 010100 20 101000 40 010001 17
010101 2 010101 21 101010 42 010101 21
011100 2 011100 28 111000 56 110001 49
011101 2 011101 29 111010 58 110101 53
100100 2 100100 36 001001 9 010010 18
100101 2 100101 37 001011 11 010110 22
101100 2 101100 44 011001 25 110010 50
101101 2 101101 45 011011 27 110110 54
110100 2 110100 52 101001 41 010011 19
110101 2 110101 53 101011 43 010111 23
111100 2 111100 60 111001 57 110011 51
111101 2 111101 61 111011 59 110111 55
000110 3 000110 6 001100 12 011000 24
000111 3 000111 7 001110 14 011100 28
001110 3 001110 14 011100 28 111000 56
001111 3 001111 15 011110 30 111100 60
010110 3 010110 22 101100 44 011001 25
010111 3 010111 23 101110 46 011101 29
011110 3 011110 30 111100 60 111001 57
011111 3 011111 31 111110 62 111101 61
100110 3 100110 38 001101 13 011010 26
100111 3 100111 39 001111 15 011110 30
101110 3 101110 46 011101 29 111010 58
101111 3 101111 47 011111 31 111110 62
110110 3 110110 54 101101 45 011011 27
110111 3 110111 55 101111 47 011111 31
111110 3 111110 62 111101 61 111011 59
111111 3 111111 63 111111 63 111111 63

218

Table A-28 Addresses mapped to PE2 and PE3 for 64-bit Pease algorithm at stage

4,5 and 6
Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
504030201 b baby | b5bybsbabyby b4b3b201bobs b3b201bobsby
000100 2 100000 32 000001 1 000010 2
000101 2 101000 40 010001 17 100010 34
001100 2 100001 33 000011 3 000110 6
001101 2 101001 41 010011 19 100110 38
010100 2 100010 34 000101 5 001010 10
010101 2 101010 42 010101 21 101010 42
011100 2 100011 35 000111 7 001110 14
011101 2 101011 43 010111 23 101110 46
100100 2 100100 36 001001 9 010010 18
100101 2 101100 44 011001 25 110010 50
101100 2 100101 37 001011 11 010110 22
101101 2 101101 45 011011 27 110110 54
110100 2 100110 38 001101 13 011010 26
110101 2 101110 46 011101 29 111010 58
111100 2 100111 39 001111 15 011110 30
111101 2 101111 47 011111 31 111110 62
000110 3 110000 48 100001 33 000011 3
000111 3 111000 56 110001 49 100011 35
001110 3 110001 49 100011 35 000111 7
001111 3 111001 57 110011 51 100111 39
010110 3 110010 50 100101 37 001011 11
010111 3 111010 58 110101 53 101011 43
011110 3 110011 51 100111 39 001111 15
011111 3 111011 59 110111 55 101111 47
100110 3 110100 52 101001 41 010011 19
100111 3 111100 60 111001 57 110011 51
101110 3 110101 53 101011 43 010111 23
101111 3 111101 61 111011 59 110111 55
110110 3 110110 54 101101 45 011011 27
110111 3 111110 62 111101 61 111011 59
111110 3 110111 55 101111 47 011111 31
111111 3 111111 63 111111 63 111111 63

219

Table A-29 Source MID, target PID and local addresses generated in PEO and
PE1 at stage 1 and 2 following the Pease algorithm

Counter Stage 1 Stage 2
MID | PID | Address MID | PID | Address
azasa1ap | azay | a1 aszaga1agn as0a1 | asa1 asa1ap0a3
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0001 1 0 0 0010 2
0010 0 1 0010 2 1 1 0100 4
0011 0 1 0011 3 1 1 0110 6
0100 1 2 0100 4 2 2 1000 8
0101 1 2 0101 5 2 2 1010 10
0110 1 3 0110 6 3 3 1100 12
0111 1 3 0111 7 3 3 1110 14
1000 2 0 1000 8 0 0 0001 1
1001 2 0 1001 9 0 0 0011 3
1010 2 1 1010 10 1 1 0101 5
1011 2 1 1011 11 1 1 0111 7
1100 3 2 1100 12 2 2 1001 9
1101 3 2 1101 13 2 2 1011 11
1110 3 3 1110 14 3 3 1101 13
1111 3 3 1111 15 3 3 1111 15
PE1 ((p1po)2 = (01)7)
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0001 1 0 0 0010 2
0010 0 1 0010 2 1 1 0100 4
0011 0 1 0011 3 1 1 0110 6
0100 1 2 0100 4 2 2 1000 8
0101 1 2 0101 5 2 2 1010 10
0110 1 3 0110 6 3 3 1100 12
0111 1 3 0111 7 3 3 1110 14
1000 2 0 1000 8 0 0 0001 1
1001 2 0 1001 9 0 0 0011 3
1010 2 1 1010 10 1 1 0101 5
1011 2 1 1011 11 1 1 0111 7
1100 3 2 1100 12 2 2 1001 9
1101 3 2 1101 13 2 2 1011 11
1110 3 3 1110 14 3 3 1101 13
1111 3 3 1111 15 3 3 1111 15

220

Table A-30 Source MID, target PID and local addresses generated in PEO and
PE1 at stage 3 and 4 following the Pease algorithm

Counter Stage 3 Stage 4
MID | PID | Address MID | PID | Address
(3020100 | G1P1 | Podl | A1GpA3a2 P1Po | P1Po | Apa3a2a1
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0100 4 0 0 1000 8
0010 2 1 1000 8 0 0 0001 1
0011 2 1 1100 12 0 0 1001 9
0100 0 0 0001 1 0 0 0010 2
0101 0 0 0101 5 0 0 1010 10
0110 2 1 1001 9 0 0 0011 3
0111 2 1 1101 13 0 0 1011 11
1000 0 0 0010 2 0 0 0100 4
1001 0 0 0110 6 0 0 1100 12
1010 2 1 1010 10 0 0 0101 5
1011 2 1 1110 14 0 0 1101 13
1100 0 0 011 3 0 0 0110 6
1101 0 0 0111 7 0 0 1110 14
1110 2 1 1011 11 0 0 0111 7
1111 2 1 1111 15 0 0 1111 15
PE1 ((p1po)2 = (01)7)
0000 0 2 0000 0 1 1 0000 0
0001 0 2 0100 4 1 1 1000 8
0010 2 3 1000 8 1 1 0001 1
0011 2 3 1100 12 1 1 1001 9
0100 0 2 0001 1 1 1 0010 2
0101 0 2 0101 5 1 1 1010 10
0110 2 3 1001 9 1 1 0011 3
0111 2 3 1101 13 1 1 1011 11
1000 0 2 0010 2 1 1 0100 4
1001 0 2 0110 6 1 1 1100 12
1010 2 3 1010 10 1 1 0101 5
1011 2 3 1110 14 1 1 1101 13
1100 0 2 011 3 1 1 0110 6
1101 0 2 0111 7 1 1 1110 14
1110 2 3 1011 11 1 1 0111 7
1111 2 3 1111 15 1 1 1111 15

221

Table A-31 Source MID, target PID and local addresses generaged at stage 5 and
6 in PEO and PE1 following the Pease algorithm

Counter Stage 5 Stage 6
MID | PID | Address MID | PID | Address
a3a2a1a9 | PoGo | ApP1 | A1G40A30A2 Goag | aiap | a3a2a10a0
0000 0 0 0000 0 0 0 0000 0
0001 1 2 0001 1 2 1 0001 1
0010 0 0 0010 2 0 2 0010 2
0011 1 2 0011 3 2 3 0011 3
0100 0 0 0100 4 0 0 0100 4
0101 1 2 0101 5 2 1 0101 5
0110 0 0 0110 6 0 2 0110 6
0111 1 2 0111 7 2 3 0111 7
1000 0 0 1000 8 1 0 1000 8
1001 1 2 1001 9 3 1 1001 9
1010 0 0 1010 10 1 2 1010 10
1011 1 2 1011 11 3 3 1011 11
1100 0 0 1100 12 1 0 1100 12
1101 1 2 1101 13 3 1 1101 13
1110 0 0 1110 14 1 2 1110 14
1111 1 2 1111 15 3 3 1111 15
PE1 ((p1po)2 = (01)7)
0000 2 0 0000 0 0 0 0000 0
0001 3 2 0001 1 2 1 0001 1
0010 2 0 0010 2 0 2 0010 2
0011 3 2 0011 3 2 3 0011 3
0100 2 0 0100 4 0 0 0100 4
0101 3 2 0101 5 2 1 0101 5
0110 2 0 0110 6 0 2 0110 6
0111 3 2 0111 7 2 3 0111 7
1000 2 0 1000 8 1 0 1000 8
1001 3 2 1001 9 3 1 1001 9
1010 2 0 1010 10 1 2 1010 10
1011 3 2 1011 11 3 3 1011 11
1100 2 0 1100 12 1 0 1100 12
1101 3 2 1101 13 3 1 1101 13
1110 2 0 1110 14 1 2 1110 14
1111 3 2 1111 15 3 3 1111 15

222

Table A-32 Source MID, target PID and local addresses generated in PE2 and
PE3 at stage 1 and 2 following Pease algorithm

Counter Stage 1 Stage 2
MID | PID | Address MID | PID | Address
azasa1ap | azay | a1 aszaga1agn as0a1 | asa1 asa1ap0a3
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0001 1 0 0 0010 2
0010 0 1 0010 2 1 1 0100 4
0011 0 1 0011 3 1 1 0110 6
0100 1 2 0100 4 2 2 1000 8
0101 1 2 0101 5 2 2 1010 10
0110 1 3 0110 6 3 3 1100 12
0111 1 3 0111 7 3 3 1110 14
1000 2 0 1000 8 0 0 0001 1
1001 2 0 1001 9 0 0 0011 3
1010 2 1 1010 10 1 1 0101 5
1011 2 1 1011 11 1 1 0111 7
1100 3 2 1100 12 2 2 1001 9
1101 3 2 1101 13 2 2 1011 11
1110 3 3 1110 14 3 3 1101 13
1111 3 3 1111 15 3 3 1111 15
PE3 ((p1po)2 = (11)2)
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0001 1 0 0 0010 2
0010 0 1 0010 2 1 1 0100 4
0011 0 1 0011 3 1 1 0110 6
0100 1 2 0100 4 2 2 1000 8
0101 1 2 0101 5 2 2 1010 10
0110 1 3 0110 6 3 3 1100 12
0111 1 3 0111 7 3 3 1110 14
1000 2 0 1000 8 0 0 0001 1
1001 2 0 1001 9 0 0 0011 3
1010 2 1 1010 10 1 1 0101 5
1011 2 1 1011 11 1 1 0111 7
1100 3 2 1100 12 2 2 1001 9
1101 3 2 1101 13 2 2 1011 11
1110 3 3 1110 14 3 3 1101 13
1111 3 3 1111 15 3 3 1111 15

223

Table A-33 Source MID, target PID and local addresses generated in PE2 and
PE3 at stage 3 and 4 following Pease algorithm

Counter Stage 3 Stage 4
MID | PID | Address MID | PID | Address
(3020100 | G1P1 | Podl | A1GpA3a2 P1Po | P1Po | Apa3a2a1
0000 1 0 0000 0 2 2 0000 0
0001 1 0 0100 4 2 2 1000 8
0010 3 1 1000 8 2 2 0001 1
0011 3 1 1100 12 2 2 1001 9
0100 1 0 0001 1 2 2 0010 2
0101 1 0 0101 5 2 2 1010 10
0110 3 1 1001 9 2 2 0011 3
0111 3 1 1101 13 2 2 1011 11
1000 1 0 0010 2 2 2 0100 4
1001 1 0 0110 6 2 2 1100 12
1010 3 1 1010 10 2 2 0101 5
1011 3 1 1110 14 2 2 1101 13
1100 1 0 0011 3 2 2 0110 6
1101 1 0 0111 7 2 2 1110 14
1110 3 1 1011 11 2 2 0111 7
1111 3 1 1111 15 2 2 1111 15
PE3 ((p1po)2 = (11)2)
0000 1 2 0000 0 3 3 0000 0
0001 1 2 0100 4 3 3 1000 8
0010 3 3 1000 8 3 3 0001 1
0011 3 3 1100 12 3 3 1001 9
0100 1 2 0001 1 3 3 0010 2
0101 1 2 0101 5 3 3 1010 10
0110 3 3 1001 9 3 3 0011 3
0111 3 3 1101 13 3 3 1011 11
1000 1 2 0010 2 3 3 0100 4
1001 1 2 0110 6 3 3 1100 12
1010 3 3 1010 10 3 3 0101 5
1011 3 3 1110 14 3 3 1101 13
1100 1 2 011 3 3 3 0110 6
1101 1 2 0111 7 3 3 1110 14
1110 3 3 1011 11 3 3 0111 7
1111 3 3 1111 15 3 3 1111 15

224

Table A-34 Source MID, target PID and local addresses at stage 5 and 6 in PE2
and PE3 following Pease algorithm

Counter Stage 5 Stage 6
MID | PID | Address MID | PID | Address
a3a2a1a9 | PoGo | ApP1 | A1G40A30A2 Goag | aiap | a3a2a10a0
0000 0 1 0000 0 0 0 0000 0
0001 1 3 0001 1 2 1 0001 1
0010 0 1 0010 2 0 2 0010 2
0011 1 3 0011 3 2 3 0011 3
0100 0 1 0100 4 0 0 0100 4
0101 1 3 0101 5 2 1 0101 5
0110 0 1 0110 6 0 2 0110 6
0111 1 3 0111 7 2 3 0111 7
1000 0 1 1000 8 1 0 1000 8
1001 1 3 1001 9 3 1 1001 9
1010 0 1 1010 10 1 2 1010 10
1011 1 3 1011 11 3 3 1011 11
1100 0 1 1100 12 1 0 1100 12
1101 1 3 1101 13 3 1 1101 13
1110 0 1 1110 14 1 2 1110 14
1111 1 3 1111 15 3 3 1111 15
PE3 ((p1po)2 = (11)2)
0000 2 1 0000 0 0 0 0000 0
0001 3 3 0001 2 1 1 0001 1
0010 2 1 0010 0 2 2 0010 2
0011 3 3 0011 2 3 3 0011 3
0100 2 1 0100 0 4 0 0100 4
0101 3 3 0101 2 5 1 0101 5
0110 2 1 0110 0 6 2 0110 6
0111 3 3 0111 2 7 3 0111 7
1000 2 1 1000 0 8 0 1000 8
1001 3 3 1001 2 9 1 1001 9
1010 2 1 1010 0 10 2 1010 10
1011 3 3 1011 2 11 3 1011 11
1100 2 1 1100 0 12 0 1100 12
1101 3 3 1101 2 13 1 1101 13
1110 2 1 1110 0 14 2 1110 14
1111 3 3 1111 2 15 3 1111 15

225

Table A-35 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm at stage 1 to 3

Counter Mapped Twiddle Fractions (g)
to Stage 1 | Stage 2 | Stage 3
b5b4b3b2b1bo baby 0| % [b5] & |bsby|
000000 0 0 0 0 0 00 0
000001 0 0 0 0 0 00 0
000010 1 0 0 0 0 00 0
000011 1 0 0 0 0 00 0
000100 2 0 0 0 0 00 0
000101 2 0 0 0 0 00 0
000110 3 0 0 0 0 00 0
000111 3 0 0 0 0 00 0
001000 0 0 0 0 0 00 0
001001 0 0 0 0 0 00 0
001010 1 0 0 0 0 00 0
001011 1 0 0 0 0 00 0
001100 2 0 0 0 0 00 0
001101 2 0 0 0 0 00 0
001110 3 0 0 0 0 00 0
001111 3 0 0 0 0 00 0
010000 0 0 0 0 0 01 0
010001 0 0 0 0 0 01 %
010010 1 0 0 0 0 01 0
010011 1 0 0 0 0 01 %
010100 2 0 0 0 0 01 0
010101 2 0 0 0 0 01 %
010110 3 0 0 0 0 01 0
010111 3 0 0 0 0 01 %
011000 0 0 0 0 0 01 0
011001 0 0 0 0 0 01 é
011010 1 0 0 0 0 01 0
011011 1 0 0 0 0 01 %
011100 2 0 0 0 0 01 0
011101 2 0 0 0 0 01 %
011110 3 0 0 0 0 01 0
011111 3 0 0 0 0 01 %

226

Table A-36 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 1 to 3 (cont.)

Counter Mapped Twiddle Fractions (g)
to Stage 1 | Stage 2 | Stage 3
bsbabsbabiby | baby [O] % |bs | & [bsha [%
100000 o |o] o [t] o1]oO
100001 0 o] o [1| L | 102
100010 1 ol o 1] o [10]oO
100011 1 o] o |1]| % | 102
100100 2 ol o [1] o [10]o0
100101 2 o] o |1 | % | 102
100110 3 |o] o [t] o f1]oO
100111 3 o] o |1 | L | 10|32
101000 o [of] o [t] o [10]oO
101001 0 o] o |1 | % | 102
101010 1 ol o 1] o [10]oO
101011 1 o] o [1| % | 10|32
101100 2 ol o [1] o [10]o0
101101 2 o] o |1 | % |10]2
101110 3 |o] o [t] o1]oO
101111 3 o] o [1| % | 10|32
110000 o |o] o [t o]1Lt]o
110001 0 o] o |1 | § |11 |3
110010 1 ol o [1] o [1L]oO
110011 1 o] o [t | L |11 |2
110100 2 ol o [1] o [1L1]o
110101 2 o] o [t | + |11 |32
110110 3 Jo] o [t o f1Lt]o
110111 3 o] o [t | L |11 |2
111000 o [of] o [t] o [1L]o
111001 0 o] o |1 | &+ |11 |32
111010 1 ol o [t] o [1t]oO
111011 1 o] o [t | L |11 |32
111100 2 ol o [1] o [1L1]o
111101 2 o] o [t | + |11 |32
111110 3 Jo] o [t o f1Lt]o
111111 3 ol o [1| + | 11]3

227

Table A-37 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using

Pease algorithm at stage 4 to 6

Counter Mapped Twiddle Fractions (g)
to Stage 4 Stage 5 Stage 6

b5bib3bobiby | bobi | bsbybs | & | bsbabsbe | & | bsbabsboby | &
000000 0 000 [0 | 0000 | O [00000 | O
000001 0 000 | 0 | 0000 | O | 00000 | O
000010 1 000 [0 | 0000 | O [00001 | O
000011 1 000 | 0 | 0000 | O | 00001 | &
000100 2 000 [0| 0001 | O [00010 | O
000101 2 000 | 0 | 0001 |4 | 00010 | &
000110 3 000 [0| o000t | O [00011 | O
000111 3 000 | 0 | 0001 |35 | 00011 |2
001000 0 001 [0] 0010 | O [00100 | O
1 2 4
001001 0 001 || 0010 || 00100 | &
001010 1 001 [0| 0010 | O [00101 | O
1 2 5
001011 1 oot |+ | ooto |2 | ooto1 |2
001100 2 001 [0] oot |0 [00110 | O
1 3 6
001101 2 001 || oo11 |2 | oo110 | &
001110 3 o0t [0| oot |0 [o011l | O
1 3 7
001111 3 001 || oo11 |2 | oo111 | &
010000 0 010 [0 | 0100 | O [01000 | 0O
010001 0 010 | 2| 0100 || o1000 | &
010010 1 010 [0| o100 | 0 [01001 | O
2 4 9
010011 1 010 | 2| 0100 |45 | 01001 | &
010100 2 010 [0| o101 |0 [01010 | O
2 5 10
010101 2 010 | 2| o101 |2 | o1010 | &0
010110 3 010 [0| otor |0 [o101l | O
2 5 11
010111 3 010 |2 | otot || oto11 |4
011000 0 o1t [0| o110 |0 [01100 | O
3 6 12
011001 0 o11 | 2| o110 |2 | o1100 | £
011010 1 o11 [0| o110 |0 [o1101 | O
3 6 13
011011 1 o1 |3 | o110 |5 | ot1t01 | B
011100 2 o1r [0| o111 |0 [o110 | O
3 7 14
011101 2 o1r | 2| o111 | L | o110 | E
011110 3 o1t [0| o111t | o [o111l |0
011111 3 o11 | 2| o111 | L | o1111 | £

228

Table A-38 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm at stage 4 to 6 (cont.)

Counter Mapped Twiddle Fractions (3)
to Stage 4 Stage 5 Stage 6

bsbibsbobiOby | boby | bsbaby | & | bsbabsby [& | bsbabsboby | &
100000 0 100 [0] 1000 | O 10000 | 0
100001 0 100 | & | 1000 | 2 | 10000 | £
100010 1 100 [0| 1000 | O 10001 | 0
100011 1 100 | &£ | 1000 | & | 10001 |
100100 2 100 [0] 1001 |0 10010 | 0
4 9 18
100101 2 100 | | 100t || 10010 |2
100110 3 100 [0] 1001 | O 10011 | 0
4 9 19
100111 3 100 | 4 | 1001 |2 | 10011 | &2
101000 0 1010 [0] 1010 | O 10100 | 0
101001 0 101 | & | 1010 | 3| 10100 | 2
101010 1 1010 [0] 1010 |0 10101 | 0
5 10 21
101011 1 101 | 2| 1010 | 3| 10101 | Z
101100 2 100 [0] 1011 | 0O 10110 | 0
5 11 22
101101 2 1010 | 2| 1011 | 2| 10110 |2
101110 3 1010 [o] 1011 | o0 10111 | 0
5 11 23
101111 3 101 | 2| 1011 | | 10111 | 2
110000 0 110 [0| 1100 | 0 11000 | 0
6 12 24
110001 0 110 | & | 1100 | £] 11000 | %
110010 1 110 | 0o | 1100 | 0 11001 | 0
6 12 25
110011 1 110 | & | 1100 | 2| 11001 | 2
110100 2 110 [0| 1101 |0 11010 | 0
6 13 26
110101 2 110 | & | 1101 | 8| 11010 | %
110110 3 110 [0| 1101 |0 11011 | 0
6 13 27
110111 3 110 | & | 1101 | 2| 11011 | Z
111000 0 111 [0| 1110 |0 11100 | 0
7 14 28
111001 0 111 | &£ | 1110 | ¥ | 11100 | 2
111010 1 111 [o | 1110 |0 11101 | 0
7 14 29
111011 1 111 | L | 1110 | 2| 11101 | 2
111100 2 111 [o | 1111 | o0 11110 | 0
7 15 30
111101 2 111 | £ | 1111 | B 11110 | 2
111110 3 111 [o | 1111 | o0 11111 | 0
7 15 31
111111 3 111 | £ | 1111 | B 11111 | 3

229

Table A-39 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm mapped to PEO and PE1 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

b3bobiby | p1po |O| & |03 | § | b3bo | ¥
0000 o [o] o o] o [o00]oO
0001 0 [0 o o] 0 |00]oO
0010 o [o] o [o] o [o00]oO
0011 0 [0 o Jo| 0 |00]O
0100 o [o] o o] o [ot]oO
0101 o [0/l o |o| o | o1 |4
0110 o [o] o [o] o [ot]oO
0111 o [0 o |o| o |01 |4
1000 o [o] o [1] o [10]oO
1001 o [0 o |1]| 7 | 10 |2
1010 o [o] o |[1] 0o |10]oO
1011 o o] o | 1| 3 | 10]2
1100 o [o] o [1] o |11]oO
1101 o o] o |1]| 7 | 11 |2
1110 o [o] o [1] o [11]oO
1111 o o] o | 1| 3 |11]2
0000 1 [o] o [o] o |00 0O
0001 1 o] o [0o] 0o |00 |O
0010 1 o] o [o] o |00 o0
0011 1 o] o [0o] 0 |00 O
0100 1 o] o [o] o o1 o
0101 1 o] o |[o| o | o1 |4
0110 1 o] o [o] o |o1]oO
0111 1 |o] o |0 0 |01 |4
1000 1t o] o [t| o [10]oO
1001 1 o] o |1 | L+ | 102
1010 1 o] o [t] o |10]oO
1011 1 o] o |1| L | 10|32
1100 1t ol o [t] o [11]o
1101 1 o] o |1 | + |11 |32
1110 1t o] o [t] o |11]o
1111 1 ol o | 1] 3 |11 |3

230

Table A-40 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm mapped to PEO and PE1 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

b3bab1by | p1po | baboby | & | b3babipr | v | b3babipipo | &
0000 0 000 0 0000 0 00000 0
0001 0 000 0 0000 0 00000 0
0010 0 001 0 0010 0 00100 0
1 2 4

0011 | 0 | 001 | & | ooto || o00t00 | &
0100 0 010 0 0100 0 01000 0
2 4 8

0101 | o | ot0 | 2| o100 |4 | otoo0 | &
0110 0 011 0 0110 0 01100 0
3 6 12

o111 | o | o011 | & | ot10 | S| ott00 | L2
1000 0 100 0 1000 0 10000 0
4 8 16

1001 | 0 | 100 |4 | 1000 | & | 10000 | i
1010 0 101 0 1010 0 10100 0
5 10 20

1011 | o | 101 | & | 1010 || 10100 |2
1100 0 110 0 1100 0 11000 0
6 12 24

1101 | o | 110 | & | 1100 | 4| 11000 | Z
1110 0 111 0 1110 0 11100 0
7 14 28

1111 o | 111 | L] 1110 |H| 11100 | B
0000 1 000 0 0000 0 00001 0
0001 1 000 0 0000 0 00001 &
0010 1 001 0 0010 0 00101 0
1 2 5

0011 | 1 | oot | & | ooto | 2| ootor |3
0100 1 010 0 0100 0 01001 0
2 4 9

0101 | 1 | 010 | 2| o100 || otoo1 |
0110 1 011 0 0110 0 01101 0
3 6 13

o111 | 1 | o11 [& | ot10 | S| ott01 | B
1000 1 100 0 1000 0 10001 0
4 8 17

1001 | 1 | 100 | 4| 1000 |& | 10001 | L
1010 1 101 0 1010 0 10101 0
5 10 21

1011 | 1 | 101 |2 | 1010 | 40| 10101 |Z
1100 1 110 0 1100 0 11001 0
6 12 25

1100 | 1 | 110 | & | 1100 | 12| 11001 |2
1110 1 111 0 1110 0 11101 0
7 14 29

1111 | 1 | 111 | L] 1110 || 11101 | 2

231

Table A-41 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm mapped to PE2 and PE3 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

b3bobiby | p1po |O| & |03 | § | b3bs| ¥
0000 2 [o] o o] o [o00]oO
0001 2 [0 o Jo| 0 |00]oO
0010 2 [o] o o] o [o00]oO
0011 2 [0 0 Jo| 0 |00]O
0100 2 [o] o o] o [ot]oO
0101 2 |o|] o [o] o |01 ¢
0110 2 [o] o o] o [ot]oO
0111 2 |o|] o |[o] o |01 ¢
1000 2 [o] o 1] 0o [10]oO
1001 2 o] o [1] % | 10|32
1010 2 o] o [1] o [10]oO
1011 2 |o| o |[1] § | 10|32
1100 2 [o] o 1] o [11]oO
1101 2 o] o [1] ¥ |11]33
1110 2 [o] o [1] o |11]oO
1111 2 |o|] o [1] § |11]33
0000 3 Jo] o [o] o [oo0]oO
0001 3 o] o o] 0 |o00]oO
0010 3 o] o o] o [o00]oO
0011 3 o] o o] 0o |o00]oO
0100 3 Jo] o o] o [ot]o
0101 3 [o] o |o| o | o1 |4
0110 3 Jo] o o] o [ot]oO
0111 3 o] o |o| o | o1 |4
1000 3 Jo] o 1] 0o |10]oO
1001 3 o] o |1]| 1 | 10]2
1010 3 Jo] o 1] o [10]oO
1011 3 o] o |1| 1+ | 10]2
1100 3 o] o [1] o |11]oO
1101 3 o] o | 1| 3 | 11]2
1110 3 ol o 1] o [1t]oO
1111 3 Jo] o |1] & |11]2

232

Table A-42 Twiddle factors, represented by fractions, for 1-D 64-point FF'T using
Pease algorithm mapped to PE2 and PE3 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

b3bab10bg | p1po | bsbeby | & | b3babip1 | & | b3babipipo | &
0000 2 | 000 [0| 0001 | O [00010 | O
0001 2 | 000 | 0| 0001 || 00010 | &
0010 2 | oot [o] ooir |0 [00110 | O
1 3 6

0011 2 | 001 || o011 || oo0110 | &
0100 2 | ot0 [0| otor |0 [01010 | O
2 5 10

0101 2 | o10 | & | o101 || 01010 | &
0110 2 | ot1 [0 | o111 | O [01110 | O
3 7 14

0111 2 | o11 | & | o111 | L | 01110 | &
1000 2 | 100 [0| 1001 |0 [10010 | O
4 9 18

1001 2 | 100 || 1001 || 10010 |8
1010 2 | 101 [0| 1011 |0 [10110 | O
5 11 22

1011 2 | 101 | & | 1011 | = | 10110 |2
1100 2 | 110 [o | 1101 |0 [11010 | O
6 13 26

1101 2 | 110 || 1101 | 2| 11010 | 2
1110 2 | 111 [o | 1111 [0 [11110 | 0
7 15 30

1111 2 | 111 | £ 1111 | 2| 11110 | 2
0000 3 | 000 [0] 0001 [0 [00011 | O
0001 3 | 000 | 0] 0001 || 00011 |2
0010 3 | o001 [o0] o011 [0 [00111 [0
1 3 7

0011 3 | 001 | 4] o011 |2 | o011l | &
0100 3 | ot0 [0] otot [0] o101l [0
2 5 11

0101 3 | 010 |&| o101 || o1011 | &
0110 3 | ot1 [o] o111 [0 [o111l [0
3 7 15

0111 3 o011 | 2] o111 |4 | o111 | &
1000 3 | 100 [0 | 1001 [0 | 10011 | 0O
1 9 19

1001 3 | 100 | | 1001 |2 | 10011 | &
1010 3 | 101 [0] 1011 [0 | 10111 | O
5 11 23

1011 3 | 101 | | 1011 | & | 10111 | B
1100 3 | 110 [o | 1101 [0 [11011 [0
6 13 27

1101 3 | 110 | & | 1101 || 11011 | 2
1110 3 | 111 [o | 1111 [0 [11111 [0
7 15 31

1111 3 | 111 | & o1t [B 1111 |3

233

Table A-43 Twiddle factors, represented by fractions, for 16 x 4-point FF'T using
Pease algorithm at stage 1 to 3

Counter

b5b4b3b2b1 b

Mapped
to
baby

Twiddle Fractions (%)

Stage 1

Stage 2

Stage 3

bs

000000
000001

000010
000011

000100
000101

000110
000111

001000
001001

001010
001011

001100
001101

001110
001111

010000
010001

010010
010011

010100
010101

010110
010111

011000
011001

011010
011011

011100
011101

011110
011111

W WINNEFE PO OWWNNDEFRPROOIWWNNEFROOWWNNEFRFRODO

O OO O[O OO OO OO OO OO OO OO OO OO OO OO0 OO0 Oo|©C OO

O OO OO O|O OO OO OO O|OC OO O|OC OO O|OC ©O|©C O|©C ©O|©C O|C O

O OO OO OO OO OO OO OO OO OO OO0 O|© OO0 OO0 OO0 ©O|©C ©

O OO O|O OO OO O|O OO OO O|OC O|OC O|O O|C OO ©O|OC OO O|OC Oz

O OO O[O OO OO OO OO OO OO OO OO OO OO OO0 OO0 Oo|©0 OO
O OO OO OO0 OO OO OO OO O|OC OO O|OC ©O|C OO O|C OO O|OC Oz

234

Table A-44 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 1 to 3 (cont.)

Counter Mapped Twiddle Fractions (3)
to Stage 1 | Stage 2 | Stage 3

bsbabsbobiOby | bobi [O] & |bs[£ [0] &
100000 0 ol o [1] o o] o
100001 0 o] o |[1| L Jo]| o
100010 1 ol o [1] o fo] o
100011 1 o o |1]| L Jo| o
100100 2 ol o [1] o o] o
100101 2 o o |1]| L Jo| o
100110 3 ol o [1] o o] o
100111 3 o] o |1| L Jo]| o
101000 0 ol o [1] o o] o
101001 0 o o |1]| L Jo| o
101010 1 ol o [1] o Jo] o
101011 1 o] o |[1| L Jo]| o
101100 2 ol o [1] o o] o
101101 2 o o |1]| L Jo| o
101110 3 ol o [1] o Jo] o
101111 3 o] o |1| L Jo]| o
110000 0 ol o [1] o o] o
110001 0 o o |1] L Jo| o
110010 1 ol o [1] o o] o
110011 1 o] o |[1| L Jo]| o
110100 2 ol o [1] o o] o
110101 2 o o |1]| L |o| o
110110 3 ol o [1] o fo| o
110111 3 o] o |[1| L Jo]| o
111000 0 ol o [1] o o] o
111001 0 o o |1]| L |o| o
111010 1 ol o [1] o Jo| o
111011 1 o] o |[1| L Jo]| o
111100 2 ol o [1] o o] o
111101 2 o o |1]| L |o| o
111110 3 ol o [1] o Jo| o
111111 3 o] o |[1| L Jo]| o

235

Table A-45 Twiddle factors, represented by fractions, for 16 x 4-point FF'T using
Pease algorithm at stage 4 to 6

Counter Mapped Twiddle Fractions (g)
to Stage 4 | Stage 5 | Stage 6
bsbabsbabibo | babi [bs | % | bsba [& | bsbabs | &
000000 0 o] o [o0 |0 o000 [o0
000001 0 0] 0o |00 | 0] 000 |O
000010 1 o] o [o0 |0 o000 [0
000011 1 0] 0 | 00 | 0| 000 |O
000100 2 o] o [o0 o] o000 [oO
000101 2 0] o |00 | 0] 000 |O
000110 3 o] o [oo |0 o000 [o0
000111 3 0] 0 | 00 |0O]| 000 |O
001000 0 o] o [oo o] oot [0
001001 0 0] o |00 | 0] o001 |+
001010 1 o] o [oo |0 oo1 |0
001011 1 0| o |00 | 0] o001 |+
001100 2 o] o [oo o] oot [0
001101 2 0] 0o |00 | 0] o001 |+
001110 3 o] o [o0o o] oot [0
001111 3 0] 0o |00 | 0] o001 |+
010000 0 o] o ot o] ot0 [0
010001 0 0| 0 |01 |4 010 | &
010010 1 o] o [ot o] oto [0
010011 1 ol o |01 |+ 010 | &
010100 2 o] o [ot o] oto [0
010101 2 ol o |o1 |%| 010 | &
010110 3 o] o [ot o] oto [0
010111 3 ol o |01 |+ 010 | &
011000 0 o] o [ot o] ot1 [0
011001 0 o| o o1 |%| o121 |2
011010 1 o] o [ot o] o1 [oO
011011 1 ol o o1 |%| 011 |
011100 2 o]l o [ot o] ot1 [0
011101 2 ol o o1 |%| o121 |
011110 3 o] o [ot o] ot1 [oO
011111 3 ol o o1 |4%| o121 |

236

Table A-46 Twiddle factors, represented by fractions, for 16 x 4-point FFT using

Pease algorithm at stage 4 to 6 (cont.)

Counter Mapped Twiddle Fractions (3)
to Stage 4 | Stage 5 Stage 6
bsbabsbobiOby | bobi | bs | & | bsbs [& | bsbubs [&
100000 0 1] o [10]o0o] 100 [0
100001 0 1] 1 | 10| 2] 100 |&
100010 1 1] o [10]o0] 100 |0
100011 1 1| L] 10]2] 100 | &
100100 2 1] o | 10]0] 100 [0
100101 2 1| L] 10]2] 100 | &
100110 3 1] o [10]o0o] 100 [0
100111 3 1] 1 | 10| 2] 100 |+&
101000 0 1] 0 [10]0] 101 [0
101001 0 1] 1 |10] 2] 101 | &
101010 1 1] o [10]o0o] 101 [0
101011 1 1] 1 |10] 2] 101 |
101100 2 1] o |10]0] 101 [0
101101 2 1] 5 |10] 2] 101 |
101110 3 1] o [10]o0o] 101 [0
101111 3 1] 1 | 10| 2] 100 |&
110000 0 1] o |11]o] 110 [0
110001 0 1] 1 |11] 2] 110 | &
110010 1 1] o 11]o] 110 [0
110011 1 1] + |11 | 2] 110 | &
110100 2 1] o[11]o] 110 [0
110101 2 1] 1 |11] 2] 110 | &
110110 3 1] o 1t]o] 110 [0
110111 3 1] + |11 | 2] 110 | &
111000 0 1] o |11 o] 111 |o0
111001 0 1| 1|2 1 | L
111010 1 1] o 1t]o] 111 [0
111011 1 1|+ 1|2 | L
111100 2 1] o |11]o] 111 |0
111101 2 1| L 1|2 11 | L
111110 3 1] o 1t]o] 111 [0
111111 3 1|+ 1|2 1 | L

237

Table A-47 Twiddle factors, represented by fractions, for 16 x 4-point FFT using
Pease algorithm mapped to PEO and PE1 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

b3bobiby | p1po |O| & |03 | § | b3bo | ¥
0000 o [o] o o] o [o00]oO
0001 0 [0 o o] 0 |00]oO
0010 o [o] o [o] o [o00]oO
0011 0 [0 o Jo| 0 |00]O
0100 o [o] o o] o [ot]oO
0101 o [0/l o |o| o | o1 |4
0110 o [o] o [o] o [ot]oO
0111 o [0 o |o| o |01 |4
1000 o [o] o [1] o [10]oO
1001 o [0 o |1]| 7 | 10 |2
1010 o [o] o |[1] 0o |10]oO
1011 o o] o | 1| 3 | 10]2
1100 o [o] o [1] o |11]oO
1101 o o] o |1]| 7 | 11 |2
1110 o [o] o [1] o [11]oO
1111 o o] o | 1| 3 |11]2
0000 1 [o] o [o] o |00 0O
0001 1 o] o [0o] 0o |00 |O
0010 1 o] o [o] o |00 o0
0011 1 o] o [0o] 0 |00 O
0100 1 o] o [o] o o1 o
0101 1 o] o |[o| o | o1 |4
0110 1 o] o [o] o |o1]oO
0111 1 |o] o |0 0 |01 |4
1000 1t o] o [t| o [10]oO
1001 1 o] o |1 | L+ | 102
1010 1 o] o [t] o |10]oO
1011 1 o] o |1| L | 10|32
1100 1t ol o [t] o [11]o
1101 1 o] o |1 | + |11 |32
1110 1t o] o [t] o |11]o
1111 1 ol o | 1] 3 |11 |3

238

Table A-48 Twiddle factors, represented by fractions, for 16 x 4-point FFT using
Pease algorithm mapped to PEO and PE1 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

b3bab1by | p1po | baboby | & | b3babipr | v | b3babipipo | &
0000 0 000 0 0000 0 00000 0
0001 0 000 0 0000 0 00000 0
0010 0 001 0 0010 0 00100 0
1 2 4

0011 | 0 | 001 | & | ooto || o00t00 | &
0100 0 010 0 0100 0 01000 0
2 4 8

0101 | o | ot0 | 2| o100 |4 | otoo0 | &
0110 0 011 0 0110 0 01100 0
3 6 12

o111 | o | o011 | & | ot10 | S| ott00 | L2
1000 0 100 0 1000 0 10000 0
4 8 16

1001 | 0 | 100 |4 | 1000 | & | 10000 | i
1010 0 101 0 1010 0 10100 0
5 10 20

1011 | o | 101 | & | 1010 || 10100 |2
1100 0 110 0 1100 0 11000 0
6 12 24

1101 | o | 110 | & | 1100 | 4| 11000 | Z
1110 0 111 0 1110 0 11100 0
7 14 28

1111 o | 111 | L] 1110 |H| 11100 | B
0000 1 000 0 0000 0 00001 0
0001 1 000 0 0000 0 00001 &
0010 1 001 0 0010 0 00101 0
1 2 5

0011 | 1 | oot | & | ooto | 2| ootor |3
0100 1 010 0 0100 0 01001 0
2 4 9

0101 | 1 | 010 | 2| o100 || otoo1 |
0110 1 011 0 0110 0 01101 0
3 6 13

o111 | 1 | o11 [& | ot10 | S| ott01 | B
1000 1 100 0 1000 0 10001 0
4 8 17

1001 | 1 | 100 | 4| 1000 |& | 10001 | L
1010 1 101 0 1010 0 10101 0
5 10 21

1011 | 1 | 101 |2 | 1010 | 40| 10101 |Z
1100 1 110 0 1100 0 11001 0
6 12 25

1100 | 1 | 110 | & | 1100 | 12| 11001 |2
1110 1 111 0 1110 0 11101 0
7 14 29

1111 | 1 | 111 | L] 1110 || 11101 | 2

239

Table A-49 Twiddle factors, represented by fractions, for 16 x 4-point FFT using
Pease algorithm mapped to PE2 and PE3 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

b3bobiby | p1po |O| & |03 | § | b3bs| ¥
0000 2 [o] o o] o [o00]oO
0001 2 [0 o Jo| 0 |00]oO
0010 2 [o] o o] o [o00]oO
0011 2 [0 0 Jo| 0 |00]O
0100 2 [o] o o] o [ot]oO
0101 2 |o|] o [o] o |01 ¢
0110 2 [o] o o] o [ot]oO
0111 2 |o|] o |[o] o |01 ¢
1000 2 [o] o 1] 0o [10]oO
1001 2 o] o [1] % | 10|32
1010 2 o] o [1] o [10]oO
1011 2 |o| o |[1] § | 10|32
1100 2 [o] o 1] o [11]oO
1101 2 o] o [1] ¥ |11]33
1110 2 [o] o [1] o |11]oO
1111 2 |o|] o [1] § |11]33
0000 3 Jo] o [o] o [oo0]oO
0001 3 o] o o] 0 |o00]oO
0010 3 o] o o] o [o00]oO
0011 3 o] o o] 0o |o00]oO
0100 3 Jo] o o] o [ot]o
0101 3 [o] o |o| o | o1 |4
0110 3 Jo] o o] o [ot]oO
0111 3 o] o |o| o | o1 |4
1000 3 Jo] o 1] 0o |10]oO
1001 3 o] o |1]| 1 | 10]2
1010 3 Jo] o 1] o [10]oO
1011 3 o] o |1| 1+ | 10]2
1100 3 o] o [1] o |11]oO
1101 3 o] o | 1| 3 | 11]2
1110 3 ol o 1] o [1t]oO
1111 3 Jo] o |1] & |11]2

240

Table A-50 Twiddle factors, represented by fractions, for 16 x 4-point FFT using
Pease algorithm mapped to PE2 and PE3 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

b3bab10bg | p1po | bsbeby | & | b3babip1 | & | b3babipipo | &
0000 2 | 000 [0| 0001 | O [00010 | O
0001 2 | 000 | 0| 0001 || 00010 | &
0010 2 | oot [o] ooir |0 [00110 | O
1 3 6

0011 2 | 001 || o011 || oo0110 | &
0100 2 | ot0 [0| otor |0 [01010 | O
2 5 10

0101 2 | o10 | & | o101 || 01010 | &
0110 2 | ot1 [0 | o111 | O [01110 | O
3 7 14

0111 2 | o11 | & | o111 | L | 01110 | &
1000 2 | 100 [0| 1001 |0 [10010 | O
4 9 18

1001 2 | 100 || 1001 || 10010 |8
1010 2 | 101 [0| 1011 |0 [10110 | O
5 11 22

1011 2 | 101 | & | 1011 | = | 10110 |2
1100 2 | 110 [o | 1101 |0 [11010 | O
6 13 26

1101 2 | 110 || 1101 | 2| 11010 | 2
1110 2 | 111 [o | 1111 [0 [11110 | 0
7 15 30

1111 2 | 111 | £ 1111 | 2| 11110 | 2
0000 3 | 000 [0] 0001 [0 [00011 | O
0001 3 | 000 | 0] 0001 || 00011 |2
0010 3 | o001 [o0] o011 [0 [00111 [0
1 3 7

0011 3 | 001 | 4] o011 |2 | o011l | &
0100 3 | ot0 [0] otot [0] o101l [0
2 5 11

0101 3 | 010 |&| o101 || o1011 | &
0110 3 | ot1 [o] o111 [0 [o111l [0
3 7 15

0111 3 o011 | 2] o111 |4 | o111 | &
1000 3 | 100 [0 | 1001 [0 | 10011 | 0O
1 9 19

1001 3 | 100 | | 1001 |2 | 10011 | &
1010 3 | 101 [0] 1011 [0 | 10111 | O
5 11 23

1011 3 | 101 | | 1011 | & | 10111 | B
1100 3 | 110 [o | 1101 [0 [11011 [0
6 13 27

1101 3 | 110 | & | 1101 || 11011 | 2
1110 3 | 111 [o | 1111 [0 [11111 [0
7 15 31

1111 3 | 111 | & o1t [B 1111 |3

241

A.4 Tables for 64-point Optimal Algorithm

Table A-51 Addresses following the optimal algorithm at stage 1, 2 and 3

242

Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
b5bab3bab1 by baby bab1b5b4b3by bab1b5b4bob3 bob1b5bobybs
000000 0 000000 0 000000 0 000000 0
000001 0 000001 1 000010 2 000100 4
000010 1 010000 16 010000 16 010000 16
000011 1 010001 17 010010 18 010100 20
000100 2 100000 32 100000 32 100000 32
000101 2 100001 33 100010 34 100100 36
000110 3 110000 48 110000 48 110000 48
000111 3 110001 49 110010 50 110100 52
001000 0 000010 2 000001 1 000001 1
001001 0 000011 3 000011 3 000101 5
001010 1 010010 18 010001 17 010001 17
001011 1 010011 19 010011 19 010101 21
001100 2 100010 34 100001 33 100001 33
001101 2 100011 35 100011 35 100101 37
001110 3 110010 50 110001 49 110001 49
001111 3 110011 51 110011 51 110101 53
010000 0 000100 4 000100 4 000010 2
010001 0 000101 5 000110 6 000110 6
010010 1 010100 20 010100 20 010010 18
010011 1 010101 21 010110 22 010110 22
010100 2 100100 36 100100 36 100010 34
010101 2 100101 37 100110 38 100110 38
010110 3 110100 52 110100 52 110010 50
010111 3 110101 53 110110 54 110110 54
011000 0 000110 6 000101 5 000011 3
011001 0 000111 7 000111 7 000111 7
011010 1 010110 22 010101 21 010011 19
011011 1 010111 23 010111 23 010111 23
011100 2 100110 38 100101 37 100011 35
011101 2 100111 39 100111 39 100111 39
011110 3 110110 54 110101 53 110011 51
011111 3 110111 55 110111 55 110111 55

243

Table A-52 Addresses following the optimal algorithm at stage 1, 2 and 3 (cont.)

Counter (1) | Mapped Addresses (k)
to PE Stage 1 Stage 2 Stage 3
bsbab3baby by baby bab1bsbsbsby bab1b5bsbob3 bab1bsbobybs
100000 0 001000 8 001000 8 001000 8
100001 0 001001 9 001010 10 001100 12
100010 1 011000 24 011000 24 011000 24
100011 1 011001 25 011010 26 011100 28
100100 2 101000 40 101000 40 101000 40
100101 2 101001 41 101010 42 101100 44
100110 3 111000 56 111000 56 111000 56
100111 3 111001 57 111010 58 111100 60
101000 0 001010 10 001001 9 001001 9
101001 0 001011 11 001011 11 001101 13
101010 1 011010 26 011001 25 011001 25
101011 1 011011 27 011011 27 011101 29
101100 2 101010 42 101001 41 101001 41
101101 2 101011 43 101011 43 101101 45
101110 3 111010 58 111001 57 111001 57
101111 3 111011 59 111011 59 111101 61
110000 0 001100 12 001100 12 001010 10
110001 0 001101 13 001110 14 001110 14
110010 1 011100 28 011100 28 011010 26
110011 1 011101 29 011110 30 011110 30
110100 2 101100 44 101100 44 101010 42
110101 2 101101 45 101110 46 101110 46
110110 3 111100 60 111100 60 111010 58
110111 3 111101 61 111110 62 111110 62
111000 0 001110 14 001101 13 001011 11
111001 0 001111 15 001111 15 001111 15
111010 1 011110 30 011101 29 011011 27
111011 1 011111 31 011111 31 011111 31
111100 2 101110 46 101101 45 101011 43
111101 2 101111 47 101111 47 101111 47
111110 3 111110 62 111101 61 111011 59
111111 3 111111 63 111111 63 111111 63

Table A-53 Addresses following the optimal algorithm at stage 4, 5 and 6

244

Counter (1) | Mapped Addresses (k)
to PE Stage 4 Stage 5 Stage 6
b5bab3bab1 by baby bab1bobsbybs babob1 bsbsabs bob1b5b4b3bo
000000 0 000000 0 000000 0 000000 0
000001 0 001000 8 010000 16 100000 32
000010 1 010000 16 001000 8 010000 16
000011 1 011000 24 011000 24 110000 48
000100 2 100000 32 100000 32 000001 1
000101 2 101000 40 110000 48 100001 33
000110 3 110000 48 101000 40 010001 17
000111 3 111000 56 111000 56 110001 49
001000 0 000001 1 000001 1 000010 2
001001 0 001001 9 010001 17 100010 34
001010 1 010001 17 001001 9 010010 18
001011 1 011001 25 011001 25 110010 50
001100 2 100001 33 100001 33 000011 3
001101 2 101001 41 110001 49 100011 35
001110 3 110001 49 101001 41 010011 19
001111 3 111001 57 111001 57 110011 51
010000 0 000010 2 000010 2 000100 4
010001 0 001010 10 010010 18 100100 36
010010 1 010010 18 001010 10 010100 20
010011 1 011010 26 011010 26 110100 52
010100 2 100010 34 100010 34 000101 5
010101 2 101010 42 110010 50 100101 37
010110 3 110010 50 101010 42 010101 21
010111 3 111010 58 111010 58 110101 53
011000 0 000011 3 000011 3 000110 6
011001 0 001011 11 010011 19 100110 38
011010 1 010011 19 001011 11 010110 22
011011 1 011011 27 011011 27 110110 54
011100 2 100011 35 100011 35 000111 7
011101 2 101011 43 110011 51 100111 39
011110 3 110011 51 101011 43 010111 23
011111 3 111011 59 111011 59 110111 55

245

Table A-54 Addresses following the optimal algorithm at stage 4, 5 and 6 (cont.)

Counter (1) | Mapped Addresses (k)
to PE Stage 4 Stage 5 Stage 6
bsbab3baby by baby bab1bobsbybs babob1bsbsb3 bob1b5b4b3b2
100000 0 000100 4 000100 4 001000 8
100001 0 001100 12 010100 20 101000 40
100010 1 010100 20 001100 12 011000 24
100011 1 011100 28 011100 28 111000 56
100100 2 100100 36 100100 36 001001 9
100101 2 101100 44 110100 52 101001 41
100110 3 110100 52 101100 44 011001 25
100111 3 111100 60 111100 60 111001 57
101000 0 000101 5 000101 5 001010 10
101001 0 001101 13 010101 21 101010 42
101010 1 010101 21 001101 13 011010 26
101011 1 011101 29 011101 29 111010 58
101100 2 100101 37 100101 37 001011 11
101101 2 101101 45 110101 53 101011 43
101110 3 110101 53 101101 45 011011 27
101111 3 111101 61 111101 61 111011 59
110000 0 000110 6 000110 6 001100 12
110001 0 001110 14 010110 22 101100 44
110010 1 010110 22 001110 14 011100 28
110011 1 011110 30 011110 30 111100 60
110100 2 100110 38 100110 38 001101 13
110101 2 101110 46 110110 54 101101 45
110110 3 110110 54 101110 46 011101 29
110111 3 111110 62 111110 62 111101 61
111000 0 000111 7 000111 7 001110 14
111001 0 001111 15 010111 23 101110 46
111010 1 010111 23 001111 15 011110 30
111011 1 011111 31 011111 31 111110 62
111100 2 100111 39 100111 39 001111 15
111101 2 101111 47 110111 55 101111 47
111110 3 110111 55 101111 47 011111 31
111111 3 111111 63 111111 63 111111 63

246

Table A-55 Addresses mapped to PEO and PE1 at stage 1, 2 and 3 following the
optimal alogrithm

Counter PID Addresses (k)
Stage 1 Stage 2 Stage 3
b5b4b3bob1bg | baby | babibsbsbsby bab1b5b4b0b3 bob1b5bgbybs

000000 0 000000 0 000000 0 000000 0
000001 0 000001 1 000010 2 000100 4
001000 0 000010 2 000001 1 000001 1
001001 0 000011 3 000011 3 000101 5
010000 0 000100 4 000100 4 000010 2
010001 0 000101 5 000110 6 000110 6
011000 0 000110 6 000101 5 000011 3
011001 0 000111 7 000111 7 000111 7
100000 0 001000 8 001000 8 001000 8
100001 0 001001 9 001010 10 001100 12
101000 0 001010 10 001001 9 001001 9
101001 0 001011 11 001011 11 001101 13
110000 0 001100 12 001100 12 001010 10
110001 0 001101 13 001110 14 001110 14
111000 0 001110 14 001101 13 001011 11
111001 0 001111 15 001111 15 001111 15
000010 1 010000 16 010000 16 010000 16
000011 1 010001 17 010010 18 010100 20
001010 1 010010 18 010001 17 010001 17
001011 1 010011 19 010011 19 010101 21
010010 1 010100 20 010100 20 010010 18
010011 1 010101 21 010110 22 010110 22
011010 1 010110 22 010101 21 010011 19
011011 1 010111 23 010111 23 010111 23
100010 1 011000 24 011000 24 011000 24
100011 1 011001 25 011010 26 011100 28
101010 1 011010 26 011001 25 011001 25
101011 1 011011 27 011011 27 011101 29
110010 1 011100 28 011100 28 011010 26
110011 1 011101 29 011110 30 011110 30
111010 1 011110 30 011101 29 011011 27
111011 1 011111 31 011111 31 011111 31

247

Table A-56 Addresses mapped to PEO and PE1 at stage 4, 5 and 6 following the

optimal algorithm

Counter PID Addresses (k)
Stage 4 Stage 5 Stage 6
b5b4b3bob1bg | baby | babibobsbybs babyb1b5b4b3 bob1b5b4b3b9

000000 0 000000 0 000000 0 000000 0
000001 0 001000 8 010000 16 100000 32
001000 0 000001 1 000001 1 000010 2
001001 0 001001 9 010001 17 100010 34
010000 0 000010 2 000010 2 000100 4
010001 0 001010 10 010010 18 100100 36
011000 0 000011 3 000011 3 000110 6
011001 0 001011 11 010011 19 100110 38
100000 0 000100 4 000100 4 001000 8
100001 0 001100 12 010100 20 101000 40
101000 0 000101 5 000101 5 001010 10
101001 0 001101 13 010101 21 101010 42
110000 0 000110 6 000110 6 001100 12
110001 0 001110 14 010110 22 101100 44
111000 0 000111 7 000111 7 001110 14
111001 0 001111 15 010111 23 101110 46
000010 1 010000 16 001000 8 010000 16
000011 1 011000 24 011000 24 110000 48
001010 1 010001 17 001001 9 010010 18
001011 1 011001 25 011001 25 110010 50
010010 1 010010 18 001010 10 010100 20
010011 1 011010 26 011010 26 110100 52
011010 1 010011 19 001011 11 010110 22
011011 1 011011 27 011011 27 110110 54
100010 1 010100 20 001100 12 011000 24
100011 1 011100 28 011100 28 111000 56
101010 1 010101 21 001101 13 011010 26
101011 1 011101 29 011101 29 111010 58
110010 1 010110 22 001110 14 011100 28
110011 1 011110 30 011110 30 111100 60
111010 1 010111 23 001111 15 011110 30
111011 1 011111 31 011111 31 111110 62

248

Table A-57 Addresses mapped to PE2 and PE3 at stage 1, 2 and 3 following the

optimal algorithm

Counter PID Addresses (k)
Stage 1 Stage 2 Stage 3
b5b4b3bob1bg | baby | babibsbsbsby bab1b5b4b0b3 bob1b5bgbybs

000100 2 100000 32 100000 32 100000 32
000101 2 100001 33 100010 34 100100 36
001100 2 100010 34 100001 33 100001 33
001101 2 100011 35 100011 35 100101 37
010100 2 100100 36 100100 36 100010 34
010101 2 100101 37 100110 38 100110 38
011100 2 100110 38 100101 37 100011 35
011101 2 100111 39 100111 39 100111 39
100100 2 101000 40 101000 40 101000 40
100101 2 101001 41 101010 42 101100 44
101100 2 101010 42 101001 41 101001 41
101101 2 101011 43 101011 43 101101 45
110100 2 101100 44 101100 44 101010 42
110101 2 101101 45 101110 46 101110 46
111100 2 101110 46 101101 45 101011 43
111101 2 101111 47 101111 47 101111 a7
000110 3 110000 48 110000 48 110000 48
000111 3 110001 49 110010 50 110100 52
001110 3 110010 50 110001 49 110001 49
001111 3 110011 51 110011 51 110101 53
010110 3 110100 52 110100 52 110010 50
010111 3 110101 53 110110 54 110110 54
011110 3 110110 54 110101 53 110011 51
011111 3 110111 55 110111 55 110111 55
100110 3 111000 56 111000 56 111000 56
100111 3 111001 57 111010 58 111100 60
101110 3 111010 58 111001 57 111001 57
101111 3 111011 59 111011 59 111101 61
110110 3 111100 60 111100 60 111010 58
110111 3 111101 61 111110 62 111110 62
111110 3 111110 62 111101 61 111011 59
111111 3 111111 63 111111 63 111111 63

249

Table A-58 Addresses mapped to PE2 and PE3 at stage 4, 5 and 6 following the

optimal algorithm

Counter PID Addresses (k)
Stage 4 Stage 5 Stage 6
b5b4b3bob1bg | baby | babibobsbybs babyb1b5b4b3 bob1b5b4b3b9

000100 2 100000 32 100000 32 000001 1
000101 2 101000 40 110000 48 100001 33
001100 2 100001 33 100001 33 000011 3
001101 2 101001 41 110001 49 100011 35
010100 2 100010 34 100010 34 000101 5
010101 2 101010 42 110010 50 100101 37
011100 2 100011 35 100011 35 000111 7
011101 2 101011 43 110011 51 100111 39
100100 2 100100 36 100100 36 001001 9
100101 2 101100 44 110100 52 101001 41
101100 2 100101 37 100101 37 001011 11
101101 2 101101 45 110101 53 101011 43
110100 2 100110 38 100110 38 001101 13
110101 2 101110 46 110110 54 101101 45
111100 2 100111 39 100111 39 001111 15
111101 2 101111 47 110111 55 101111 a7
000110 3 110000 48 101000 40 010001 17
000111 3 111000 56 111000 56 110001 49
001110 3 110001 49 101001 41 010011 19
001111 3 111001 57 111001 57 110011 51
010110 3 110010 50 101010 42 010101 21
010111 3 111010 58 111010 58 110101 53
011110 3 110011 51 101011 43 010111 23
011111 3 111011 59 111011 59 110111 55
100110 3 110100 52 101100 44 011001 25
100111 3 111100 60 111100 60 111001 57
101110 3 110101 53 101101 45 011011 27
101111 3 111101 61 111101 61 111011 59
110110 3 110110 54 101110 46 011101 29
110111 3 111110 62 111110 62 111101 61
111110 3 110111 55 101111 47 011111 31
111111 3 111111 63 111111 63 111111 63

250

Table A-59 Source MID, target PID and local ddresses in PEO and PE1 at stage
1 and 2 following the optimal algorithm

Counter Stage 1 Stage 2
MID | PID | Address MID | PID | Address
3020100 | P1Po | P1Po | @3a2a1a9 P1Po | P1Po | a3G2G0a1
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0001 1 0 0 0010 2
0010 0 0 0010 2 0 0 0001 1
0011 0 0 0011 3 0 0 0011 3
0100 0 0 0100 4 0 0 0100 4
0101 0 0 0101 5 0 0 0110 6
0110 0 0 0110 6 0 0 0101 5
0111 0 0 0111 7 0 0 0111 7
1000 0 0 1000 8 0 0 1000 8
1001 0 0 1001 9 0 0 1010 10
1010 0 0 1010 10 0 0 1001 9
1011 0 0 1011 11 0 0 1011 11
1100 0 0 1100 12 0 0 1100 12
1101 0 0 1101 13 0 0 1110 14
1110 0 0 1110 14 0 0 1101 13
1111 0 0 1111 15 0 0 1111 15
PE1 ((p1po)2 = (01)7)
0000 1 1 0000 0 1 1 0000 0
0001 1 1 0001 1 1 1 0010 2
0010 1 1 0010 2 1 1 0001 1
0011 1 1 0011 3 1 1 0011 3
0100 1 1 0100 4 1 1 0100 4
0101 1 1 0101 5 1 1 0110 6
0110 1 1 0110 6 1 1 0101 5
0111 1 1 0111 7 1 1 0111 7
1000 1 1 1000 8 1 1 1000 8
1001 1 1 1001 9 1 1 1010 10
1010 1 1 1010 10 1 1 1001 9
1011 1 1 1011 11 1 1 1011 11
1100 1 1 1100 12 1 1 1100 12
1101 1 1 1101 13 1 1 1110 14
1110 1 1 1110 14 1 1 1101 13
1111 1 1 1111 15 1 1 1111 15

251

Table A-60 Source MID, target PID and local ddresses in PEO and PE1 at stage
3 and 4 followig the optimal algorithm

Counter Stage 3 Stage 4
MID | PID | Address MID | PID | Address
3420100 | P1Po | P1Po | a3apa20ai P1Po | P1Po | Apa3a2a1
0000 0 0 0000 0 0 0 0000 0
0001 0 0 0100 4 0 0 1000 8
0010 0 0 0001 1 0 0 0001 1
0011 0 0 0101 5 0 0 1001 9
0100 0 0 0010 2 0 0 0010 2
0101 0 0 0110 6 0 0 1010 10
0110 0 0 0011 3 0 0 0011 3
0111 0 0 0111 7 0 0 1011 11
1000 0 0 1000 8 0 0 0100 4
1001 0 0 1100 12 0 0 1100 12
1010 0 0 1001 9 0 0 0101 5
1011 0 0 1101 13 0 0 1101 13
1100 0 0 1010 10 0 0 0110 6
1101 0 0 1110 14 0 0 1110 14
1110 0 0 1011 11 0 0 0111 7
1111 0 0 1111 15 0 0 1111 15
PE1 ((p1po)2 = (01)7)
0000 1 1 0000 0 1 1 0000 0
0001 1 1 0100 4 1 1 1000 8
0010 1 1 0001 1 1 1 0001 1
0011 1 1 0101 5 1 1 1001 9
0100 1 1 0010 2 1 1 0010 2
0101 1 1 0110 6 1 1 1010 10
0110 1 1 0011 3 1 1 0011 3
0111 1 1 0111 7 1 1 1011 11
1000 1 1 1000 8 1 1 0100 4
1001 1 1 1100 12 1 1 1100 12
1010 1 1 1001 9 1 1 0101 5
1011 1 1 1101 13 1 1 1101 13
1100 1 1 1010 10 1 1 0110 6
1101 1 1 1110 14 1 1 1110 14
1110 1 1 1011 11 1 1 0111 7
1111 1 1 1111 15 1 1 1111 15

252

Table A-61 Source MID, target PID and local ddresses in PEO and PE1 at stage
5 and 6 following the optimal algorithm

Counter Stage 5 Stage 6
MID | PID | Address MID | PID | Address
(3a2a1Gp | P1ap | P1Go | ApA3a201 GoPo | @oPo | @3a201G0
0000 0 0 0000 0 0 0 0000 0
0001 1 1 1000 8 2 2 0001 1
0010 0 0 0001 1 0 0 0010 2
0011 1 1 1001 9 2 2 0011 3
0100 0 0 0010 2 0 0 0100 4
0101 1 1 1010 10 2 2 0101 5
0110 0 0 0011 3 0 0 0110 6
0111 1 1 1011 11 2 2 0111 7
1000 0 0 0100 4 0 0 1000 8
1001 1 1 1100 12 2 2 1001 9
1010 0 0 0101 5 0 0 1010 10
1011 1 1 1101 13 2 2 1011 11
1100 0 0 0110 6 0 0 1100 12
1101 1 1 1110 14 2 2 1101 13
1110 0 0 0111 7 0 0 1110 14
1111 1 1 1111 15 2 2 1111 15
PE1 ((p1po)2 = (01)7)
0000 0 0 0000 0 1 1 0000 0
0001 1 1 1000 8 3 3 0001 1
0010 0 0 0001 1 1 1 0010 2
0011 1 1 1001 9 3 3 0011 3
0100 0 0 0010 2 1 1 0100 4
0101 1 1 1010 10 3 3 0101 5
0110 0 0 0011 3 1 1 0110 6
0111 1 1 1011 11 3 3 0111 7
1000 0 0 0100 4 1 1 1000 8
1001 1 1 1100 12 3 3 1001 9
1010 0 0 0101 5 1 1 1010 10
1011 1 1 1101 13 3 3 1011 11
1100 0 0 0110 6 1 1 1100 12
1101 1 1 1110 14 3 3 1101 13
1110 0 0 0111 7 1 1 1110 14
1111 1 1 1111 15 3 3 1111 15

253

Table A-62 Source MID, target PID and local ddresses in PE2 and PE3 at stage
1 and 2 following the optimal algorithm

Counter Stage 1 Stage 2
MID | PID | Address MID | PID | Address
3020100 | P1Po | P1Po | @3a2a1a9 P1Po | P1Po | a3G2G0a1
0000 2 2 0000 0 2 2 0000 0
0001 2 2 0001 1 2 2 0010 2
0010 2 2 0010 2 2 2 0001 1
0011 2 2 0011 3 2 2 0011 3
0100 2 2 0100 4 2 2 0100 4
0101 2 2 0101 5 2 2 0110 6
0110 2 2 0110 6 2 2 0101 5
0111 2 2 0111 7 2 2 0111 7
1000 2 2 1000 8 2 2 1000 8
1001 2 2 1001 9 2 2 1010 10
1010 2 2 1010 10 2 2 1001 9
1011 2 2 1011 11 2 2 1011 11
1100 2 2 1100 12 2 2 1100 12
1101 2 2 1101 13 2 2 1110 14
1110 2 2 1110 14 2 2 1101 13
1111 2 2 1111 15 2 2 1111 15
PE3 ((p1po)2 = (11)2)
0000 3 3 0000 0 3 3 0000 0
0001 3 3 0001 1 3 3 0010 2
0010 3 3 0010 2 3 3 0001 1
0011 3 3 0011 3 3 3 0011 3
0100 3 3 0100 4 3 3 0100 4
0101 3 3 0101 5 3 3 0110 6
0110 3 3 0110 6 3 3 0101 5
0111 3 3 0111 7 3 3 0111 7
1000 3 3 1000 8 3 3 1000 8
1001 3 3 1001 9 3 3 1010 10
1010 3 3 1010 10 3 3 1001 9
1011 3 3 1011 11 3 3 1011 11
1100 3 3 1100 12 3 3 1100 12
1101 3 3 1101 13 3 3 1110 14
1110 3 3 1110 14 3 3 1101 13
1111 3 3 1111 15 3 3 1111 15

254

Table A-63 Source MID, target PID and local ddresses in PE2 and PE3 at stage
3 and 4 following the optimal algorithm

Counter Stage 3 Stage 4
MID | PID | Address MID | PID | Address
3420100 | P1Po | P1Po | a3apa20ai P1Po | P1Po | Apa3a2a1
0000 2 2 0000 0 2 2 0000 0
0001 2 2 0100 4 2 2 1000 8
0010 2 2 0001 1 2 2 0001 1
0011 2 2 0101 5 2 2 1001 9
0100 2 2 0010 2 2 2 0010 2
0101 2 2 0110 6 2 2 1010 10
0110 2 2 0011 3 2 2 0011 3
0111 2 2 0111 7 2 2 1011 11
1000 2 2 1000 8 2 2 0100 4
1001 2 2 1100 12 2 2 1100 12
1010 2 2 1001 9 2 2 0101 5
1011 2 2 1101 13 2 2 1101 13
1100 2 2 1010 10 2 2 0110 6
1101 2 2 1110 14 2 2 1110 14
1110 2 2 1011 11 2 2 0111 7
1111 2 2 1111 15 2 2 1111 15
PE3 ((p1po)2 = (11)2)
0000 3 3 0000 0 3 3 0000 0
0001 3 3 0100 4 3 3 1000 8
0010 3 3 0001 1 3 3 0001 1
0011 3 3 0101 5 3 3 1001 9
0100 3 3 0010 2 3 3 0010 2
0101 3 3 0110 6 3 3 1010 10
0110 3 3 0011 3 3 3 0011 3
0111 3 3 0111 7 3 3 1011 11
1000 3 3 1000 8 3 3 0100 4
1001 3 3 1100 12 3 3 1100 12
1010 3 3 1001 9 3 3 0101 5
1011 3 3 1101 13 3 3 1101 13
1100 3 3 1010 10 3 3 0110 6
1101 3 3 1110 14 3 3 1110 14
1110 3 3 1011 11 3 3 0111 7
1111 3 3 1111 15 3 3 1111 15

255

Table A-64 Source MID, target PID and local ddresses in PE2 and PE3 at stage
5 and 6 following the optimal algorithm

Counter Stage 5 Stage 6
MID | PID | Address MID | PID | Address
(3a2a1Gp | P1ap | P1Go | ApA3a201 GoPo | @oPo | @3a201G0
0000 2 2 0000 0 0 0 0000 0
0001 3 3 1000 8 2 2 0001 1
0010 2 2 0001 1 0 0 0010 2
0011 3 3 1001 9 2 2 0011 3
0100 2 2 0010 2 0 0 0100 4
0101 3 3 1010 10 2 2 0101 5
0110 2 2 0011 3 0 0 0110 6
0111 3 3 1011 11 2 2 0111 7
1000 2 2 0100 4 0 0 1000 8
1001 3 3 1100 12 2 2 1001 9
1010 2 2 0101 5 0 0 1010 10
1011 3 3 1101 13 2 2 1011 11
1100 2 2 0110 6 0 0 1100 12
1101 3 3 1110 14 2 2 1101 13
1110 2 2 0111 7 0 0 1110 14
1111 3 3 1111 15 2 2 1111 15
PE3 ((p1po)2 = (11)2)
0000 2 2 0000 0 1 1 0000 0
0001 3 3 1000 8 3 3 0001 1
0010 2 2 0001 1 1 1 0010 2
0011 3 3 1001 9 3 3 0011 3
0100 2 2 0010 2 1 1 0100 4
0101 3 3 1010 10 3 3 0101 5
0110 2 2 0011 3 1 1 0110 6
0111 3 3 1011 11 3 3 0111 7
1000 2 2 0100 4 1 1 1000 8
1001 3 3 1100 12 3 3 1001 9
1010 2 2 0101 5 1 1 1010 10
1011 3 3 1101 13 3 3 1011 11
1100 2 2 0110 6 1 1 1100 12
1101 3 3 1110 14 3 3 1101 13
1110 2 2 0111 7 1 1 1110 14
1111 3 3 1111 15 3 3 1111 15

256

Table A-65 Twiddle factors of 1-D 64-point FF'T following optimal algorithm at

stage 1 to 3

Counter Mapped Twiddle Fractions (g)
to Stage 1 | Stage 2 | Stage 3
bsbabsbobibo | bbby [0 ¥ b3 | & |babs [%
000000 0 ol o [o] o [o00|oO
000001 0 ol o [0] 0 [o00 O
000010 1 ol o [o] o [o00|oO
000011 1 ol o o] 0o |00 O
000100 2 ol o [o] o [o0 O
000101 2 ol o [0o] 0 [o00 O
000110 3 ol o [o] o [o00|oO
000111 3 0ol o [0o] 0o |00 |O
001000 0 ol o [1] o [ot]o
001001 0 o] o |1 | % o1 |4}
001010 1 ol o [1] o [ot]o
001011 1 o] o |1 | % |o1 |4
001100 2 ol o [1] o [ot]o
001101 2 o] o [1| % o1 |4}
001110 3 ol o [1] o [ot]o
001111 3 o] o [1| % o1 |4}
010000 0 ol o [o] o [10]0O
010001 0 ol o |[o| o | 10 |2
010010 1 ol o [o] o [10]oO
010011 1 ol o |[o| o | 10 |2
010100 2 ol o [o] o [10]oO
010101 2 ol o |[o| o | 10 |2
010110 3 ol o [o] o [10]oO
010111 3 ol o |[o| o | 10 |2
011000 0 ol o [t o [1L]o
011001 0 o] o [t | L |11 |2
011010 1 ol o [1] o [1L1]o
011011 1 o] o [t | L+ |11 |32
011100 2 ol o [1] o [11]o
011101 2 o o [t | L |11 |2
011110 3 ol o [t o [1L]o
011111 3 o] o [t | L |11 |2

257

Table A-66 Twiddle factors of 1-D 64-point FF'T following the optimal algorithm

at stage 1 to 3 (cont.)

Counter Mapped Twiddle Fractions (g)
to Stage 1 | Stage 2 | Stage 3
bsbabsbabibg | by [O[F b3 | % |babs [%
100000 o [o] o [o] o [o0 O
100001 0O o] o |0 0 |00 |O
100010 1 ol o [o] o [o00 0O
100011 1 0| 0 [0] 0 [00 O
100100 2 ol o [o] o [o0|oO
100101 2 0| 0 [0] 0 [00 O
100110 3 ol o [o] o]oo]oO
100111 3 o] 0o |0o]| 0 |00 |0
101000 o [ofl o [t] o [ot]oO
101001 0 o] o |1 | % o1 |4
101010 1 ol o [1] o [ot]oO
101011 1 o] o [1| % o1 |4}
101100 2 ol o [1] o [ot]o
101101 2 o] o |1 | % |o1 4%
101110 3 ol o [t] o]ot]oO
101111 3 o] o [1| % o1 |4}
110000 o |[o|l o [o] o [10]oO
110001 0O o] o |0o] 0 |10 |2
110010 1 ol o [o] o [10]0
110011 1 ol o |[o| o | 10 |2
110100 2 ol o [o] o [10]o0O
110101 2 o| o [o] o | 10 |2
110110 3 ol o o] o [10]oO
110111 3 |o] o |o| o | 10|32
111000 o |of] o [t] o [1L]o0
111001 0 o] o |1 | &+ |11 |32
111010 1 ol o [1] o [11]o0
111011 1 o] o [t | L |11 |32
111100 2 ol o [1] o [1L1]o
111101 2 o] o [t | + |11 |32
111110 3 ol o [t] o |11]o
111111 3 ol o [1| + | 11]3

258

Table A-67 Twiddle factors of 1-D 64-point FFT following the optimal algorithm

at stage 5 to 6

Counter Mapped Twiddle Fractions (g)
to Stage 4 Stage 5 Stage 6
bsbabsbabibo | babi | bsbabs | % | bibsbabs | & | bibabsbabs | &
000000 0 000 [0 | 0000 | O [00000 | O
000001 0 000 | 0 | 0000 | O | 00000 | O
000010 1 000 [0| 12000 | O [10000 | 0O
000011 1 000 | 0 | 1000 | | 10000 | &
000100 2 000 [0 | 0000 | O [01000 | O
000101 2 000 | 0 | 0000 | 0| o1000 |Z&
000110 3 000 [0| 12000 | O [11000 | 0
000111 3 000 | 0 | 1000 |2 | 11000 |2
001000 0 001 [0| 000t | O [00001 | O
001001 0 001 || 0001 |4 | 00001 |
001010 1 001 [0| 1001 | O [10001 | O
001011 1 oot |+ | 1001t |2 | 10001 |
001100 2 001 [0] o000t |0 [01001 | O
001101 2 001 || 0001 |4 | oto01 |2
001110 3 oot [0| 1001 |0 [11001 | O
001111 3 001 |4 | 1001 || 11001 |2
010000 0 010 [0 | 0010 | 0 [00010 | O
010001 0 010 | & | 0010 | & | 00010 | &
010010 1 010 [0| 1010 |0 [10010 | O
010011 1 ot0 | 2| 1010 |22 | 10010 |8
010100 2 010 [0| o0o1t0 |0 [01010 | O
010101 2 ot0 | 2| ooto | & | oto10 |
010110 3 010 [0| 1010 |0 [11010 | O
010111 3 ot0 | 2| 1010 |22 | 11010 |2
011000 0 o1t [0| ooit |0 [00011 | O
011001 0 o11 | 2| oo1t | & | ooo1r |2
011010 1 o1r [0| 1011 |0 [10011 | O
011011 1 o11 | 2| 1011 | & | 10011 |2
011100 2 oi1r [0| oo1t |0 [o101l | O
011101 2 o11 | 2| oo1t || oto1r |
011110 3 o1t [0| 1ot | o [11011 |0
011111 3 o11 | 2| o011 | & | 11011 | Z

259

Table A-68 Twiddle factors of 1-D 64-point FFT following the optimal algorithm
at stage 5 to 6 (cont.)

Counter Mapped Twiddle Fractions (g)
to Stage 4 Stage 5 Stage 6

bsbsbsbabiby | baby bsbibs | & | b1bsbabs | & | bibsbabsbo | &
100000 0 100 0 0100 0 00100 0
4 4 4
100001 0 100 6 0100 35 00100 50
100010 1 100 0 1100 0 10100 0
4 12 20
100011 1 100 16 1100 35 10100 51
100100 2 100 0 0100 0 01100 0
100101 2 100 | = | 0100 |4 | o1100 | &2
100110 3 100 0 1100 0 11100 0
4 12 28
100111 3 100 6 1100 35 11100 51
101000 0 101 0 0101 0 00101 0
5 5 5
101001 0 101 16 0101 35 00101 &1
101010 1 101 0 1101 0 10101 0
5 13 21
101011 1 101 16 1101 35 10101 51
101100 2 101 0 0101 0 01101 0
5 5 13
101101 2 101 16 0101 35 01101 51
101110 3 101 0 1101 0 11101 0
5 13 29
101111 3 101 16 1101 35 11101 51
110000 0 110 0 0110 0 00110 0
6 6 6
110001 0 110 16 0110 35 00110 51
110010 1 110 0 1110 0 10110 0
6 14 22
110011 1 110 16 1110 35 10110 51
110100 2 110 0 0110 0 01110 0
6 6 14
110101 2 110 16 0110 35 01110 51
110110 3 110 0 1110 0 11110 0
6 14 30
110111 3 110 16 1110 35 11110 51
111000 0 111 0 0111 0 00111 0
7 7 7
111001 0 111 i 0111 35 00111 a1
111010 1 111 0 1111 0 10111 0
7 15 23
111011 1 111 16 1111 35 10111 51
111100 2 111 0 0111 0 01111 0
7 7 15
111101 2 111 16 0111 35 01111 &1
111110 3 111 0 1111 0 11111 0
7 15 31
111111 3 111 16 1111 35 11111 5

260

Table A-69 Twiddle factors of 1-D 64-point FF'T following the optimal algorithm
mapped to PEO and PE1 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

azazaiag | pipo [O] ¥ |ai | & |aea | &
0000 o [o] o Jo] o] o0 [oO
0001 0 [0 o Jo| 0o] o0 |O
0010 o [o] o [t] oot o
0011 0o |o|] o | 1] % | ot |4
0100 o [o] o o] o] 10 o
0101 o |o] o |[0o] 0o | 10 |2
0110 o o] o [1] o[11 o
0111 o |o] o |t] § |11 |3
1000 o [o] o Jo] o[o0 [oO
1001 0 [0 o Jo|] 0o] 00 |O
1010 o [o] o [1t] oot o
1011 o |o|] o | 1] § | o1 |g
1100 o [o] o Jo] o] 10 o
1101 0o |o] o |o] o | 10 |2
1110 o o] o [1] o[11 o
1111 o o] o |t] § |11 |3
0000 1 o] o [o] o[oo [oO
0001 1 o] o [o] 0o |00 |O
0010 1 o] o [1] oot |o
0011 1 |o] o | 1| 1 | o1 | ¢
0100 1 [o] o [o] o | 10]o
0101 1 (o] o |o| 0o | 10 |2
0110 1 o] o [1] o] 11t]o
0111 1 o] o | 1| 1 | 11 |2
1000 1 (o] o [o] o | o0 [0
1001 1 o] o [o] o |00 |O
1010 1t [of o [t] o |ot]o
1011 1 o] o | 1| + | o1 | %
1100 1 (o] o [o] o | 10]o
1101 1 |o] o |0 0 | 10 |2
1110 1t Jo[o [t] o |11]o
1111 1 o] o |1 | &+ |11 |3

261

Table A-70 Twiddle factors of 1-D 64-point FFT following the optimal algorithm
mapped to PEO and PE1 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

azazaiag | p1po | azaza1 | § | poasaza1 | § | popiazazar | x
0000 0 000 0 0000 0 00000 0
0001 0 000 0 0000 0 00000 0
0010 0 001 0 0001 0 00010 0
1 1 1

0011 0 | oot || 0001 || 00001 |&
0100 0 010 0 0010 0 00010 0
2 2 2

0101 0 | ot0 |&]| ooto |Z| o000 | &
0110 0 011 0 0011 0 00011 0
3 3 3

0111 0 011 16 0011 35 00011 61
1000 0 100 0 0100 0 00100 0
4 4 4

1001 0 | 100 |4 | 0100 |4 | 00100 | &
1010 0 101 0 0101 0 00101 0
5 5 5

1011 0 101 16 0101 35 00101 61
1100 0 110 0 0110 0 00110 0
6 6 6

1101 0 110 16 0110 35 00110 51
1110 0 111 0 0111 0 00111 0
7 7 7

1111 0 111 | £ | o111 | L | oot1r | L
0000 1 000 0 1000 0 10000 0
0001 1 000 0 1000 > 10000 =
0010 1 001 0 1001 0 10001 0
1 9 17

0011 1 001 i 1001 35 10001 51
0100 1 010 0 1010 0 10010 0
2 10 18

0101 1 | o10 |2 | 1010 |[40] 10010 | ¥
0110 1 011 0 1011 0 10011 0
3 11 19

0111 1 | o11 | 2| 1011 |H]| 10011 |
1000 1 100 0 1100 0 10100 0
4 12 20

1001 1 | 100 | 4| 1100 |42| 10100 |2
1010 1 101 0 1101 0 10101 0
5 13 21

1011 1 101 | 2| 1101 | B | 10101 |2
1100 1 110 0 1110 0 10110 0
6 14 22

1101 1 | 110 | & | 1110 || 10110 |2
1110 1 111 0 1111 0 10111 0
7 15 23

1111 1 111 | £ | 1111 | B] 10111 | 2

262

Table A-71 Twiddle factors of 1-D 64-point FFT following the optimal algorithm
mapped to PE2 and PE3 at stage 1 to 3

Counter | PID Twiddle Fractions (%)

Stage 1 | Stage 2 | Stage 3

azazaiag | pipo [O] ¥ |ai | & |aea | &
0000 2 [o] o Jo|] o[o0 [oO
0001 2 [0 o Jo| 0o] o0 |O
0010 2 [o] o [t] oot]o
0011 2 |o| o | 1] % | ot |4
0100 2 [o] o Jo] o] 10]oO
0101 2 |o] o |[0o] 0 | 10 |2
0110 2 o] o [1] o[11]oO
0111 2 |o| o |t | § |11 |3
1000 2 [o] o Jo] o] oo [oO
1001 2 [0 o Jo| 0o] 00 |O
1010 2 o] o [1] o [o01]oO
1011 2 |o| o | 1] § | o1 |g
1100 2 [o] o Jo] o] 10]oO
1101 2 |o] o |o] 0o | 10 |2
1110 2 o] o [1] o[11 o0
1111 2 o] o |t]| § | 11 |3
0000 3 [o] o Jo] o] oo [o
0001 3 o] o Jo| 0o] o0 O
0010 3 [o] o [t] oot]o
0011 3 o] o |t] % ot |4
0100 3 [o] o Jo] o] 10]o
0101 3 (o] o |o] o | 10 |2
0110 3 o] o [1t] o 11]o
0111 3 o] o |t] % |11 |3
1000 3 [o] o Jo|] o] oo [oO
1001 3 o] o Jo| 0o] o0 |oO
1010 3 [o] o [t] oot]o
1011 3 o] o |t] L ot |4
1100 3 [o] o Jo] o] 10]o
1101 3 |o] o |o] o | 10 |2
1110 3 o] o [t o] 11 o
1111 3 Jo] o |1 | 1+ | 113

263

Table A-72 Twiddle factors of 1-D 64-point FFT following the optimal algorithm
mapped to PE2 and PE3 at stage 4 to 6

Counter | PID Twiddle Fractions (%)
Stage 4 Stage 5 Stage 6

agzazaiag | p1po | azazal | v | poasazal | & | poprasazar | %
0000 2 | o000 [o0] o000 [0] 01000 |0
0001 2 | 000 | 0| 0000 | 0| 01000 | &
0010 2 | oot [o] o000t [o0] oto0o1 |oO
0011 2 001 | & | o001 |4 | o01001 |2
0100 2 | oto [o] ooto [0] o100 | O
0101 2 010 | & | o010 |5 | o01010 |2
0110 2 | o1t [o] o011t [0] ot1011 |0
0111 2 o1r | & | oo1r | & | oto1r | L
1000 2 100 [0| o100 [0 | 01100 | 0
1001 2 100 | - | 0100 |4 | o1100 | 2
1010 2 100 [o] o101 |0 | o1101 | O
1011 2 100 | & | o101 || ot101 | &
1100 2 110 [o | o110 [0 | o110 | 0
1101 2 110 | 2] o110 | & | o110 | B
1110 2 111 [o] o111 |0 | o111l [0
1111 2 111 | £ | o111 | L | o111 | B
0000 3 | ooo [o] 1000 o0 11000 | 0
0001 3 | 000 | 0| 1000 || 11000 |2
0010 3 | oot [o] 1001 [o0 11001 | 0
0011 3 001 | & | 1001t || 11001 |2
0100 3 [oto [o] 1010 [oO 11010 | 0
0101 3 ot0 | 2| 1010 | 40| 11010 |2
0110 3 [o1t [o] 1011 [oO 11011 | 0
3 11 27

0111 3 | o1 | &] to11 | H | 11011 | Z
1000 3 100 [0| 1100 | 0 11100 | 0
1001 3 100 | 4| 1100 || 11100 |2
1010 3 101 [o | 1101 [o0 11101 | 0
1011 3 101 | 2| 1101 |33 | 11101 | &
1100 3 110 [o | 1110 [0 11110 | 0
1101 3 110 | £ | 1110 | 2| 11110 | 2
1110 3 111 [o | 1111 [o 11111 | 0
7 15 31

1111 3 111 | & | 111 [B 11111 |3

264

Table A-73 Twiddle factors of 2-D (16 x 4)-point FFT following optimal algorithm

at stage 1 to 3

Counter Mapped Twiddle Fractions (g)
to Stage 1 | Stage 2 | Stage 3
bsbabsbabiby | boby [O] & [b3] £ |0 &
000000 0 ol o o] o o] o
000001 0 o| o Jo| o o] O
000010 1 ol o o] o o] o
000011 1 ol o |o| o |Oo] O
000100 2 ol o o] o o] o
000101 2 ol o |o| o |o] O
000110 3 ol o o] o o] o
000111 3 o o o] o o] O
001000 0 ol o [1] o o] o
001001 0 o] o |1]| L o] o
001010 1 ol o [1] o fo] o
001011 1 o] o |[1| L o] o
001100 2 ol o [1] o o] o
001101 2 o] o |1]| L o] o
001110 3 ol o [1] o o] o
001111 3 o] o |1| L Jo]| o
010000 0 ol o o] o o] o
010001 0 ol o |o| o |Oo] O
010010 1 ol o o] o o] o
010011 1 ol o |o| o |0o] O
010100 2 ol o o] o o] o
010101 2 o o |o| o |0o] O
010110 3 ol o o] o o] o
010111 3 ol o |o| o |o] O
011000 0 ol o [1] o Jo] o
011001 0 o o |t]| L o] o
011010 1 ol o [1] o Jo| o
011011 1 o] o |[1| L o] o
011100 2 ol o [1] o Jo] o
011101 2 o] o |t L o] o
011110 3 ol o [1] o Jo| o
011111 3 o] o |[1| L o] o

265

Table A-74 Twiddle factors of 2-D (16 x 4)-point FFT following the optimal algo-

rithm at stage 1 to 3 (cont.)

Counter

bsb4b3b2b1by

Mapped
to
baby

Twiddle Fractions ()

Stage 1

Stage 2

Stage 3

b3

100000
100001

100010
100011

100100
100101

100110
100111

101000
101001

101010
101011

101100
101101

101110
101111

110000
110001

110010
110011

110100
110101

110110
110111

111000
111001

111010
111011

111100
111101

111110
111111

W WNNDFP PO OWWNNEFPRPROOWWNNEFRFROOWWINNREFRFROO

O OO OO OO OO OO OO O[O OO OO0 OO O|0O OO0 OO0 Ol OO0 ©O|©O

O OO OO ©O|©C OO ©O|O OO O|C OO O|C OO0 O|©C ©O|C ©O|©O ©O|C O|0 Oy

B R R, RO OO0 00O OO0k, PRIk, R EFE RPRIRELREPLPOOIOOOO|IOO

= O pl— O~ ORI~ OO OO OO OO ORIF ORI ORFOKRFOIO OO OO0 OO0 OZH

O OO OO OO OO OO OO O[O OO OO0 OO O|0O OO0 OO0l 0|0 ©O|©O

O OO OO O|O OO OO O|C OO O|O ©O|C OO O|C ©O|C ©O|O ©|C ©O|C OZ=

266

Table A-75 Twiddle factors of 2-D (16 x 4)-point FFT following the optimal algo-
rithm at stage 5 to 6

Counter Mapped Twiddle Fractions (g)
to Stage 4 | Stage 5 Stage 6
bsbabsbabiby | babi [bs | & | bibs [& | bibobs | &
000000 0 o] o [o0 0] o000 [o0
000001 0 0] 0o |00 | 0] 000 |O
000010 1 o] o [10 |o]| 100 [0
000011 1 0| o | 10 | 2] 100 |+
000100 2 o] o [oo o] ot0 [0
000101 2 0| o |00 |0] ot0 | &
000110 3 o] o [10 o] 110 [0
000111 3 ol o |10 |2 110 | &
001000 0 o] o [oo |0 o000 [0
001001 0 0] 0 | 00 |O]| 000 |O
001010 1 o] o [10 o] 100 [oO
001011 1 0| 0o | 10 | 2| 100 |+
001100 2 o] o oo |o]| ot0o [0
001101 2 0] o |00 |0] ot0 | &
001110 3 o] o [10 o] 110 [0
001111 3 ol o |10 |2 110 |&
010000 0 o] o [o0 |0 o000 [O
010001 0 0] 0 | 00 | 0| 000 |O
010010 1 o] o [10 o] 100 |0
010011 1 o| o | 10 | 2| 100 |-+
010100 2 o] o [oo o] ot0o [0
010101 2 0| o |00 |0] ot0 | &
010110 3 o] o [10 o] 110 [oO
010111 3 o| o |10 | 2| 110 | &
011000 0 o] o [o0 |0o]| o000 [O0
011001 0 0| o | 00 |0O]| 000 |O
011010 1 o] o [10 o] 100 [0
011011 1 o| 0o | 10 | 2| 100 | &
011100 2 o] o [oo o] oto [0
011101 2 0| o |00 |0] ot0 | &
011110 3 o] o [10 o] 110 [oO
011111 3 o| o |10 |2 110 | &

267

Table A-76 Twiddle factors of 1-D (16 x 4)-point FFT following the optimal algo-
rithm at stage 5 to 6 (cont.)

Counter | Mapped Twiddle Fractions (%)
to Stage 4 Stage 5 Stage 6
bsbabsbabiby | baby | bsbabs | & [bibsbabs | & | bibsbabshy [
100000 0 1]o 01 0 001 0
100001 0 1 | 1 01 % 001 =
100010 1 1 |o 11 0 101 0
100011 1 1 | 11 3 101 =
100100 2 1]o 01 0 011 0
100101 2 1 | 1 01 % 011 i
100110 3 1]o 11 0 111 0
100111 3 1| 11 3 111 =
101000 0 1 |o 01 0 001 0
101001 0 1 | 01 : 001 L
101010 1 1]o 11 0 101 0
101011 1 1 | 11 3 101 =
101100 2 1 |o 01 0 011 0
101101 2 1 | 01 : 011 3
101110 3 1]o 11 0 111 0
101111 3 1 | 11 3 111 =
110000 0 1 |o 01 0 001 0
110001 0 1 | 01 : 001 L
110010 1 1 |o 11 0 101 0
110011 1 1 | 11 3 101 >
110100 2 1 |o 01 0 011 0
110101 2 1 | 01 : 011 2
110110 3 1]o 11 0 111 0
110111 3 1 | 11 3 111 =
111000 0 1 |o 01 0 001 0
111001 0 1 | 01 : 001 L
111010 1 1]o 11 0 101 0
111011 1 1 | 11 3 101 =
111100 2 1 |o 01 0 011 0
111101 2 1 | 01 : 011 3
111110 3 1]o 11 0 111 0
111111 3 1 | 11 3 111 =

268

VITA

Pinit Kumhom was born on December 25, 1964 in RoiEt province, Thailand. He
is a citizen of Thailand. In 1988, he received a Bachelor of Engineering (B.E.) in Elec-
trical Engineering with second honor from King Mongkut’s University of Technology
Thonburi (KMUTT), Bangkok, Thailand. He started his career as an instructor in the
Department of Electrical Engineering at KMUTT. His teaching experience included
Electronic and Digital Designs and Microprocessor-based System. Since September,
1992, he has been studying in department of Electrical and Computer Engineering at
Drexel University. He received his doctoral degree in Electrical engineering in March
2001. His research interests include the design of application-specific hardware, hard-

ware/software codesign and system-on-chip (SOC) design.

1. P. Kumhom, J.R. Johnson, P. Nagvajara, “Design, Optimization and Imple-
mentation of a Universal FFT Processor”, ASIC/SOC Conference, Arlington

VA., September 2000.

2. J.R. Johnson, P. Kumhom, P. Nagvajara, R. Johnson, “Implementation and
Optimization of a Distributed Memory FFT Processor”, HPEC 2000, MIT,
Cambrige MA, September 2000.

