CACHE CONSCIOUSWAL SH-HADAMARD TRANSFORM

Neungsoo Park and Viktor K. Prasanna

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-2562, USA
{neungsoo, prasanna} @usc.edu

ABSTRACT

The Wal sh-Hadamard Transform (WHT) isan important
algorithmin signal processing because of itssimplicity. How-
ever, in computing large size WHT, non-unit stride access
resultsin poor cache performanceleading to severe degrada-
tion in performance. This poor cache performanceisaso a
critical probleminachieving high performancein other large
size signa transforms.

In this paper, we devel op a cache friendly technique that
improvesthe performance of large size WHT. Inour approach,
datareorganizationis performed between computation stages
to reduce cache pollution. Furthermore, we develop an ef-
ficient search agorithm to determine the optimal factoriza-
tiontree based upon problem size and strideaccessinthede-
composition. Experimenta results show that our approach
achieves upto 180% performanceimprovement over the state
of theart package on Alpha21264 and M1PSR10000. In ad-
dition, the proposed optimization is applicable to other sig-
nal transforms and is portable across various platforms.

1. INTRODUCTION

In this paper, we present amethod for implementing and op-
timizing the Walsh-Hadamard transform. The WHT is an
important tool in signal processing and coding theory [1, 2].
Fast algorithms for computing the WHT are similar to the
Fast Fourier Transform (FFT) and its variants. Unlike the

FFT, twiddlefactorsand bit-reversal operationsare not needed.

This simplicity alows us to concentrate on divide and con-
quer strategies for WHT.

The WHT package developed a Carnegie Mellon Uni-
versity (CMU) [3] isaflexible software architecturethat can
be configured to implement different a gorithmic combina-
tions. Thispackage consists of aset of straight lineunrolled
codes. The combination of unrolled codesisrepresentedina
treestructuresimilar totheplanner of the FFTW package[4].
Thistree-structured computati on achieves good performance

Work supported by the DARPA/DSO OPAL Program, through the
Carnegie Mellon University under subcontract number 1-541704-50296.

for small size WHT. However, asthe size of WHT exceeds
cache size, performance drastically degrades. This degrada-
tionisdueto thememory hierarchy of state-of-the-art archi-
tectures.

Instate-of-the-art architectures, processor-memory band-
widthisabottleneck in achieving high performance. Toim-
provethis bandwidth, cache memory is used between mem-
ory and the processor. However, the cache in most of the
state-of-the-art architecturesiseither direct-mapped or small
set-associative. The distance between successively accessed
dataiscalled stride. Large stridedataaccesses duringacom-
putation do not possess spatia locaity. Furthermore, sev-
eral elements can competeto occupy thesame locationinthe
cache because of its small associativity, thereby increasing
cache misses [5]. Such stride accesses occur in the previous
approach, which computes alarge WHT by decomposing it
into a factorization tree. Such accesses result in more cache
misses, thus degrading overall performance.

Inthispaper, we proposeamethod for implementing and
optimizing large size WHT. Our approach isto dynamically
reorgani ze the datalayout in the memory between computa-
tion stages. Thus, we convert non-unit stride access to unit
stride access, thereby reducing cache misses considerably.
For small problem sizes, the data reorganization overhead
reduces the overall performance of our approach. But asthe
problem sizeincreases, our techniqueachi eves better perfor-
mance over the state-of-the-art approach. To achieve high
performance for all problem sizes, a decision isto be made
at each node of the factorization tree. We developed an effi-
cient search a gorithm using dynamic programming to make
this decision. Our search agorithm picks the optimal tree
and thusefficiently computesthe WHT. Our approach achieved
performance improvement upto 180% on Alpha 21264 ma
chine and M1PS R10000.

We present a brief review of WHT in Section 2. In Sec-
tion 3, we briefly describe the state-of-the-art WHT pack-
age developed at CMU. In Section 4, the cache behavior of
factorized WHT treesispresented. In Section 5, we discuss
our approach to optimize WHT and explain the search al-
gorithm. Experimental results on two state-of-the-art plat-

formsareshownin Section 6. Concluding remarksare made
in Section 7.

2. THE WALSH-HADAMARD TRANSFORM

For the sake of completeness, we briefly review WHT. Ad-
ditiona details can be found in [3]. The Walsh-Hadamard
transform of asignal «, of size N = 2", isthe matrix vector
product WHT - =, where

n

WHTy = ®DFT2 =DFT.®---©DFT,.

=1

The matrix

DFTZZH _”

isthe 2-point DFT matrix, and ® denotesthe tensor or Kro-
necker product. The tensor product of two matrices is com-
puted by replacing each element of thefirst matrix with that
element multiplied by the second matrix.

Algorithmfor computing the WHT can be derived using
properties of the tensor product [6]. A recursive agorithm
for the WHT is obtained from the factorization

WHTsn = (WHTok @ ILyncr)(Is @ WHT,ok) (1)

This agorithm is similar to the divide and conquer ago-
rithminarecursive FFT. Aniterativealgorithm for comput-
ing the WHT is obtained from the factorization

WHT:n = [[(Toi-s @ WHT; @ Lu-s), %)

=1

which corresponds to an iterative FFT.

3. PREVIOUSWORK

Fast agorithmsto compute WHT are similar to thosefor the
FFT. To achieve high performance, divideand conquer strate-
gies can be applied for efficient implementation of FFT and
WHT. Using arecursive algorithm, ahighly optimized FFT
package known as FFTW [4], was developed at MIT. It con-
sistsof aset of straight line unrolled codes of small size FFT,
known as codelets. To compute a large size FFT, a set of
these small size codelets are combined. The combination
of codeletsis represented as a binary tree. The search space
comprising of al suchtreesislarge. Tochoosethetreeyield-
ing the best performance among the avail abletrees, dynamic
programming was used.

A similar technique was used to develop a package for
WHT [3]. In this package, algorithmic choices are repre-
sented internally in a tree structure, similar to the plan data
structure of the FFTW. However, the WHT package can sup-
port iterativeand recursive datastructures, as well as combi-
nationsof both. Externally algorithmicchoi ces are described

by a simple grammar, which can be parsed to create differ-
ent algorithms that can be executed and timed. A parser is
provided for reading WHT expressionsand translating them
into a tree data structure. Optimizing the WHT becomes a
search problemover alarge space of available partitiontrees
and dynamic programming was used to prune the search.

The divide and conquer method used in both the algo-
rithmsreducestheworking set si ze during computation. How-
ever, the performance degradesdrastically for large problem
sizes. Even though the problem sizeisreduced by thedivide
and conquer method, leaf nodes require non-unit stride ac-
cess during computation. This non-unit stride access of | eaf
nodes causes alot of cache misses because of its poor local -
ity inthememory hierarchy of the state-of-the-art machines.
In the next section, we discuss the cache behavior of factor-
ized WHT.

4. CACHE BEHAVIOR OF FACTORIZED WHT

To understand the cache behavior of WHT computationwith
factorization, we consider atwo-level memory hierarchy con-
sisting of acache and main memory. Let C' denotethesizeof
the cache memory and B denotethe size of the cache block.
Tosimplify our analysis, we assumethecache isdirect mapped
sincemost of the state-of-the-art machines havedirect mapped
or small set associative caches. The number of cache blocks
inadirect mapped cacheisgivenby C/B.

A data access can result in a cache hit or amiss. Cache
misses may be classified as compulsory or conflict. A com-
pulsory miss occurs if the data was never accessed before
and needs to be fetched for the first time. A conflict miss
occurs when the data was previoudly fetched into the cache
block but wasrepl aced because another dataaccess ismapped
onto the same cache block. In general, acache missrequests
an expensive memory operation to fetch a data block from
the memory into the cache. Therefore, several cache misses
result in severe performance degradation.

r<—Block SizeB)»|
Tl .l..J.1st @ Conflict Miss
{ e PR

Compulsory Miss

Cache

Blocks
- First FFT
(i))
“E---F----= 4th

[] second FFT
= = Data Block

(b) Data mapped onto cache

stride = Ny stride =1

(a) Factorization tree

Fig. 1. Cache behavior of two consecutive WHTS.

Inorder to explainthe cache behavior of factorized WHT,
asimpleanaysisis presented. Consider the factorization of
an N-point WHT as N, x N7 asshown in Figure 1(a). In

the previous approach, V., computations of N;-point WHT
arefirst performed with unit stride. Followingthis, Ny com-
putationsof N, point WHT are computed with stride N (>
1). These non-unit stride accesses in the V; computations
of Ny-point WHT cause alarge number of cache misses.
Consider atypical case wherethestrideislarge such that
stride x Ny > (. The data mapping onto cache for an
Na-point WHT isshownin Figure 1(b). Inthisexample, we
consider N» = 4. The 1°/(2"%) and the 37%(4'") datablocks
are mapped onto the same cache block. Asshowninthefig-
ure, conflict misses occur in addition to compulsory misses
for such a WHT computation because of its stride access.
There can be potentially Ny x Ny missesin performing NV,
computations of N,-point WHTs. Stride data accesses re-
sult in cache pollution: cache blocks are replaced before al
data pointsin the cache block are fully utilized. Cache pol-
[ution and conflicts|ead to considerabl e performance degra-
dation particularly when alarge size WHT is computed. In
the next Section, we discuss a methodol ogy to reduce these
cache misses and thus improve the overall performance.

5. A PORTABLE OPTIMIZED WHT PACKAGE

Asillustrated in Section 4, stride data access affects perfor-

mance. The N, computationsof an N,-point WHT, performed

in the previous approach with non-unit stride, causes alarge
number of cache misses.

In our approach, data layout in the memory is reorga
nized to convert thenon-unit stride access of No-point WHT
to unity. Thus, we can reduce cache conflictsthat occur dur-
ing the N, computations. After these computations, reverse
reorgani zationsare performed to correct theorder of thedata
To achieve improved performance, the number of reorgani-
zations should be minimized. We also haveto determinethe
nodes at which reorgani zation should be applied.

To devel op the search al gorithm, we need to defineacost
model for thecomputationof WHT. In the previousapproach,
size was the only parameter considered in finding the opti-
mal factorization tree. However, as discussed above, stride
is aso acritica parameter affecting the performance of a
large size WHT. For agiven N = N; x N, the minimum
cost of performing an N-point WHT isgivenby :

min [No x WHT(N,, S;) + Dr(N, Ls,, Ls,) ®
"% 4 Ny x WHT(N2, S;) + Dr(N, Ls,, Ls,)],

where S; and S; = 1,2,---. Lg, (Ls;) denotes the data
layout for the computation of an N (V2)-point WHT with
stride S;(S;). Dr(N, Ls,, Ls,) isthe cost of reorganizing
layout Ls, tolayout Ls,. When Ls, = Ls,, no datareor-
ganization is performed. The cost of performing reorgani-
zation is O(%) memory accesses for WHT of size V. If k
different strides are considered for .5;(5;), the cost of eval-
uating Eq. (3) isO(k?).

Optimizing the WHT becomes a search problem over a
large space of possible factorization trees. The search space
considering only size as the parameter isO(4"), wheren =
log, N. Itisthusimpractical to find an optimal tree by ex-
haustive search, considering both stride and size. We use
dynamic programming to reduce the complexity. Restrict-
ing our search to a small set of strides reduces the search
space. At each node, the search complexity is O(k?) as ex-
plained above. The factorization tree is built bottom-up in
dynamic programming. Itscomplexity isO(n?). Therefore,
the complexity of our algorithmis O(k*n?). The decompo-
sitioncomputed using our technique providesafactorization
with optimal execution timeincluding variouslayouts (hav-
ing different stride access costs). For asmall size WHT, the
factorization tree with data reorgani zation may not be an op-
timal solution because of the overhead involved. However,
for largesize WHTS, treesincluding datareorganization lead
to faster WHT implementations.

Our approach is a high level optimization that exploits
the characteristics of thememory hierarchy by analyzing the
data access pattern, therby making our approach portable.
Therefore, thishigh-level optimizationcan beapplied ontop
of low-level optimizationssuch asthoseemployedin FFTW [4]
or the CMU package [3].

6. EXPERIMENTAL RESULTS

In thissection, wereport experimental resultsconducted
on two state-of-the-art platforms. Table 1 summarizes the
relevant architectural parameters, compilers, and optimiza-
tion options for various platforms used in our experiments.
We measured thewall clock timeusing cl ock() function.
To obtain the accurate execution time, computations were
repeated until theoverall execution timeislarger than 1 sec-
ond. Thetota execution timewas obtained by deducting the
loop overhead fromthat time. The average executiontimeis
reported.

800 - @—@Our Approach *
-3 CMU Approach ¥

600 | @—@Our Approach %
K-+ CMU Approach

2
]
8

Time (nsecs)
2
&
8

Time (nsecs)

o

N
8
Foex
*

.
15 20
Size (n)

(b) MIPS R10000

5
Size (n)

(a) Alpha21264

Fig. 2. Execution time per point.

Figure 2 shows the computation time for each point of
WHT onbothplatforms. Figure2 («) showsthe performance
of WHT on Alpha21264 platform. Asall thepointsrequired
for the computation of WHT reside in the cache for smaller

Table 1. Parameters of the platforms

Processor Alpha 21264 MIPS R10000
Clock (MHz) 500 195
L1 Cache(KB) / Block (Bytes) 64/64 32/32
L2 Cache(MB) / Block (Bytes) 4/64 4/64
oS Linux IRIX64 6.5
Compiler gcce ver. eges-1.91.66 MIPSpro Compilers: Ver. 7.2.1
Optimization options -06 -fomit-frame-pointer -pedantic -r10000 -O3 -Of ast -mips4

size problems (IV lessthan 2'%), the performance of our ap-
proach is the same as that of the CMU approach. For sizes
between 2'* and 2'°, the required data can reside in the L2
cache. In thisrange, our approach producesamargina gain
asit reducesthe 1.1 misses. But asthe problem size exceeds
the size of the 1.2 cache, a 3.52 times speed up is obtained
since both L1 and 12 caches are efficiently utilized in our
approach. Figure2 (b) showsthe performance improvement
on the MIPS R10000 platform. On other platforms such as
AMD Athlonand SUN UltraSPARC Ils, benchmark results
using our WHT package are available at our SPIRAL (Sig-

nal Processing AlgorithmsImplementation Research for Adap-

tive Library) [7] web site.

Table 2 shows the optimal trees chosen by pruning the
search spaceinboth approaches. InTable 2, “[n]” isastraight
line unrolled code for 2™ -point WHT. “[[n1], [n2]]" repre-

sentsatree computation using CM U approach and “d[[n1],[n2]]”,
atree computation using our approach. For WHT cases smaller

than 24, al points of WHT reside in the cache. So cache
misses do not occur during thecomputation. Hence our search
algorithm selectsthe same tree asthat of the CMU approach.
For problem sizes larger than 2'*, the tree based on our ap-
proach achieves better performance. The optimal tree for
any size is selected automatically by our dynamic program-
ming agorithm.

Table 2. Optimal decompositionson Alpha21264

Size CMU Approach [3] Our Approach

11 [[3],[[41,[411] [[3],[[41,[411]

12 [[41,[[41,[411] [[41,[[41,[411]

13 [[51,[[41,[411] [[51,[[41,[411]

14 [[2],[[51,[[41.[4111] dr[[3].[411,[[3].[411]
15 [[51,[[21,[[4].[4]11] dr[[41.[311,0041.[411]
16 [[S1,[[31,(141.[4111 d[[[41.0411,041,[4]

17 [[21,[[51,[[3].[[4].[4 dr[[41.041].[141,[5

18 || [[1],0021.0051.[031.([41,[4110001 d[[r41,[s11,0041,[s
19 41,[051.[[2],[[4],[4 dr[[41.0s11,0021,[141,[411
20 4,[[51.[[31.[[4],[4 d[[[2],[[4].[4111.[12] [[4].[4]
21 || [[3].0040,[05),[[3].0[41.[49000] | dI[[2].[[4].04911.[03].[[4].[4]
22 || [[31.I041,[[51.[[2].[[4].[4101000 | dI[[3].0041.04101.[031.0041.[4]11]

7. CONCLUSION

In this paper, an efficient package to implement the WHT
waspresented. Thoughtheworking setisdividedintosmaller

sets by breakdown strategies, cache pollution causes perfor-
mance degradation in the computation of alarge size WHT.
In our package, the datais reorganized and thus accessed ef-
ficiently. Our approach isa high level optimization method
that expl oitsthe characteristics of thememory hierarchy based
on cache behavior analysis of the data access patterns. It
is portable across platforms. Furthermore, it is applicable
to various signa transformsincluding FFT and others. The
work reported hereispart of the SPIRAL [7] project. Itisan
ongoing collaborative project involving CMU, Drexel Uni-
versity, MathStar Inc., University of Illinoisat UrbanaCham-
paign, and USC. The SPIRAL projectisdevel opingaunified
framework for the realization of portable high performance
implementationsof signal processing agorithmsfrom auni-
form representation of the agorithms. A WHT package us-
ing our approach is available at the SPIRAL [7] web site.

8. ACKNOWLEDGMENT

We would like to thank Dr. Markus Plschel for his assis-
tance with the WHT package in [3]. We also would like to
thank Bhargava Gundalafor his editorial assistance.

9. REFERENCES

[1] K. G. Beauchamp, Applications of Walsh and Related
Functions, Academic Press, 1984.

[2] F J MacWilliams and N. J. Sloane, The Theory of
Error-Correcting Codes, North-Holl. Publ. Co., 1992.

[3] J. Johnson, M. Puschel, “In Search of the Optimal
Walsh-Hadamard Transform,” ICASSP, 2000.

[4] M.Frigoand S. G. Johnson, “FFTW: An Adaptive Soft-
ware Architecture for the FFT,” ICASSP '98, 1998.

[5] D. H. Bailey, “Unfavorable Strides in Cache Memory
Systems,” cientific Programming, vol. 4, 1995.

[6] C. Van Loan, Computational Frameworks for the
Fast Fourier Transform, vol. 10 of Frontiersin Applied
Mathmetics, SIAM, 1992.

[7] SPIRAL Project, “http://www.ece.cmu.edu/~spiral” .

