
CACHE CONSCIOUS WALSH-HADAMARD TRANSFORM

Neungsoo Park and Viktor K. Prasanna

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA 90089-2562, USA
fneungsoo, prasannag@usc.edu

ABSTRACT

The Walsh-Hadamard Transform (WHT) is an important
algorithmin signal processing because of its simplicity. How-
ever, in computing large size WHT, non-unit stride access
results in poor cache performance leading to severe degrada-
tion in performance. This poor cache performance is also a
critical problem in achieving high performance in other large
size signal transforms.

In this paper, we develop a cache friendly technique that
improves the performance of large size WHT. In our approach,
data reorganization is performed between computationstages
to reduce cache pollution. Furthermore, we develop an ef-
ficient search algorithm to determine the optimal factoriza-
tion tree based upon problem size and stride access in the de-
composition. Experimental results show that our approach
achieves upto 180% performance improvement over the state
of the art package on Alpha 21264 and MIPS R10000. In ad-
dition, the proposed optimization is applicable to other sig-
nal transforms and is portable across various platforms.

1. INTRODUCTION

In this paper, we present a method for implementing and op-
timizing the Walsh-Hadamard transform. The WHT is an
important tool in signal processing and coding theory [1, 2].
Fast algorithms for computing the WHT are similar to the
Fast Fourier Transform (FFT) and its variants. Unlike the
FFT, twiddlefactors and bit-reversal operations are not needed.
This simplicity allows us to concentrate on divide and con-
quer strategies for WHT.

The WHT package developed at Carnegie Mellon Uni-
versity (CMU) [3] is a flexible software architecture that can
be configured to implement different algorithmic combina-
tions. This package consists of a set of straight line unrolled
codes. The combination of unrolledcodes is represented in a
tree structure similar to the planner of the FFTW package[4].
This tree-structured computationachieves good performance

Work supported by the DARPA/DSO OPAL Program, through the
Carnegie Mellon University under subcontract number 1-541704-50296.

for small size WHT. However, as the size of WHT exceeds
cache size, performance drastically degrades. This degrada-
tion is due to the memory hierarchy of state-of-the-art archi-
tectures.

In state-of-the-art architectures, processor-memory band-
width is a bottleneck in achieving high performance. To im-
prove this bandwidth, cache memory is used between mem-
ory and the processor. However, the cache in most of the
state-of-the-art architectures is either direct-mapped or small
set-associative. The distance between successively accessed
data is called stride. Large stride data accesses duringa com-
putation do not possess spatial locality. Furthermore, sev-
eral elements can compete to occupy the same location in the
cache because of its small associativity, thereby increasing
cache misses [5]. Such stride accesses occur in the previous
approach, which computes a large WHT by decomposing it
into a factorization tree. Such accesses result in more cache
misses, thus degrading overall performance.

In this paper, we propose a method for implementing and
optimizing large size WHT. Our approach is to dynamically
reorganize the data layout in the memory between computa-
tion stages. Thus, we convert non-unit stride access to unit
stride access, thereby reducing cache misses considerably.
For small problem sizes, the data reorganization overhead
reduces the overall performance of our approach. But as the
problem size increases, our technique achieves better perfor-
mance over the state-of-the-art approach. To achieve high
performance for all problem sizes, a decision is to be made
at each node of the factorization tree. We developed an effi-
cient search algorithm using dynamic programming to make
this decision. Our search algorithm picks the optimal tree
and thus efficiently computes the WHT. Our approach achieved
performance improvement upto 180% on Alpha 21264 ma-
chine and MIPS R10000.

We present a brief review of WHT in Section 2. In Sec-
tion 3, we briefly describe the state-of-the-art WHT pack-
age developed at CMU. In Section 4, the cache behavior of
factorized WHT trees is presented. In Section 5, we discuss
our approach to optimize WHT and explain the search al-
gorithm. Experimental results on two state-of-the-art plat-



forms are shown in Section 6. Concluding remarks are made
in Section 7.

2. THE WALSH-HADAMARD TRANSFORM

For the sake of completeness, we briefly review WHT. Ad-
ditional details can be found in [3]. The Walsh-Hadamard
transform of a signal x, of size N = 2n, is the matrix vector
productWHTN � x, where

WHTN =

nO

i=1

DFT2 =

nz }| {
DFT2 
 � � � 
DFT2 :

The matrix

DFT2 =

�
1 1

1 �1

�

is the 2-point DFT matrix, and 
 denotes the tensor or Kro-
necker product. The tensor product of two matrices is com-
puted by replacing each element of the first matrix with that
element multiplied by the second matrix.

Algorithm for computing the WHT can be derived using
properties of the tensor product [6]. A recursive algorithm
for the WHT is obtained from the factorization

WHT2n = (WHT
2k 
 I2n�k )(I2k 
WHT2n�k ) (1)

This algorithm is similar to the divide and conquer algo-
rithm in a recursive FFT. An iterative algorithm for comput-
ing the WHT is obtained from the factorization

WHT2n =

nY

i=1

(I2i�1 
WHT2 
 I2n�i ); (2)

which corresponds to an iterative FFT.

3. PREVIOUS WORK

Fast algorithms to compute WHT are similar to those for the
FFT. To achieve highperformance, divide and conquer strate-
gies can be applied for efficient implementation of FFT and
WHT. Using a recursive algorithm, a highly optimized FFT
package known as FFTW [4], was developed at MIT. It con-
sists of a set of straight line unrolled codes of small size FFT,
known as codelets. To compute a large size FFT, a set of
these small size codelets are combined. The combination
of codelets is represented as a binary tree. The search space
comprising of all such trees is large. To choose the tree yield-
ing the best performance among the available trees, dynamic
programming was used.

A similar technique was used to develop a package for
WHT [3]. In this package, algorithmic choices are repre-
sented internally in a tree structure, similar to the plan data
structure of the FFTW. However, the WHT package can sup-
port iterative and recursive data structures, as well as combi-
nations of both. Externally algorithmicchoices are described

by a simple grammar, which can be parsed to create differ-
ent algorithms that can be executed and timed. A parser is
provided for reading WHT expressions and translating them
into a tree data structure. Optimizing the WHT becomes a
search problem over a large space of available partition trees
and dynamic programming was used to prune the search.

The divide and conquer method used in both the algo-
rithms reduces the workingset size duringcomputation. How-
ever, the performance degrades drastically for large problem
sizes. Even though the problem size is reduced by the divide
and conquer method, leaf nodes require non-unit stride ac-
cess during computation. This non-unit stride access of leaf
nodes causes a lot of cache misses because of its poor local-
ity in the memory hierarchy of the state-of-the-art machines.
In the next section, we discuss the cache behavior of factor-
ized WHT.

4. CACHE BEHAVIOR OF FACTORIZED WHT

To understand the cache behavior of WHT computation with
factorization, we consider a two-level memory hierarchy con-
sistingof a cache and main memory. LetC denote the size of
the cache memory and B denote the size of the cache block.
To simplifyour analysis, we assume the cache is direct mapped
since most of the state-of-the-art machines have direct mapped
or small set associative caches. The number of cache blocks
in a direct mapped cache is given by C=B.

A data access can result in a cache hit or a miss. Cache
misses may be classified as compulsory or conflict. A com-
pulsory miss occurs if the data was never accessed before
and needs to be fetched for the first time. A conflict miss
occurs when the data was previously fetched into the cache
block but was replaced because another data access is mapped
onto the same cache block. In general, a cache miss requests
an expensive memory operation to fetch a data block from
the memory into the cache. Therefore, several cache misses
result in severe performance degradation.

N

N1N2

stride = N1 stride = 1

(a) Factorization tree

Conflict Miss

Compulsory Miss

Block Size(B)

Cache
Blocks

First FFT

Second FFT

(C/B)

1st
3rd

2nd
4th

Data Block

(b) Data mapped onto cache

Fig. 1. Cache behavior of two consecutive WHTs.

In order to explain the cache behavior of factorized WHT,
a simple analysis is presented. Consider the factorization of
an N -point WHT as N2 � N1 as shown in Figure 1(a). In



the previous approach, N2 computations of N1-point WHT
are first performed with unit stride. Following this,N1 com-
putations of N2 point WHT are computed with strideN1(>

1). These non-unit stride accesses in the N1 computations
of N2-point WHT cause a large number of cache misses.

Consider a typical case where the stride is large such that
stride � N2 > C. The data mapping onto cache for an
N2-point WHT is shown in Figure 1(b). In this example, we
consider N2 = 4. The 1st(2nd) and the 3rd(4th) data blocks
are mapped onto the same cache block. As shown in the fig-
ure, conflict misses occur in addition to compulsory misses
for such a WHT computation because of its stride access.
There can be potentiallyN2 �N1 misses in performing N1

computations of N2-point WHTs. Stride data accesses re-
sult in cache pollution: cache blocks are replaced before all
data points in the cache block are fully utilized. Cache pol-
lution and conflicts lead to considerable performance degra-
dation particularly when a large size WHT is computed. In
the next Section, we discuss a methodology to reduce these
cache misses and thus improve the overall performance.

5. A PORTABLE OPTIMIZED WHT PACKAGE

As illustrated in Section 4, stride data access affects perfor-
mance. TheN1 computationsof anN2-point WHT, performed
in the previous approach with non-unit stride, causes a large
number of cache misses.

In our approach, data layout in the memory is reorga-
nized to convert the non-unit stride access ofN2-point WHT
to unity. Thus, we can reduce cache conflicts that occur dur-
ing theN1 computations. After these computations, reverse
reorganizations are performed to correct the order of the data.
To achieve improved performance, the number of reorgani-
zations should be minimized. We also have to determine the
nodes at which reorganization should be applied.

To develop the search algorithm, we need to define a cost
model for the computationof WHT. In the previous approach,
size was the only parameter considered in finding the opti-
mal factorization tree. However, as discussed above, stride
is also a critical parameter affecting the performance of a
large size WHT. For a given N = N1 � N2, the minimum
cost of performing an N -point WHT is given by :

min
Si;Sj

[N2 �WHT (N1; Si) +Dr(N;LSi ; LSj )

+N1 �WHT (N2; Sj) +Dr(N;LSj ; LSi)];

(3)

where Si and Sj = 1; 2; � � � . LSi (LSj ) denotes the data
layout for the computation of an N1(N2)-point WHT with
stride Si(Sj). Dr(N;LSi ; LSj ) is the cost of reorganizing
layout LSi to layout LSj . When LSi = LSj , no data reor-
ganization is performed. The cost of performing reorgani-
zation is O(N

B
) memory accesses for WHT of size N . If k

different strides are considered for Si(Sj), the cost of eval-
uating Eq. (3) is O(k2).

Optimizing the WHT becomes a search problem over a
large space of possible factorization trees. The search space
considering only size as the parameter is O(4n), where n =

log
2
N . It is thus impractical to find an optimal tree by ex-

haustive search, considering both stride and size. We use
dynamic programming to reduce the complexity. Restrict-
ing our search to a small set of strides reduces the search
space. At each node, the search complexity is O(k2) as ex-
plained above. The factorization tree is built bottom-up in
dynamic programming. Its complexity isO(n2). Therefore,
the complexity of our algorithm is O(k2n2). The decompo-
sitioncomputed using our technique provides a factorization
with optimal execution time including various layouts (hav-
ing different stride access costs). For a small size WHT, the
factorization tree with data reorganization may not be an op-
timal solution because of the overhead involved. However,
for large size WHTs, trees including data reorganization lead
to faster WHT implementations.

Our approach is a high level optimization that exploits
the characteristics of the memory hierarchy by analyzing the
data access pattern, therby making our approach portable.
Therefore, this high-level optimizationcan be applied on top
of low-level optimizationssuch as those employed in FFTW [4]
or the CMU package [3].

6. EXPERIMENTAL RESULTS

In this section, we report experimental results conducted
on two state-of-the-art platforms. Table 1 summarizes the
relevant architectural parameters, compilers, and optimiza-
tion options for various platforms used in our experiments.
We measured the wall clock time using clock() function.
To obtain the accurate execution time, computations were
repeated until the overall execution time is larger than 1 sec-
ond. The total execution time was obtained by deducting the
loop overhead from that time. The average execution time is
reported.

10 15 20
Size (n)

0

200

400

600

800

T
im

e 
(n

se
cs

)

Our Approach

CMU Approach

(a) Alpha 21264

10 15 20
Size (n)

0

200

400

600

T
im

e 
(n

se
cs

)

Our Approach

CMU Approach

(b) MIPS R10000

Fig. 2. Execution time per point.

Figure 2 shows the computation time for each point of
WHT on bothplatforms. Figure 2 (a) shows the performance
of WHT on Alpha 21264 platform. As all the points required
for the computation of WHT reside in the cache for smaller



Table 1. Parameters of the platforms
Processor Alpha 21264 MIPS R10000

Clock (MHz) 500 195
L1 Cache(KB) / Block (Bytes) 64 / 64 32 / 32
L2 Cache(MB) / Block (Bytes) 4 / 64 4 / 64

OS Linux IRIX64 6.5
Compiler gcc ver. egcs-1.91.66 MIPSpro Compilers: Ver. 7.2.1

Optimization options -O6 -fomit-frame-pointer -pedantic -r10000 -O3 -Ofast -mips4

size problems (N less than 214), the performance of our ap-
proach is the same as that of the CMU approach. For sizes
between 214 and 219, the required data can reside in the L2
cache. In this range, our approach produces a marginal gain
as it reduces theL1 misses. But as the problem size exceeds
the size of the L2 cache, a 3.52 times speed up is obtained
since both L1 and L2 caches are efficiently utilized in our
approach. Figure 2 (b) shows the performance improvement
on the MIPS R10000 platform. On other platforms such as
AMD Athlon and SUN UltraSPARC IIs, benchmark results
using our WHT package are available at our SPIRAL (Sig-
nal Processing Algorithms ImplementationResearch for Adap-
tive Library) [7] web site.

Table 2 shows the optimal trees chosen by pruning the
search space in both approaches. In Table 2, “[n]” is a straight
line unrolled code for 2n-point WHT. “[[n1], [n2]]” repre-
sents a tree computation using CMU approach and “d[[n1],[n2]]”,
a tree computationusing our approach. For WHT cases smaller
than 214, all points of WHT reside in the cache. So cache
misses do not occur during the computation. Hence our search
algorithm selects the same tree as that of the CMU approach.
For problem sizes larger than 214, the tree based on our ap-
proach achieves better performance. The optimal tree for
any size is selected automatically by our dynamic program-
ming algorithm.

Table 2. Optimal decompositions on Alpha 21264

Size CMU Approach [3] Our Approach
11 [[3],[[4],[4]]] [[3],[[4],[4]]]
12 [[4],[[4],[4]]] [[4],[[4],[4]]]
13 [[5],[[4],[4]]] [[5],[[4],[4]]]
14 [[1],[[5],[[4],[4]]]] d[[[3],[4]],[[3],[4]]]
15 [[5],[[2],[[4],[4]]]] d[[[4],[3]],[[4],[4]]]
16 [[5],[[3],[[4],[4]]]] d[[[4],[4]],[[4],[4]]]
17 [[1],[[5],[[3],[[4],[4]]]]] d[[[4],[4]],[[4],[5]]]
18 [[1],[[1],[[5],[[3],[[4],[4]]]]]] d[[[4],[5]],[[4],[5]]]
19 [[4],[[5],[[2],[[4],[4]]]]] d[[[4],[5]],[[2],[[4],[4]]]]
20 [[4],[[5],[[3],[[4],[4]]]]] d[[[2],[[4],[4]]],[[2],[[4],[4]]]]
21 [[1],[[4],[[5],[[3],[[4],[4]]]]]] d[[[2],[[4],[4]]],[[3],[[4],[4]]]]
22 [[3],[[4],[[5],[[2],[[4],[4]]]]]] d[[[3],[[4],[4]]],[[3],[[4],[4]]]]

7. CONCLUSION

In this paper, an efficient package to implement the WHT
was presented. Though the working set is divided into smaller

sets by breakdown strategies, cache pollution causes perfor-
mance degradation in the computation of a large size WHT.
In our package, the data is reorganized and thus accessed ef-
ficiently. Our approach is a high level optimization method
that exploits the characteristics of the memory hierarchy based
on cache behavior analysis of the data access patterns. It
is portable across platforms. Furthermore, it is applicable
to various signal transforms including FFT and others. The
work reported here is part of the SPIRAL [7] project. It is an
ongoing collaborative project involving CMU, Drexel Uni-
versity, MathStar Inc., Universityof Illinoisat Urbana Cham-
paign, and USC. The SPIRAL project is developinga unified
framework for the realization of portable high performance
implementations of signal processing algorithms from a uni-
form representation of the algorithms. A WHT package us-
ing our approach is available at the SPIRAL [7] web site.

8. ACKNOWLEDGMENT

We would like to thank Dr. Markus Püschel for his assis-
tance with the WHT package in [3]. We also would like to
thank Bhargava Gundala for his editorial assistance.

9. REFERENCES

[1] K. G. Beauchamp, Applications of Walsh and Related
Functions, Academic Press, 1984.

[2] F. J. MacWilliams and N. J. Sloane, The Theory of
Error-Correcting Codes, North-Holl. Publ. Co., 1992.

[3] J. Johnson, M. Püschel, “In Search of the Optimal
Walsh-Hadamard Transform,” ICASSP, 2000.

[4] M. Frigo and S. G. Johnson, “FFTW: An Adaptive Soft-
ware Architecture for the FFT,” ICASSP ’98, 1998.

[5] D. H. Bailey, “Unfavorable Strides in Cache Memory
Systems,” Scientific Programming, vol. 4, 1995.

[6] C. Van Loan, Computational Frameworks for the
Fast Fourier Transform, vol. 10 of Frontiers in Applied
Mathmetics, SIAM, 1992.

[7] SPIRAL Project, “http://www.ece.cmu.edu/�spiral” .


