Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Aliaksei Sandryhaila, Samir Saba, Markus Püschel and Jelena Kovacevic (IEEE Transactions on Signal Processing, Vol. 60, No. 2, pp. 947-955, 2012)
Efficient compression of QRS complexes using Hermite expansion
Preprint (1 MB)
Bibtex
We propose a novel algorithm for the compression of ECG signals, in particular QRS complexes. The algorithm is based on the expansion of signals with compact support into a basis of discrete Hermite functions. These functions can be constructed by sampling continuous Hermite functions at specific sampling points. They form an orthogonal basis in the underlying signal space. The proposed algorithm relies on the theory of signal models based on orthogonal polynomials. We demonstrate that the constructed discrete Hermite functions have important advantages compared to continuous Hermite functions, which have previously been suggested for the compression of QRS complexes. Our algorithm achieves higher compression ratios compared with previously reported algorithms based on continuous Hermite functions, discrete Fourier, cosine, or wavelet transforms.
Keywords: Signal compression, Signal transforms, Orthogonal polynomials, Alternative signal models