Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Rachid Bouziane, Peter A. Milder, Robert Koutsoyannis, Yannis Benlachtar, James C. Hoe, Markus Püschel, Madeleine Glick and Robert I. Killey (Optics Express, Vol. 19, No. 21, pp. 20857-20864, 2011)
Design studies for ASIC implementations of 28 GS/s optical QPSK- and 16-QAM-OFDM transceivers
Published paper (link to publisher)
Bibtex
We designed at the register-transfer-level digital signal processing (DSP) circuits for 21.8 Gb/s and 43.7 Gb/s QPSK- and 16- QAM-encoded optical orthogonal frequency division multiplexing (OFDM) transceivers, and carried out synthesis and simulations assessing performance, power consumption and chip area. The aim of the study is to determine the suitability of OFDM technology for low-cost optical interconnects. Power calculations based on synthesis for a 65nm standard- cell library showed that the DSP components of the transceiver (FFTs, equalisation, (de)mapping and clipping/scaling circuits) consume 18.2 mW/Gb/s and 12.8 mW/Gb/s in the case of QPSK and 16-QAM respectively.
Keywords: IP cores for FPGA/ASIC, OFDM