Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Berkin Akin, Franz Franchetti and James C. Hoe (Journal of Signal Processing Systems, 2015)
FFTs with Near-Optimal Memory Access Through Block Data Layouts: Algorithm, Architecture and Design Automation
Published paper (link to publisher)
Bibtex
Fast Fourier transform algorithms on large data sets achieve poor performance on various platforms because of the inefficient strided memory access patterns. These inefficient access patterns need to be reshaped to achieve high performance implementations. In this paper we formally restructure 1D, 2D and 3D FFTs targeting a generic machine model with a two-level memory hierarchy requiring block data transfers, and derive memory access pattern efficient algorithms using custom block data layouts. These algorithms need to be carefully mapped to the targeted platform’s architecture, particularly the memory subsystem, to fully utilize performance and energy efficiency potentials. Using the Kronecker product formalism, we integrate our optimizations into Spiral framework and evaluate a family of DRAM-optimized FFT algorithms and their hardware implementation design space via automated techniques. In our evaluations, we demonstrate DRAM-optimized accelerator designs over a large tradeoff space given various problem (single/double precision 1D, 2D and 3D FFTs) and hardware platform (off-chip DRAM, 3D-stacked DRAM, ASIC, FPGA, etc.) parameters. We show that Spiral generated pareto optimal designs can achieve close to theoretical peak performance of the targeted platform offering 6x and 6.5x system performance and power efficiency improvements respectively over conventional row-column FFT algorithms.
Keywords: Fast Fourier Transform