Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Berkin Akin, Franz Franchetti and James C. Hoe (Proc. International Symposium on Computer Architectur (ISCA), 2015)
Data Reorganization in Memory Using 3D-stacked DRAM
Preprint (2.4 MB)
Published paper (link to publisher)
Bibtex
In this paper we focus on common data reorganization operations such as shuffle, pack/unpack, swap, transpose, and layout transformations. Although these operations simply relocate the data in the memory, they are costly on conventional systems mainly due to inefficient access patterns, limited data reuse and roundtrip data traversal throughout the memory hierarchy. This paper presents a two pronged approach for efficient data reorganization, which combines (i) a proposed DRAM-aware reshape accelerator integrated within 3D-stacked DRAM, and (ii) a mathematical framework that is used to represent and optimize the reorganization operations. We evaluate our proposed system through two major use cases. First, we demonstrate the reshape accelerator in performing a physical address remapping via data layout transform to utilize the internal parallelism/locality of the 3Dstacked DRAM structure more efficiently for general purpose workloads. Then, we focus on offloading and accelerating commonly used data reorganization routines selected from the Intel Math Kernel Library package. We evaluate the energy and performance benefits of our approach by comparing it against existing optimized implementations on state-of-the-art GPUs and CPUs. For the various test cases, in-memory data reorganization provides orders of magnitude performance and energy efficiency improvements via low overhead hardware.
Keywords: Memory, 3D-stacked, Data reorganization