Copyrights to these papers may be held by the publishers. The download files are preprints. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.
Daniele G. Spampinato, Diego Fabregat-Traver, Paolo Bientinesi and Markus Püschel (Proc. International Symposium on Code Generation and Optimization (CGO), pp. 327-339, 2018)
Program Generation for Small-Scale Linear Algebra Applications
Preprint (2.3 MB)
Published paper (link to publisher)
Bibtex
We present SLinGen, a program generation system for linear algebra. The input to SLinGen is an application expressed mathematically in a linear-algebra-inspired language (LA) that we define. LA provides basic scalar/vector/matrix additions/multiplications and higher level operations including linear systems solvers, Cholesky and LU factorizations. The output of SLingen is performance-optimized single-source C code, optionally vectorized with intrinsics. The target of SLinGen are small-scale computations on fixed-size operands, for which a straightforward implementation using optimized libraries (e.g., BLAS or LAPACK) is known to yield suboptimal performance (besides increasing code size and introducing dependencies), but which are crucial in control, signal processing, computer vision, and other domains. Internally, SLinGen uses synthesis and DSL-based techniques to optimize at a high level of abstraction. We benchmark our program generator on three prototypical applications: the Kalman filter, Gaussian process regression, and an L1-analysis convex solver, as well as basic routines including Cholesky factorization and solvers for the continuous-time Lyapunov and Sylvester equations. The results show significant speed-ups compared to straightforward C with Intel icc and clang with a polyhedral optimizer, as well as library-based and template-based implementations.
Keywords: SIMD vectorization, Synthesis, Beyond transforms, Linear algebraMore information: