Overview
Rewrite System for Loop Transformations
Fused Multiply-Add Optimization
Algebraic Theory Of Signal Processing

Our Papers

Yevgen Voronenko and Markus Püschel,
Multiplierless Multiple Constant Multiplication
to appear in ACM Transactions on Algorithms
PDF | Figures (PNG)

Other Papers

Here we list other papers relevant to the problem of multiple constant multiplication (MCM).

[1] P. R. Cappello and K. Steiglitz. Some complexity issues in digital signal processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32(5):1037-1041, 1984.
[ bib ]
[2] D. R. Bull and D. H. Horrocks. Primitive operator digital filters. IEE Proceedings G, 138(3):401-412, 1991.
[ bib ]
[3] A. G. Dempster and M. D. Macleod. Use of minimum-adder multiplier blocks in FIR digital filters. IEEE Transactions in Circuits and Systems-II: Analog and Digital Signal Processing, 42(9):569-577, 1995.
[ bib ]
[4] A. G. Dempster and M. D. Macleod. Constant integer multiplication using minimum adders. IEE Proceedings - Circuits, Devices and Systems, 141(5):407-413, 1994.
[ bib ]
[5] O. Gustafsson and L. Wanhammar. A novel approach to multiple constant multiplication using minimum spanning trees. In Proc. Midwest Symposium on Circuits and Systems, 2002.
[ bib ]
[6] O. Gustafsson, A. G. Dempster, and L. Wanhammar. Extended results for minimum-adder constant integer multipliers. In Proc. IEEE International Symposium on Circuits and Systems, 2002.
[ bib ]
[7] V. Lefèvre. Multiplication by an integer constant. Technical report, INRIA, 2001.
[ bib | .html ]
[8] V. Lefèvre. Multiplication by an integer constant: Lower bounds on the code length. In Proc. 5th Conference on Real Numbers and Computers, 2003.
[ bib ]
[9] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova. A new algorithm for elimination of common subexpressions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(1):58-68, 1999.
[ bib ]
[10] A. G. Dempster, S. S. Demirsoy, and I. Kale. Designing multiplier blocks with low logic depth. In Proc. IEEE International Symposium on Circuits and Systems, volume 5, pages 773-776, 2002.
[ bib ]
[11] R. I. Hartley. Subexpression sharing in filters using canonic signed digit multipliers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(10):677-688, 1996.
[ bib ]
[12] Hyeong-Ju Kang, Hansoo Kim, and In-Cheol Park. FIR filter synthesis algorithms for minimizing the delay and the number of adders. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(8):770-777, 2001.
[ bib ]
[13] D. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison-Wesley, 1969.
[ bib ]
[14] A. Avizienis. Signed-digit number representation for fast parallel arithmetic. IRE Transactions on Electronic Computers, EC-10:389-400, 1961.
[ bib ]
[15] J. O. Coleman. Cascaded coefficient number systems lead to FIR filters of striking computational efficiency. In Proc. International IEEE Conference in Electronics, Circuits, and Systems, 2001.
[ bib ]
[16] Robert L. Bernstein. Multiplication by integer constants. Software - Practice and Experience, 16(7):641-652, 1986.
[ bib ]
[17] A. G. Dempster and M. D. Macleod. Using all signed-digit representations to design single integer multipliers using subexpression elimination. In Proc. IEEE International Symposium on Circuits and Systems, 2004.
[ bib ]
[18] H. Choo, K. Muhammad, and K. Roy. Complexity reduction of digital filters using shift inclusive differential coefficients. IEEE Transactions on Signal Processing, 52(6):1760-1772, 2004.
[ bib ]
[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman And Company, New York, 1979.
[ bib ]
[20] Spiral website. http://www.spiral.net, 2005.
[ bib ]
[21] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressions problem. J. ACM, 27(4):758-771, 1980.
[ bib ]
[22] P. Tummeltshammer, J. C. Hoe, and M. Püschel. Multiple constant multiplication by time-multiplexed mapping of addition chains. In Proc. Design Automation Conference, pages 826-829, 2004.
[ bib ]
[23] H. Wu and M. A. Hasan. Closed-form expression for the average weight of signed-digit representations. IEEE Transactions on Computers, 48:848-851, 1999.
[ bib ]
[24] Y.-J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga, and T. Q. Nguyen. Multiplierless approximation of transforms with adder constraint. IEEE Signal Processing Letters, 9(11):344-347, 2002.
[ bib ]
[25] J. Liang and T.D. Tran. Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Transactions on Signal Processing, 49(12):3032-3044, 2001.
[ bib ]
[26] M. Püschel, A. Zelinski, and J. C. Hoe. Custom-optimized multiplierless implementations of DSP algorithms. In Proc. Int'l Conf. Computer Aided Design (ICCAD), pages 175-182, 2004.
[ bib ]

This file has been generated by bibtex2html 1.78